Патология нервной клетки и нервного волокна

Головной мозг — невероятно сложный орган, который постоянно обрабатывает тонны информации и никогда не отдыхает. В то же время мозг достаточно хрупок. В этой статье мы поговорим о том, какие заболевания могут привести к его повреждениям.


Проблема регенерации

Чем сложнее организм, тем тяжелее он регенерирует. Взять, к примеру, гидру — сколько раз ее не разрезай, она все равно восстановится обратно. А вот у человека восстанавливаться могут далеко не все структуры.

И если клетки некоторых частей нашего тела могут обновляться со временем, то с мозгом даже этого не происходит в полной мере.

Количество нейронов заложено в нас с рождения. Данные природой нервные клетки надо беречь, ведь регенерировать они вряд ли смогут.

Хотя, если верить последним исследованиям, могут — но очень редко и крайне медленно.

Некоторые ученые предлагают бороться с повреждениями при помощи стволовых клеток.

Как поражаются нейроны

Вариантов повреждения нейронов несколько. Однако не всегда опасно именно повреждение самой клетки. Потеря нейронных связей — это тоже очень серьезно, как и если бы клетка погибла.

Не менее опасна демиелинизация — процесс разрушения миелиновой оболочки, которая проходит вокруг нервных волокон.

Не все патологии влияют на количество нейронов, однако результат зачастую схожий. Все заболевания, которые так или иначе нарушают проводимость нервных волокон, их количество, связи между нейронами, лечатся крайне тяжело или вовсе неизлечимы. Что уж говорить о последствиях действия таких заболеваний.


Причины повреждения нервных волокон

Это заболевание развивается, когда кровеносный сосуд — в силу закупорки, поломки и других причин — не способен снабжать кровью головной мозг. Патология развивается в течение нескольких часов, а иногда и быстрее.

После перенесенного инсульта, в зависимости от его локализации, больной может испытывать проблемы с речью, зрением, слухов, движением, памятью. Оправится ли человек от инсульта или погибнет — зависит от обширности патологии.

После инсульта пациенты проходят реабилитацию, пытаясь восстановить потерянные функции. В ряде случаев они действительно полностью восстанавливаются. Ученые до сих пор выясняют причины этого явления.

Существуют мнения, что не поврежденные нейроны берут на себя функции разрушенных. Некоторые исследователи также считают, что не последнюю роль в реабилитации играет регенерация. Однако точного ответа на данный момент нет.

Это самая распространенная причина деменции — состояния, которое приводит к ухудшению умственных и коммуникативных способностей. Эта патология встречает у одного из 20 людей старше 65 и у одного из 10 людей старше 85.

Болезнь Альцгеймера приводит к постепенной гибели нейронов, особенно в областях мозга, связанных с памятью и мышлением. Такие нарушения в конечном итоге приводят к тому, что люди перестают узнавать близких, забывают, где находится их дом и теряют способность заботиться о себе.


Это заболевание влияет на движение, поражая нервы, соединяющие спинной мозг и мышцы. Патология встречается у абсолютно разных людей, в любом возрасте. Первыми симптомами могут быть невнятная речь и спотыкание.

Нервное истощение приводит к тому, что человек начинает терять контроль над своим телом, например, ему становится тяжело глотать или двигать глазами. На умственную деятельность больного все эти процессы однако не влияют.

Это очень редкое заболевание приводит к постепенному разрушению нейронов во всем головном мозге. Многие из ранних симптомов похожи на признаки болезни Альцгеймера: наблюдается потеря памяти, изменение личности.

По мере прогрессирования пациенты постепенно теряют контроль над своим разумом и телом.

Болезнь поражает нервные волокна центральной нервной системы: головной и спинной мозг. Нервы постепенно теряют способность передавать сигналы между центральной нервной системой и частями тела.

ем не менее, большинство пациентов находятся в длительном периоде ремиссии, когда заболевание не ухудшается, а общее состояние даже может улучшиться.

