Основная ткань сосуды и нервы органа

В многоклеточном организме группы клеток приспособлены к выполнению

определенных функций. Такие группы клеток, имеющих одинаковое строение, и их межклеточное вещество, выполняющие одинаковые функции, образуют ткани.

Межклеточное вещество заполняет промежутки между клетками. Оно представляет собой продукт жизнедеятельности клеток.

У человека, как и у животных, выделяют четыре типа тканей: эпителиальные, соединительные, мышечные и нервную.

Эпителиальные ткани. Эпителиальные ткани образуют поверхностные слои кожи, слизистые оболочки внутренних органов (пищеварительного тракта, дыхательных и мочевыводящих путей), образуют многочисленные железы, выстилают изнутри сосуды.


Эпителий кожи, роговицы глаз защищает от неблагоприятных внешних воздействий, а эпителий желудка, кишечника предохраняет их стенки от действия пищеварительных соков. Через кишечный эпителий питательные вещества всасываются в кровь, а в легких через клетки эпителия осуществляется газообмен.

Железистые эпителиальные клетки выделяют различные вещества (секреты). Железистый эпителий образует железы. Различают железы внешней и внутренней секреции.

У первых секрет выделяется через специальные протоки на поверхность тела или в полость тела (таковы, например, потовые, слюнные, молочные железы). Железы внутренней секреции не имеют протоков, и их секрет (гормон) выделяется непосредственно в кровь.


Несмотря на многообразие функций, эпителиальные ткани имеют ряд характерных особенностей. Их клетки плотно прилегают друг к другу, располагаясь в один или несколько рядов, межклеточное вещество развито слабо. Клетки эпителиальных тканей при повреждении быстро замещаются новыми.

Соединительные ткани. В организме человека различают несколько видов соединительной ткани, на первый взгляд очень разных: хрящевая, костная, жировая, кровь. Их строение и функции различны, но все они имеют хорошо развитое межклеточное вещество. Межклеточное вещество в зависимости от выполняемой тканью функции может быть различным. Так, у крови оно жидкое, у костей — твердое, у хрящей — упругое, эластичное.


Соединительные ткани выполняют различные функции. Волокнистая соединительная ткань заполняет промежутки между органами, окружает сосуды, нервы, мышечные пучки, образует внутренние слои кожи — дерму и жировую клетчатку. Опорную, механическую функцию выполняют костная и хрящевая ткани. Кровь выполняет питательную, транспортную и защитную функции.

Мышечные ткани. Это группа тканей, которые имеют различное строение и происхождение, но объединены общим признаком способностью сокращаться, изменять свою длину, укорачиваться. Гладкая мышечная ткань находится в стенках внутренних органов, кровеносных и лимфатических сосудов, протоков желез. Ее образуют небольшие по размерам (до 100—120 мкм) веретенообразные одноядерные мышечные клетки. Сокращение гладких мышц происходит автоматически, т. е. помимо нашей воли. Гладкие мышцы могут находиться в сокращенном состоянии в течение длительного времени.


Поперечно-полосатая мышечная ткань образует скелетные мышцы, прикрепленные к костям скелета. Важным ее свойством является способность сокращаться, подчиняясь сознательному усилию человека. Основным элементом ткани является мышечное многоядерное волокно; оно имеет значительную длину — от 1 до 45 мм, а в некоторых мышцах даже до 12 см. Свое название ткань получила потому, что под микроскопом видна поперечная исчер-ченность ее волокон. Отличаются поперечно-полосатые волокна от гладко-мышечных клеток не только строением, но и тем, что могут значительно быстрее сокращаться и расслабляться.


Сердечная мышечная ткань образована прилегающими друг к другу клетками с поперечно-полосатой исчерченностью. Это удлиненные, до 150 мкм, клетки, имеющие одно, реже два ядра. Благодаря сложным переплетениям, которые образуют эти клетки, у сердца сокращаются не отдельные пучки, а сразу вся сердечная мышца: сначала у предсердий, потом у желудочков.