Симптомы включают ухудшение зрения, потерю равновесия, мышечную слабость, усталость и невнятную речь. Рассеянный склероз встречается у людей в возрасте от 18 до 40 лет, при этом у более молодых людей регистрируется чаще.

Болезнь приводит к ухудшению контроля движений головным мозгом. Этой патологией страдает один человек из 500. Большинство людей с болезнью Паркинсона старше 50 лет.

Основными симптомами являются тремор, ригидность мышц и медленные движения. Все это вызвано постепенной потерей нейронов в области мозга, контролирующей движение, а не повреждением самих мышц.

Различные повреждения головного мозга во время травм также являются достаточно распространенной причиной разрушения нейронов и связей между ними.

Частые сотрясения и травмы безусловно способны привести к снижению когнитивных способностей, памяти и других функций головного мозга. Травмы увеличивают риск развития других заболеваний, например, болезни Альцгеймера.

К сожалению, вышеперечисленные заболевания лечатся трудно, однако замедлить их развитие, а иногда и добиться ремиссии вполне возможно.

Главное — своевременно обращаться к врачу для диагностики.

ГЛАВА 19. ЗАБОЛЕВАНИЯ НЕРВНОЙ СИСТЕМЫ

Этиология повреждений нервной системы может быть связана с разнообразными эндогенными и экзогенными воздействиями. Их делят на физические, химические (в том числе, лекарственные), биологические и психо-эмоциональные.

Классификация патологических процессов и болезней нервной системы учитывает следующие особенности:

влияние наследственных и приобретённых факторов (наследственные и приобретённые болезни);

характер этиологического фактора (травматические, сосудистые, инфекционные, аутоиммунные, токсические поражения, болезни, обусловленные физическими факторами, нарушением обмена веществ, психо-эмоциональными нарушениями, неизвестной этиологии);

морфологические особенности (дистрофические, демиелинизирующие, воспалительные болезни, опухоли);

клиническое течение (острые, подострые и хронические болезни).

В зависимости от механизма действия патогенного фактора различают виды повреждений нервной системы:

прямое, или первичное;

непрямое, или вторичное (при нарушениях центрального и мозгового кровообращения, изменении состава крови, поражении нервно-эндокринной системы).

Патология нейрона

В ЦНС возникают общие патологические процессы, однако они приобретают особенности, обусловленные строением нервной ткани. Существуют также патологические процессы, характерные только для ЦНС.

Нейроны различных отделов ЦНС имеют структурно-функциональные различия, однако все они состоят из ядра, цитоплазмы (в ней выделяют перикарион, вещество Ниссля и другие компоненты), дендритов и аксона. Изменения нейронов при различных патологических состояниях делят на неспецифические (возникающие при различных воздействиях) и специфические, или патогномоничные (указывающие на наличие конкретной болезни).

● Неспецифические изменения нейронов. Наибольшее значение имеют изменения нервных клеток при ишемии мозга, ретроградное клеточное перерождение при пересечении аксонов, транссинаптическая дегенерация при разрушении афферентных связей с нейронами.

◊ Изменения нейронов при гипоксии. Нейроны ЦНС чрезвычайно чувствительны к гипоксии и гипогликемии, однако степень чувствительности в разных отделах неодинакова. При внезапном прекращении кровотока в сосудах головного мозга через 6–7 с наступает потеря сознания, а через 15 с — изменение биоэлектрической активности мозга. Уже через 4–5 мин после остановки кровотока возникают необратимые повреждения корковых нейронов. В то же время нейроны мозгового ствола способны переносить ишемию длительностью до 30 мин. При ишемии происходят следующие структурные изменения нейронов:

тигролиз — распад вещества Ниссля, возникающий в нейронах коры через 20 мин после 4-минутной остановки кровотока;

сморщивание нейронов — через 12 ч ишемии;

микровакуолизация вследствие набухания митохондрий нейронов;

цитолиз — побледнение окраски, а затем исчезновение нейрона.

Клетки микроглии фагоцитируют остатки погибших нейронов. При гибели нейронов происходит гиперплазия астроцитов с увеличением количества волокон (глиоз). Это может приводить к неравномерной деструкции серого вещества с сохранением одних и поражением других слоёв (псевдоламинарный некроз).

◊ Изменения при пересечении аксонов наблюдают, в основном, в теле клеток. Заметен хроматолиз вещества Ниссля. Ядро смещено к периферии. Происходит распад части нейрофибрилл и смещение других к периферии. В процессе регенерации в клетке снова возникают глыбки тигроида. Часть клеток не регенерирует, в них возможны цитолиз или атрофия. В периферической части аксона идёт вторичная дегенерация (дегенерация Тюрка–Валлера, или валлеровское перерождение). При этом наблюдают резкое утолщение и распад аксона на эозинофильные глыбки (аксональные глыбки) или сфероиды, имеющие зернистую структуру. В периферической нервной системе шванновские клетки и макрофаги фагоцитируют аксональные и миелиновые остатки. На месте волокна остаются пустые шванновские футляры, в них прорастают регенерирующие осевые цилиндры. В ЦНС данный процесс идёт гораздо медленнее, чем в периферической нервной системе. Клетки микроглии фагоцитируют продукты распада аксонов в течение нескольких месяцев или даже лет.

◊ Транссинаптическая дегенерация бывает при разрушении афферентных связей нейронов. Она возникает, например, после потери глаза в латеральном коленчатом теле, где расположен подкорковый центр зрения. Микроскопически наблюдают выпадение функционально связанных друг с другом нейронов и реактивный глиоз.

● Специфические изменения нервных клеток. Наибольшее значение имеют нейрофибриллярные пучки, характерные для болезни Альцхаймера и тельца Леви, свойственные болезни Паркинсона. Важное диагностическое значение имеют оксифильные включения внутри цитоплазмы при бешенстве (тельца Бабеша–Негри), остром полиомиелите (тельца Каудри типа В), внутриядерные включения при нейроинфекции, вызванной вирусом простого герпеса типа I (тельца Каудри типа А). Другие специфические изменения нейронов редки.

Нарушения деятельности нейрона проявляются изменением его возбудимости и проводимости.

● Повышение возбудимости нейрона (снижение порога возбуждения) возникает при снижении мембранного потенциала покоя, снижении содержания Ca 2+ во внеклеточной среде, уменьшении количества тормозных синаптических медиаторов, снижении чувствительности к ним соответствующих рецепторов (десенситизация). Возбуждение нейрона — обязательное условие формирования приспособительных реакций, например, гипервентиляции лёгких при гипоксии и т.п. Клинически патологическое возбуждение нейрона может быть основой развития спастических сокращений мышц, судорожных состояний, расстройств висцеральных функций и других явлений.

● Понижение возбудимости нейрона (повышение порога возбуждения) возникает при снижении уровня внеклеточного Na + , повышении содержания внеклеточного K + , избытке тормозных медиаторов и др. Угнетение активности нейронов, например, вазомоторного центра, может стать механизмом развития коллапса, а снижение возбудимости центральных нейронов во время сна обеспечивает восстановление их ресурсов.

Ритмическая стимуляция синапсов афферентными импульсами может приводить к длительным изменениям эффективности синаптической передачи в виде долговременных потенциации или депрессии. Эти явления могут лежать в основе патологического возбуждения или торможения.

● Долговременная потенциация вызвана увеличением в постсинаптическом нейроне концентрации Са 2+ и активацией системы вторичных посредников. Последнее приводит к появлению дополнительного количества возбуждающих рецепторов на постсинаптической мембране и увеличению их чувствительности к нейромедиаторам.

● Долговременная депрессия возникает при снижении количества и уменьшении чувствительности постсинаптических рецепторов.