Нервная ткань. Образует органы нервной системы. В ней различают основные нервные клетки — нейроны и вспомогательные — клетки нейроглии.

Нейроны способны воспринимать раздражения, приходить в состояние возбуждения, вырабатывать и передавать нервные импульсы. Участвуют они также в переработке, хранении и извлечении из памяти информации. Каждая клетка имеет тело, отростки и нервные окончания. Отростки различаются по строению, форме и функциям.


Короткие разветвленные отростки (дендриты) воспринимают и передают возбуждение к телу нейрона, а по единственному длинному отростку (аксону) возбуждение передается к другому нейрону или к рабочему органу. Длина некоторых нервных волокон (отростков) может достигать 1 м и более.

Нейроглия выполняет опорную, защитную и питательную функции.

В нервной ткани нейроны, контактируя друг с другом, образуют цепочки. Места контактов отростков нейронов друг с другом называются синапсами. Возбуждение по нейронам передается в виде нервного импульса.


Сердце, почки, желудок, глаза, легкие — все это органы нашего тела.

Жизнедеятельность организма обеспечивается работой и взаимодействием различных органов, которые составляют системы органов.

  1. Что такое ткань?
  2. Какие выделяют типы тканей?
  3. Чем образована эпителиальная ткань?
  4. Какие особенности характерны для эпителиальной ткани?
  5. Назовите виды соединительной ткани.
  6. Что такое межклеточное вещество?
  7. Какие особенности характерны для гладкой мышечной ткани?
  8. Какие особенности строения отличают поперечно-полосатую мышечную ткань от сердечной?
  9. Что такое нейрон?

Почему жидкую кровь относят к тканям?

Ткань — это группа клеток, сходных по строению и происхождению, выполняющих определенную функцию и соединенных между собой межклеточным веществом. Ткани образуют органы. Орган — это часть тела, занимающая определенное место в организме, имеющая определенную форму и строение и выполняющая определенную функцию.

Ткань как совокупность клеток и межклеточного вещества. Типы и виды тканей, их свойства. Межклеточные взаимодействия.

В организме взрослого человека различают около 200 типов клеток. Группы клеток, имеющие одинаковое или сходное строение, связанные единством происхождения и приспособленные к выполнению определенных функций, образуют ткани. Это следующий уровень иерархической структуры организма человека – переход с клеточного уровня на тканевой (смотри рисунок 1.3.2).

Любая ткань представляет собой совокупность клеток и межклеточного вещества, которого может быть много (кровь, лимфа, рыхлая соединительная ткань) или мало (покровный эпителий).

Клетки каждой ткани (и некоторых органов) имеют собственное название: клетки нервной ткани называются нейронами, клетки костной ткани – остеоцитами, печени – гепатоцитами и так далее.

Межклеточное вещество химически представляет собой систему, состоящую из биополимеров в высокой концентрации и молекул воды. В нем расположены структурные элементы: волокна коллагена, эластина, кровеносные и лимфатические капилляры, нервные волокна и чувствительные окончания (болевые, температурные и другие рецепторы). Это обеспечивает необходимые условия для нормальной жизнедеятельности тканей и выполнения ими своих функций.

Всего выделяют четыре типа тканей: эпителиальную, соединительную (включая кровь и лимфу), мышечную и нервную (смотри рисунок 1.5.1).

Эпителиальная ткань, или эпителий, покрывает тело, выстилает внутренние поверхности органов (желудка, кишечника, мочевого пузыря и других) и полостей (брюшной, плевральной), а также образует большинство желез. В соответствии с этим различают покровный и железистый эпителий.

Покровный эпителий (вид А на рисунке 1.5.1) образует пласты клеток (1), тесно – практически без межклеточного вещества – прилегающие друг к другу. Он бывает однослойным или многослойным. Покровный эпителий является пограничной тканью и выполняет основные функции: защита от внешних воздействий и участие в обмене веществ организма с окружающей средой – всасывание компонентов пищи и выделение продуктов обмена (экскреция). Покровный эпителий обладает гибкостью, обеспечивая подвижность внутренних органов (например, сокращения сердца, растяжение желудка, перистальтику кишечника, расширение легких и так далее).

Железистый эпителий состоит из клеток, внутри которых находятся гранулы с секретом (от латинского secretio – отделение). Эти клетки осуществляют синтез и выделение многих веществ, важных для организма. Путем секреции образуются слюна, желудочный и кишечный сок, желчь, молоко, гормоны и другие биологически активные соединения. Железистый эпителий может образовывать самостоятельные органы – железы (например, поджелудочная железа, щитовидная железа, железы внутренней секреции, или эндокринные железы, выделяющие непосредственно в кровь гормоны, выполняющие в организме регулирующие функции и другие), а может являться частью других органов (например, железы желудка).

Соединительная ткань (виды Б и В на рисунке 1.5.1) отличается большим разнообразием клеток (1) и обилием межклеточного субстрата, состоящего из волокон (2) и аморфного вещества (3). Волокнистая соединительная ткань может быть рыхлой и плотной. Рыхлая соединительная ткань (вид Б) присутствует во всех органах, она окружает кровеносные и лимфатические сосуды. Плотная соединительная ткань выполняет механическую, опорную, формообразующую и защитную функции. Кроме того, существует еще очень плотная соединительная ткань (вид В), из нее состоят сухожилия и фиброзные мембраны (твердая мозговая оболочка, надкостница и другие). Соединительная ткань не только выполняет механические функции, но и активно участвует в обмене веществ, выработке иммунных тел, процессах регенерации и заживления ран, обеспечивает адаптацию к меняющимся условиям существования.

К соединительной ткани относится и жировая ткань (вид Г на рисунке 1.5.1). В ней депонируются (откладываются) жиры, при распаде которых высвобождается большое количество энергии.

Важную роль в организме играют скелетные (хрящевая и костная) соединительные ткани. Они выполняют, главным образом, опорную, механическую и защитную функции.

Хрящевая ткань (вид Д) состоит из клеток (1) и большого количества упругого межклеточного вещества (2), она образует межпозвоночные диски, некоторые компоненты суставов, трахеи, бронхов. Хрящевая ткань не имеет кровеносных сосудов и получает необходимые вещества, поглощая их из окружающих тканей.

Костная ткань (вид Е) состоит их костных пластинок, внутри которых лежат клетки. Клетки соединены друг с другом многочисленными отростками. Костная ткань отличается твердостью и из этой ткани построены кости скелета.

Разновидностью соединительной ткани является и кровь. В нашем представлении кровь – это нечто очень важное для организма и, в то же время, сложное для понимания. Кровь (вид Ж на рисунке 1.5.1) состоит из межклеточного вещества – плазмы (1) и взвешенных в ней форменных элементов (2) – эритроцитов, лейкоцитов, тромбоцитов (на рисунке 1.5.2 даны их фотографии, полученные при помощи электронного микроскопа). Все форменные элементы развиваются из общей клетки-предшественницы. Подробнее свойства и функции крови рассматриваются в разделе 1.5.2.3.

Клетки мышечной ткани (рисунок 1.3.1 и виды З и И на рисунке 1.5.1) обладают способностью сокращаться. Так как для сокращения требуется много энергии, клетки мышечной ткани отличаются повышенным содержанием митохондрий.

Различают два основных типа мышечной ткани – гладкую (вид З на рисунке 1.5.1), которая присутствует в стенках многих, и, как правило полых, внутренних органов (сосуды, кишечник, протоки желез и другие), и поперечно-полосатую (вид И на рисунке 1.5.1) , к которой относятся сердечная и скелетная мышечные ткани. Пучки мышечной ткани образуют мышцы. Они окружены прослойками соединительной ткани и пронизаны нервами, кровеносными и лимфатическими сосудами (смотри рисунок 1.3.1).