Парабиоз (от греч. para — около, biosis — жизнь) — особое состояние нервной и мышечной ткани с изменением возбудимости и проводимости, возникающее под действием патогенных факторов. Развитие парабиоза связано с блокадой натриевых каналов мембраны нейрона. В зависимости от степени повреждения нервных волокон различают следующие фазы парабиоза:

уравнительная (при небольшом повреждении нерва) — ответная реакция на сильное и слабое раздражение одинакова;

парадоксальная — снижение реакции на сильное раздражение и более энергичный ответ на слабое раздражение;

тормозящая — никакие раздражения нерва не способны вызвать ответную реакцию.

Дата публикования: 2015-01-23 ; Прочитано: 2233 | Нарушение авторского права страницы

Во всех типах патологии на уровни клетки, нервных волокон и синапсов наблюдается нарушение мембранного потенциала. В норме соотношение калия и кальция равно 2. Например, люминал угнетает калиево-натриевый насос. Некоторые патологические факторы усиливают это, или вовсе блокируют (яды, токсины).

Патология со стороны нервного волокна: разрыхление или уплотнение миелиновой оболочки, а также нарушение мембранного потенциала осевого цилиндра нервного волокна.

На отрезанном конце нервного волокна осевой цилиндр распадается, остается шванновская оболочка в виде трубки, по нему может расти нервное волокно (1 мм в сутки), если не попадает в трубку растет невринома.

Патология в синапсах. В норме медиатор вызывает поток натрия во внутр постсинаптической мембраны, а калия - в синаптическую щель. Например, дифтерийный токсин блокирует на синапсе влияние симпатикуса на сердце. Накопление в синапсах норадреналина, повышает симпатическую возбудимость. Моноаминооксидаза разрушает норадреналин. А серотонин подавляет моноаминооксодазу.

Ацетилхолин в парасимпатических синапсах, разрушается холинэстеразой. Ацетилхолин накапливаясь много возбуждает, а затем блокирует передачу (мышцы, дыхательный центр).

Тормозной медиатор (глицин) вызывает гиперполяризацию, не допуская деполяризацию постсинаптической мембраны (вызывая поток калия в синаптическую щель, а хлора в пластинку). Стрихнин, столбнячный токсин таким же образом блокируют нервную передачу.

В вегетативной патологии имеет место и парабиоз- промежуточное состояние между жизнью и смерти. Это причина застойного возбуждения патологии в нервной ткани.

Вопрос 27.

Боль. Механизмы боли: рецепторный, проводниковый, центральный. Биологическое значение боли. Патофизиологические основы

Обезболивания

Боль - особый вид чувствительности, формирующийся под действием патогенного раздражителя, характеризующийся субъективно неприятными ощущениями, а также существенными изменениями в организме, вплоть до серьезных нарушений его жизнедеятельности и даже смерти (П.Ф. Литвицкий).

Путь боли: 1-нейрон в спинномозговых узлах, 2- нейрон в задних рогах сп мозга, далее спино-таламический путь,3-нейрон в зрительном бугре, 4-нейрон в теменной доле коры.

Боль защитного проявления-выброс адреналина, сужение сосудов, остановка кровотечения.

Иррадиация–распространение боли, напр. сердечные боли в область лопатки.Возможны и условнорефлекторные боли.

Физиологическая боль - в неповрежденной ткани, патотогическая -в поврежденной нервной тани. Раздражение токсинами, давлением рецепторов-рецепторная боль, проводниковая-когда передается по нервным волокнам,центральная-когда генерация боли из клеток ЦНС. Есть и участки, угнетающие боль. Торможение их усиливает боль. Как физиологическое понятие боль включает такие компоненты, как сознание, ощущения, память, мотивации; вегетативные, соматические и поведенческие реакции, эмоции.

Итак, боль может иметь сигнальное и патогенное значение. Болевые ощущения крайне важны для распознавания болезней, т.к. часто боль является первым и единственным анамнестическим признаком заболевания, заставляющим больного обратиться к врачу. Ощущение боли вызывают различные этиологические факторы, но их объединяет общее свойство — реальная или потенциальная опасность повредить организм. В связи с этим болевой сигнал обеспечивает мобилизацию организма для защиты от патогенного агента и охранительное ограничение функции поврежденной о органа.