Нервная ткань (вид К на рисунке 1.5.1) состоит из нервных клеток (нейронов) (1) и межклеточного вещества (2) с различными клеточными элементами (3), называемыми в совокупности нейроглией (от греческого glia – клей). Основным свойством нейронов (нейрон обозначен цифрой 7 на рисунке 1.3.4) является способность воспринимать раздражение, возбуждаться, вырабатывать импульс и передавать его далее по цепи. Они синтезируют и выделяют биологически активные вещества – посредники (медиаторы).

Обобщающие сведения по тканям приведены в таблице 1.5.1.

Сохранение формы и выполнение специфических функций тканью генетически запрограммировано: дочерним клеткам посредством ДНК передается способность к выполнению специфических функций и к дифференцированию. О регуляции экспрессии генов, как основе дифференцировки, было сказано в разделе 1.3.4.

Дифференцировка – это биохимический процесс, при котором относительно однородные клетки, возникшие из общей клетки-предшественницы, превращаются во все более специализированные, специфические типы клеток, формирующие ткани или органы. Большинство дифференцированных клеток обычно сохраняет свои специфические признаки даже в новом окружении.

В 1952 году ученые из Чикагского университета осуществили разделение клеток куриного эмбриона, выращивая (инкубируя) их в растворе фермента при осторожном помешивании. Однако клетки не оставались разделенными, а начинали объединяться в новые колонии. Более того, при смешивании печеночных клеток с клетками сетчатки глаза образование клеточных агрегатов происходило так, что клетки сетчатки всегда перемещались во внутреннюю часть клеточной массы.

Взаимодействия клеток. Что же позволяет тканям не рассыпаться при малейшем внешнем воздействии? И чем обеспечивается слаженная работа клеток и выполнение ими специфических функций?

Множество наблюдений доказывает наличие способности у клеток распознавать друг друга и соответствующим образом реагировать. Взаимодействие – это не только способность передавать сигналы от одной клетки к другой, но и способность действовать совместно, то есть синхронно. На поверхности каждой клетки располагаются рецепторы (смотри раздел 1.3.2), благодаря которым каждая клетка распознает другую себе подобную. И функционируют эти “детекторные устройства” согласно правилу “ключ – замок” – этот механизм неоднократно упоминается в книге.

Давайте немного поговорим о том, как клетки взаимодействуют друг с другом. Известно два основных способа межклеточного взаимодействия: диффузионное и адгезивное. Диффузионное – это взаимодействие на основе межклеточных каналов, пор в мембранах соседних клеток, расположенных строго напротив друг друга. Адгезивное (от латинского adhaesio – прилипание, слипание) – механическое соединение клеток, длительное и стабильное удерживание их на близком расстоянии друг от друга. В главе, посвященной строению клетки, описаны различные виды межклеточных соединений (десмосомы, синапсы и другие). Это является основой для организации клеток в различные многоклеточные структуры (ткани, органы).

Каждая клетка ткани не только соединяется с соседними клетками, но и взаимодействует с межклеточным веществом, получая с его помощью питательные вещества, сигнальные молекулы (гормоны, медиаторы) и так далее. Посредством химических веществ, доставляемых ко всем тканям и органам тела, осуществляется гуморальный тип регуляции (от латинского humor – жидкость).

Другой путь регуляции, как уже упоминалось выше, осуществляется с помощью нервной системы. Нервные импульсы всегда достигают цели в сотни или тысячи раз быстрее доставки к органам или тканям химических веществ. Нервный и гуморальный способы регуляции функций органов и систем тесно между собой взаимосвязаны. Однако само образование большинства химических веществ и выделение их в кровь находятся под постоянным контролем нервной системы.

Клетка, ткань – это первые уровни организации живых организмов, но и на этих этапах можно выделить общие механизмы регуляции, обеспечивающие жизнедеятельность органов, систем органов и организма в целом.

Медицинский эксперт статьи



Кожа (cutis), образующая общий покров тела человека (integumentum commune), непосредственно соприкасаясь с внешней средой, выполняет ряд функций. Она защищает тело от внешних воздействий, в том числе механических, участвует в терморегуляции организма и в обменных процессах, выделяет наружу пот, кожное сало, выполняет дыхательную функцию, содержит энергетические запасы (подкожный жир). Кожа, занимающая площадь 1,5-2,0 м 2 в зависимости от размеров тела, является огромным полем для различных видов чувствительности: тактильной, болевой, температурной. Толщина кожи в различных отделах тела разная - от 0,5 до 5 мм. У кожи выделяют поверхностный слой - эпидермис, образовавшийся из эктодермы, и глубокий слой - дерму (собственно кожу) мезодермального происхождения.

Эпидермис (epidermis) представляет собой многослойный эпителий, наружный слой которого постепенно слущивается. Обновление эпидермиса происходит за счет его глубокого росткового слоя. Толщина эпидермиса различна. На бедрах, плече, груди, шее и лице он тонкий (0,02-0,05 мм), на ладонях и подошвах, испытывающих значительную физическую нагрузку, - 0,5-2,4 мм.

Эпидермис состоит из многих слоев клеток, объединенных в пять основных слоев: роговой, блестящий, зернистый, шиповатый и базальный. Поверхностный роговой слой состоит из большого числа роговых чешуек, образовавшихся в результате ороговения клеток подлежащих слоев. Роговые чешуйки содержат белок кератин и пузырьки воздуха. Этот слой плотный, упругий, не пропускает воду, микроорганизмы и др. Роговые чешуйки постепенно слущиваются и заменяются новыми, которые подходят к поверхности из глубжележащих слоев.

Под роговым слоем находится блестящий слой, образованный 3-4 слоями плоских клеток, потерявших ядра. Цитоплазма этих клеток пропитана белком элеидином, хорошо преломляющим свет. Под блестящим слоем располагается зернистый слой, состоящий из нескольких слоев уплощенных клеток. Эти клетки содержат крупные зерна кератогиалина, который по мере продвижения клеток к поверхности эпителия превращается в кератин. В глубине эпителиального слоя находятся клетки шиповатого и базального слоев, которые объединяют под названием ростковый слой. Среди клеток базального слоя имеются пигментные эпителиоциты, содержащие пигмент меланин, от количества которого зависит цвет кожи. Меланин защищает кожу от воздействия ультрафиолетовых лучей. В некоторых областях тела пигментация выражена особенно хорошо (околососковый кружок молочной железы, мошонка, вокруг заднепроходного отверстия).


Дерма, или собственно кожа (dermis, s. corium), состоит из соединительной ткани с некоторым количеством эластических волокон и гладкомышечных клеток. На предплечье толщина дермы не превышает 1 мм (у женщин) и 1,5 мм (у мужчин), в некоторых местах достигает 2,5 мм (кожа спины у мужчин). У собственно кожи выделяют поверхностный сосочковый слой (stratum papillare) и более глубокий сетчатый слой (stratum reticulare). Сосочковый слой располагается непосредственно под эпидермисом, состоит из рыхлой волокнистой неоформленной соединительной ткани и образует выпячивания - сосочки (papillae), содержащие петли кровеносных и лимфатических капилляров, нервные волокна. Соответственно расположению сосочков на поверхности эпидермиса видны гребешки кожи (cristae cutis), а между ними находятся продолговатые углубления - бороздки кожи (sulci cutis). Гребешки и бороздки лучше всего выражены на подошве и ладонях, где они образуют сложный индивидуальный рисунок. Это используется в криминалистике и судебной медицине для установления личности (дактилоскопия). В сосочковом слое располагаются пучки гладкомышечных клеток, связанные с луковицами волос, а в некоторых местах такие пучки лежат самостоятельно (кожа лица, сосок молочной железы, мошонка).