Мобилизация организма для защиты от патогенного агента включает, например, активацию фагоцитоза и пролиферацию клеток, изменения центрального и периферического кровообращения и др. Важна и защитная поведенческая реакция на боль. направленная либо на "уход" от действия повреждающего фактора (например, отдергивание руки), либо на его ликвидацию (извлечение из кожи инородного тела и т.п.).

Ограничение функции органа или организма в целом формируется, например, при болях, характерных для инфаркта миокарда. Они сопровождаются страхом смерти, что заставляет пациента значительно ограничить двигательную активность, а это, в свою очередь, существенно снижает гемодинамическую нагрузку на повреждённое сердце.

Боль также может иметь патогенное значение. Она нередко является причиной и/или компонентом патогенеза различных болезней и болезненных состояний (например, боль в результате травмы может вызвать шок и потенцировать его развитие; боль при воспалении нервных стволов обусловливает нарушение функции тканей и органов„развитие общих реакций организма: повышение или снижение АД, нарушение функции сердца, почек).

Нейрофизиология и патогенез боли.Боль вызывают следующие этиологические факторы: 1) Механические (например, травма).

2) Физические (например, повышенная или пониженная температура, высокая доза ультрафиолетового облучения, электрический ток).

3) Химические (например, попадание на кожу или слизистые оболочки сильных кислот, щелочей, окислителей; накопление в ткани солей кальция или. калия).

4) Биологические (например, высокая концентрация кининов, гистамина, серотонина).

Чувство боли формируется на разных уровнях ноцицептивной системы: от воспринимающих болевые ощущения нервных окончаний до проводящих путей и центральных нервных структур.

Считают, что болевые (ноцицептивные) раздражители воспринимаются свободными нервными окончаниями (они способны реагировать на воздействие различных агентов как болевые). Вероятно, существуют и специализированные ноцицеппюрьс — свободные нервные окончания, активирующиеся только при действии ноцицептивных агентов (например, капсаицина — вещества, содержащегося в красном перце).

Сверхсильное (зачастую разрушающее) воздействие на мономодальные экстеро- и интерорецепторы (механо-, хемо-, терморецепторы и др.) также может привести к формированию ощущения боли.

Патогенные агенты, вызывающие боль (алгогены), приводят к высвобождению из поврежденных клеток ряда веществ (их нередко называют медиаторами боли), действующих на чувствительные нервные окончания. К медиаторам боли относят конины, гистамин, серотонин, высокую концентрацию Н + и К + , капсаицин, субстанцию Р, ацетилхолин, норадреналин и адреналин в нефизиологических концентрациях, некоторые простагландины. Однако, разные фрагменты субстанции Р могут вызывать противоположные эффекты — гипералгезию или аналгезию. Конечный эффект зависит от того, какой фрагмент субстанции Р и на какие структуры болевой чувствительности действует.

Порог возбуждения истинных ноцицепторов не является одинаковым и постоянным. В патологически измененных тканях (воспаление, гипоксия) он снижен, что обозначается как сентизация. При этом даже физиологические воздействия могут вызывать выраженные болевые ощущения. Сентизация может быть связана с действием многих биологически активных веществ, в частности простагландинов. Противоположный эффект — десентизация ноцицепторов возникает при действии тканевых анальгетиков и местноанестезируюших средств.

Соответственно двум механизмам восприятия боли проведение ее в нервные центры осуществляется по двум типам нервных волокон. Импульсы от мономодальных рецепторов различных органов, в первую очередь, кожных, проводится гю быстропроводящим тонким миелиновым волокнам группы А-гамма и А-дельта, а при возбуждении свободных нервных окончаний, главным образом, от внутренних органов — по медленнопроводящим безмиелиновым волокнам группы С.

Этот факт лежит в основе возникновения известного двойного ощущения боли. Ранняя боль, возникающая тотчас после нанесения болевого воздействия, является кратковременным сигналом о вредоносном раздражении. Она четко локализована и получила название эпикритической боли. Для ее проявления характерны эффекты, связанные, прежде всего, с активацией симпатической нервной системы общее возбуждение, тахикардия, учащение дыхания, повышение артериального давления, гипергликемия. По сути — все это проявления стрессорного воздействия. Эпикритическая боль отчетливо выражена при действии алгогенного фактора на кожу, слизистые оболочки.