Сетчатый слой состоит из плотной неоформленной соединительной ткани, содержащей пучки коллагеновых и эластических волокон, и небольшого количества ретикулярных волокон. Этот слой без резкой границы переходит в подкожную основу, или клетчатку (tela subcutanea), содержащую в большем или меньшем количестве жировые скопления (panniculi adiposi). Толщина жировых отложений не во всех местах одинакова. В области лба, носа жировой слой выражен слабо, а на веках и коже мошонки он отсутствует. На ягодицах и подошвах жировой слой развит особенно хорошо. Здесь он выполняет механическую функцию, являясь эластической подстилкой. У женщин жировой слой развит лучше, чем у мужчин. Степень отложения жира зависит от типа телосложения, упитанности. Жировые отложения (жировая клетчатка) являются хорошим термоизолятором.

Цвет кожи зависит от наличия пигмента, который имеется в клетках базального слоя эпидермиса, а также встречается в дерме.


[1]

Человек разумный (лат. Homo sapiens) относится к классу Млекопитающих. Строение тела человека в целом схоже со строением других представителей класса, однако несколько существенный отличий позволили людям перейти на качественно новый по сравнению с животными этап развития: изменения в развитии структур мозга, увеличение мозговой полости и большая площадь коры больших полушарий привели к возникновению сознания и самосознания, абстрактного мышления.

Изменения в голосовом аппарате (опущение гортани и подъязычной кости, развитие связок) предопределили появление речи, с помощью которой люди могут эффективно общаться друг с другом.

Человека также отличают:

  • противопоставленный остальным большой палец кисти, благодаря которому люди могут хватать и удерживать предметы;
  • прямохождение на двух ногах (бипедализм);
  • небольшой размер клыков;
  • появление менструального цикла;
  • редукция волосяного покрова.

Основоположниками классической анатомии в Европе стали древнегреческие ученые. Алкмеон Кротонский первым начал изучать анатомию человека, основываясь на знаниях о строении животных. Он же выявил связь органов чувств с головным мозгом и его роль в обработке информации.

Известнейшим врачом и анатомом древнего мира был Гиппократ (ок. 460 – 370 гг н.э.), живший на острове Кос. Он основал Косскую медицинскую школу, до сих пор его называют отцом медицины. Гиппократ подробно описал строение костей черепа, мышц головы и шеи, положил начало современной эмбриологии.

Аристотель (384 – 322 гг. до н.э.) выявил закономерность в ходе артерий и вен: он утверждал, что артерии идут от сердца, а вены – к сердцу.

Герофил (род. в 304 г.до н.э.) и Эразистрат (ок. 300 – 240 гг. до н.э.) стали основателями Александрийской медицинской школы. Они производили многочисленные вскрытия трупов людей и животных. Герофилу принадлежат описания хода нервов, строения головного мозга и его отделов. Эразистрат также описал строение коры головного мозга, принципы движения мышц. Он первым заметил существование коллатеральных сосудов между артериями и венами.

Несмотря на значительный прогресс в изучении анатомии, древнегреческие врачи были подвержены многочисленным заблуждениям. Например, центром умственной деятельности они считали сердце или печень. Из-за того, что при вскрытии полые вены казались пустыми, врачи полагали, что по венам в организме течет воздух. Мало кто решался спорить с авторитетом известных ученых, поэтому подобные ошибки не исправлялись веками.

После Древней Греции центром развития медицины стал Древний Рим. Ещё одним отцом медицины можно назвать Клавдия Галена (ок. 130 – 201 гг.). Почти на полторы тысячи лет труды Галена стали эталоном медицинского образования, его суждения не подвергались сомнению. Он описал строение костей и мышц, доказал необходимость нервных волокон при движении и мышлении людей.

Начало физиологии как самостоятельной науки, положил Вильям Гарвей, в 1628 г. доказавший существование малого круга кровообращения и описавший принципы движения крови в организме.

Русские лекари изучали строение тела человека по сочинениям Галена и Везалия, переведенным с латинского языка. Отечественные ученые внесли существенный вклад в развитие анатомии в XIX-XX вв. П. А. Загорский (1764 – 1846 гг.) основал крупную анатомическую школу. Его последователями и учениками были И. В. Буяльский, Е. О. Мухин. Самым известным учеником Мухина был И. М. Сеченов (1816 – 1872 гг.). Основателем топографической анатомии стал профессор медицины и успешный полевой хирург Н. И. Пирогов (1810 – 1881 гг.), первым применивший гипсовую повязку и эфирный наркоз в полевых условиях.

С развитием науки и техники появились новые методы изучения строения и функционирования организма человека. Роль вскрытий для развитии анатомии отошла на задний план, вместо них успешно применяют такие методы, как рентгеновское, ультразвуковое исследование, компьютерная, магнитно-резонансная томография и т.д.

Организмом называют сложную относительно стабильную систему, реагирующую на изменения среды, как единое целое. По современным представлениям, строение и работу любого организма можно изучать на нескольких уровнях: молекулярном, субклеточном (уровень клеточных органелл), клеточном, тканевом, уровне органов, систем органов и уровне целого организма.

Изучением молекулярного уровня строения организма занимаются биохимия и молекулярная медицина. Единицей строения всего живого является клетка, ее изучением занимается цитология. Клетки, схожие по происхождению, функциям и объединенные территориально, а также межклеточное вещество между ними, составляют ткани. Ткани, в свою очередь, образуют отдельные органы.

Органы с общим эмбриональным происхождением и схожими функциями, объединяют в систему органов. У человека выделяют следующие системы:

  • Покровная система образована кожей и слизистыми оболочками, выстилающими органы. Основная ее функция – создание барьера между внутренней и внешней средой, защита от механических повреждений, высыхания, проникновения химических веществ, бактерий и вирусов.
  • Опорно-двигательная система состоит из костей скелета и поперечно-полосатых мышц. Скелет формирует каркас тела человека и защищает от повреждений внутренние органы. Мышцы делают возможным движения и перемещения тела.
  • Пищеварительная система состоит из желудочно-кишечного тракта (ротовая полость, глотка, пищевод, желудок, кишечник), пищеварительных желез и печени. Пищеварительная система необходима для питания организма, здесь происходит обработка и всасывание пищи, нейтрализация вредных веществ.
  • Кровеносная система образована кровеносными сосудами и сердцем. Ее основная функция – обеспечить циркуляцию крови в организме. Кровь служит для переноса кислорода и питательных веществ, удаления из организма продуктов обмена и вредных веществ. Также с кровью переносятся гормоны, сигнальные соединения. Она обеспечивает иммунную защиту организма.
  • Лимфатическая система схожа с кровеносной и функционально объединена с ней. Она образована лимфатическими сосудами и лимфатическими узлами, обеспечивает отток межклеточной жидкости от тканей, формирование и правильную работу клеток иммунной системы.
  • Дыхательная система состоит из дыхательных путей (носовая и ротовая полости, носоглотка, глотка, гортань, трахея, бронхи, легкие). Дыхательная система необходима для газообмена между кровью и воздухом.
  • Выделительную систему составляют почки и мочевыводящие пути (мочеточники, мочевой пузырь, мочеиспускательный канал). Почки фильтруют кровь и выводят вместе с мочой вредные продукты обмена и излишки жидкости из организма.
  • Половая система представлена половыми железами и внешними и внутренними половыми органами. Благодаря ей возможно деторождение.
  • Нервная система, состоящая из спинного и головного мозга, нервов, нервных узлов, органов чувств обеспечивает связь между всеми системами органов, координирует их работу, формирует адекватную реакцию организма на раздражители.
  • Схожими регуляторными функциями обладает эндокринная система, которую образуют железы внутренней секреции: гипофиз, щитовидная железа, надпочечники и т.д. Нередко нервную и эндокринную системы объединяют в единую нервно-гуморальную.

Несмотря на то, что разделение органов на системы имеет анатомические и физиологические обоснования, в реальности многие органы выполняют настолько разнообразные функции, что могут быть отнесены к нескольким системам. Части организма не существуют изолированного друг от друга, они постоянно находятся в тесном взаимодействии, все время оказывают взаимное влияние.