Примерно через 1-2 с эпикритическая боль сменяется длительной, более интенсивной, диффузной болью, которая плохо локализуется пациентом. Это — так называемая протопатическая боль. Она отчетливо выявляется при повреждении внутренних органов и проявляется вагусными эффектами.

Вопрос 28.

Нарушения функций вегетативной нервной системы,

Их виды и механизмы

Повреждение гипоталамуса: передний отдел активирует парасимпатическую часть. Задний отдел активирует -симпатическую часть. Лабирины стимулируют гипофиз, статины ингибируют гипофиз.

Повреждение ядер переднего отдела вызывает сахарный диабет. Повреждение надзрительного ядра обусловливает уменьшение АДГ (полиурия), вызывает обезвоживание.

Повреждение среднего гипоталамуса: вентромдиального, дорсомедиального, паравентрикулярного, инфиндибулярного ядер вызывает расстройство обмена веществ, водно-солевого обмена.

Повреждение ядер заднего гипоталамуса (маммиллярные тела, серый бугор) вызывает расстройство менерального обмена.

Понижение тонуса симпатической части вызывает снижение АД, сужение зрачка, усиление перистальтики кишечника, сужение бронхов, брадикардию. Парасимпатическая часть оказывает действие обратного характера.

Вегетативные неврозы проявляются в форме сосудистой дистонии, неустойчивости функции ЖКТ.


Нервное волокно — это отросток нейрона, который покрыт специальной оболочкой (глиального типа). Благодаря их присутствию у нервной системы человека появилась способность передавать и воспринимать импульсы. При повреждении миелиновой оболочки происходит процесс димиелинизации, который сопровождается тяжелыми заболеваниями. В данной статье пойдет речь о строении этой структуры, их основных функция и значимости для ЦНС человека.

Общие сведения

Все нервы включают в себя огромное количество волокон, которые окружаются соединительной тканью. Само волокно состоит из особого отростка — аксона, который покрыт эктодермальной оболочкой. Они собираются в определенные пучки, таким образом, создаются тракты в головном, спинном мозгу и периферической нервной системе. Стоит отметить, что отростки бывают мякотными и безмякотными (например, нервные окончания кожных покровов).

Все они отличаются по характеру своего покрытия, а также принадлежностью к определенной нервной системе. Разделяются на две основные группы: покрытые миелином и лишенные его. В целом в организме человека преобладает именно первая группа.

Рассмотрим подробнее строение миелинового волокна.

Его основными компонентами являются:

  • цилиндр, которой проходит по центральной оси;
  • непосредственно оболочка миелиновой природы, которая покрывает осевой цилиндр;
  • шванновская оболочка.


Классификация нервных волокон

Все они по классификации разделяются на три основные группы:

  • по скорости передачи импульса;
  • по поперечному диаметру;
  • по продолжительности потенциала действия.

Стоит отметить, что, чем больше будет их диаметр и миелинизация, тем быстрее по нему проходит импульс. Выделяют три разновидности:

  1. Группа А. Все они покрыты оболочкой, потенциал действия у них самый низкий. В свою очередь они разделяются на 4 подвида: альфа, бета, гамма и дельта. К ним относятся все рецепторы соматической нервной системы, чувствительные волокна кожи, терморегуляции, проприорецепторов. Все эти отростки отвечают за тактильные чувства человека.
  2. Группа В. Отростки не полностью покрыты миелиновой оболочкой, к ним относятся составляющие вегетативной нервной системы. Сюда относятся медиаторы болевых ощущений и сигнализаторы работы внутренних органов.
  3. Группа С. Оболочка полностью отсутствует, скорость проведения импульса низкая. К ним относятся клетки ВНС, а также болевые и температурные соматические.

В состав миелина входят фосфолипиды, холестерол, основное белковое вещество и другие полезные компоненты. Таки образом оболочка является уникальной мембраной, благодаря которой в нервной системе появляется возможность быстрой передачи импульсов.

Все нервные отростки делят на две основные группы: афферентные (проводят импульсы от тканей до ЦНС) и эфферентные (действуют наоборот).


Миелинизация нервных волокон и демиелинизация

Как описывалось выше, каждый отросток имеет в своем составе осевой цилиндр, который покрыт специальной миелиновой оболочкой. Этот процесс носит название миелинизации. Благодаря присутствию участков Ранвье происходит передача импульса от одного к другому. Именно это и обеспечивает высокую передачу возбуждения по отростку в направлении к нерву.

В промежутках Ранвье происходит генерация и ускорение импульсных реакций. Их функции в вегетативной нервной системе берут на себя олигодендроглии.

Ткани безмякотного характера не имеют миелиновой оболочки в своем составе, поэтому характеризуются низкой изоляционной способностью. В данном случае скорость передачи импульса значительно снижается из-за того, что при его передаче от нейронов, он напрямую контактирует с окружающей средой. Передача импульсов для них требует больших энергетических затрат организма (в отличие от волокон мякотного типа).

Из этих двух групп волокон в дальнейшем формируется крупный нерв, который имеет на своем окончании в виде мелких пучков. Они отличаются по своим основным функциям. Важно отметить, что данные участки являются конечными при формировании межнейронной системы.

При нарушении функционирования миелиновой оболочки или ее повреждении происходит процесс димиелинизации. Данная патология может быть вызвана наличием воспалительного или инфекционного процесса в организме, нарушениями метаболизма, ишемическими процессами в тканях или распространением нейроинфекции. В результате этого процесса происходит замена миелина в оболочке на фиброзные бляшки. Проводимость импульсных реакций в таком случае значительно снижается.

Существует два вида димиелинизации:

  • миелинопатия, которая является результатом аутоиммунных нарушений в организме;
  • миелинокластия появляется при генетической предрасположенности к процессу димиелинизации.

Данный процесс считается достаточно опасным, так как несет серьезные нарушения в работе ЦНС. Очень важно диагностировать заболевание на ранней стадии, чтобы провести эффективную терапию.

Функции нервных волокон

Основной функцией нервных отростков является передача импульсной реакции от нейрона к нейрону. Существует два вида такой передачи:

  • импульсная. В ее основе лежат электролитные и нейтротрансмиттерные механизмы. Как описывалось выше, в волокнах, покрытых миелиновой оболочкой скорость передачи намного выше;
  • безимпульсная. Все реакции происходят за счет тока аксоплазмы с использованием микротрубочек аксона. Последние содержат в своем составе специальное вещество, которое оказывает трофическое воздействие на иннервирующий орган.

Во время передачи импульса происходит трансформация электрических потенциалов, в результате которых образуется уникальные молекулы — нейромедиаторы.

Все данное образование обладают уникальными свойствами:

  • лабильность (за определенное время может проводиться ограниченное количество импульсов);
  • возбудимость;
  • проводимость.

Считается, что нервное волокно неутомлямо. Это связано с низкими затратами АТФ при передаче импульсной реакции. В случае безмиелиновых волокон энергии требуется в разы больше, поэтому и скорость передачи значительно снижается.


Заключение

Итак, нервное волокно — это отдельный отросток нейрона, бывают с миелиновой оболочкой или без нее. Основной их функцией является передача импульса по нейронам к основному нерву. Основными составляющими ПНС и ЦНС являются именно миелиновые волокна, в ВНС преобладают безмиелиновые. В зависимости от сигнала, который проходит по волокну различают чувствительные, двигательные вегетативные и соматические. В случае нарушения функционирования миелина или повреждения оболочки у человека диагностируют серьезные патологии. Они требует своевременной диагностики и лечения.

Читайте также:

Пожалуйста, не занимайтесь самолечением!
При симпотмах заболевания - обратитесь к врачу.