Клетки тела организма обладают большим разнообразием, они различаются по форме, принципам организации и функциям. Тем не менее, все эти клетки происходят из единственной зиготы, которая образуется при слиянии сперматозоида с яйцеклеткой.

Клетки, как и все живое, могут умирать. Это регулярно происходит в процессе естественного обновления тканей или может быть следствием повреждения. Ряды клеток постоянно должны пополнятся. Высокоспециализированные клетки тканей чаще всего не дают начало другим клеткам. Так, нервные, мышечные клетки не способны к делению. Для возобновления тканей служат стволовые клетки. Они относительно просто устроены, что позволяет им размножаться митозом и поддерживать свое количество. Основная функция стволовых клеток – их способность дифференцироваться, то есть превращаться в более сложно организованные, специализированные клетки.

Тотипотентная стволовая клетка способна дать начало клетке любой ткани. При делении тотипотентной клетки образуются плюрипотентные стволовые клетки. Каждая из плюрипотентных клеток может дать начало только другой плюрипотентной клетке или же стволовой клетке конкретной линии.


Разные виды стволовых клеток дают начало разным тканям. Ткань – это совокупность схожих клеток, которые служат одной цели. В организме человека различают нервную, мышечную, эпителиальную и соединительную ткани.

Эпителиальная ткань, она же покровная, выполняет барьерные функции, служит для разделения сред. Эпителий выстилает дыхательные пути, стенки желудочно-кишечного тракта, сосудов. Кожа человека тоже образована эпителиальной тканью с мертвым наружным слоем. Также эпителиальная ткань образует железы.

Эпителии образованы пластами плотно прилегающих друг к другу клеток. Между покровными клетками нет зазоров, они соединены очень прочными контактами. Внутри эпителия нет кровеносных сосудов, поэтому эпителиальные ткани не могут достигать большой толщины. Клетки покровной ткани обладают высокой способностью к регенерации, так как покровы тела все время подвергаются повреждениям.


Соединительная ткань широко представлена в организме, она есть во всех органах. По некоторым данным, соединительная ткань составляет 60-90% от массы органов. Соединительная ткань в основном служит для опоры, защиты и запаса питательных веществ. Её отличительная особенность в том, что большую долю в ткани составляют не клетки, а межклеточное вещество, которое они вырабатывают.

Твердая соединительная ткань образует кости, межклеточное вещество в ней – минеральные и органические соли. Большую часть хрящевой соединительной ткани составляют белки коллагена и эластина. Те же белки находятся под кожей, благодаря чему она может тянуться и возвращаться к начальной форме. Плотная соединительная ткань может быть оформленной (образует связки и сухожилия) и неоформленной. Также выделяют соединительные ткани со специальными свойствами (ретикулярную, жировую, пигментную и слизистую).


Мышечная ткань образована многоклеточными мышечными клетками, миоцитами. Миоциты обладают:

В организме различают три вида мышечной ткани: поперечно-полосатую (скелетную), сердечную и гладкую. Скелетная мускулатура отличается тем, что ее сокращения произвольны, то есть человек способен осознанно управлять ей. Волокна сердечной мышцы схожи по строению со скелетными, но осознанно управлять ими человек не может. Гладкие мышцы находятся в стенках сосудов и внутренних органов, их отличает большая выносливость и медленная скорость сокращения. Сердечная и скелетная мускулатура, в отличии от гладкой, могут создавать значительное усилие при сокращении, преодолевать большое сопротивление.


Нервная ткань состоит из клеток, способных генерировать электричество. У них небольшое тело и многочисленные отростки (длинные – аксоны, короткие – дендриты). Нервная ткань обеспечивает взаимодействие остальных тканей и органов, регулирует их работу.


Нервные клетки одни из самых высокоспециализированных в организме, поэтому для существования им необходима помощь вспомогательных клеток, нейроглии.

Читайте также:

Пожалуйста, не занимайтесь самолечением!
При симпотмах заболевания - обратитесь к врачу.