Работа цнс в турбинном режиме


Содержание

Центробежный насос цнс применяется в разных областях промышленного производства, поэтому он получил широкую популярность в сфере промышленности.

Насосы типа ЦНС (расшифровка: Ц – центробежный, Н- насос, С - секционный) предназначены для откачивания воды из шахт угольной и горнорудной промышленности. Широкое распространение получила эксплуатация насосов ЦНС в высоконапорной системе пожаротушения, для подачи воды в высотные здания, для питания паровых котлов, в строительной промышленности, на транспорте. Довольно часто насос цнс используется как химический агрегат для транспортировки нефти и нефтяных продуктов.

Устройство насоса цнс

Работа насоса цнс заключается в создании избыточного давления и выталкивании перекачиваемой среды в нагнетательный трубопровод. Механическая энергия двигателя передается потоку перекачиваемой жидкости рабочими колесами, смонтированными на одном валу, в одном секционном корпусе.


Каждая лопасть рабочего колеса во время вращения взаимодействует с жидкость, которая находится непосредственно внутри секции. Из-за этого каждая секция приобретает центробежное ускорение. В то же время на периферии каждой секции появляется зона избыточного давления. Напор насоса типа ЦНС равен сумме напоров, создаваемых каждым установленным рабочим колесом.

Корпус насоса ЦНС секционного типа состоит из отдельных секций, число которых равно числу ступеней минус единица, так как одно колесо расположено в передней крышке.

Уплотнение между секциями обеспечивается резиновыми прокладками. Секционная конструкция корпуса насоса позволяет увеличить или уменьшить число секций и тем самым увеличить или уменьшить напор, не изменяя подачи.


Крышки насоса отлиты за одно целое и всасывающим(задняя крышка) и напорным (передняя крышка, дальняя от двигателя) патрубками. Сальник всасывающей секции имеет гидравлический затвор, вода к которому подводится по трубке, выполненной в задней крышке корпуса насоса.

Многоступенчатый насос типа ЦНС выпускается с числом рабочих колес от 2 до 10. Перекачиваемая жидкость передается от одного рабочего колеса к следующему по внутреннему каналу и лопастям направляющего аппарата. Уплотнения направляющего аппарата и рабочих колес осуществляется уплотняющими кольцами.

Все секции соединены друг с другом при помощи направляющих аппаратов. Эти элементы изготовлены таким образом, чтобы жидкость не могла оказаться снаружи. В то же время перекачиваемая жидкость, которая получает дополнительный напор от колеса самой первой секции, должна поступить из первой секции во вторую. Также она тоже подвергается воздействию лопастей колеса. В итоге давление жидкости растёт по мере того, как она поступает из одной секции в другую.

Ввиду того, что в секционных насосах устанавливается большое число рабочих колес с осевым входом воды, возникают большие гидравлические осевые усилия, разгрузка которых осуществляется с помощью автоматических разгрузочных устройств в виде уравновешивающих дисков (гидравлической пяты). Некоторые насосы типа ЦНС выпускают с двумя рабочими колесами осевого входа левого и правого вращения.

Осевые усилия уравновешиваются симметричным расположением колес. Спиральные диффузорные отводы выполнены в общей отливке корпуса.

Столь необычное устройство насоса позволяет добиться высокой эффективности, поэтому это оборудование пользуется завидной популярностью в самых разных отраслях. После того, как жидкость пройдёт все секции, она отправится в нагнетательный трубопровод, где и останется.

Устройство насоса цнс позволяет использовать его практически для любых задач. По этой причине насосы часто используются для повышения эффективности работы промышленного предприятия. Их можно часто увидеть на различных заводах, где они выполняют роль напорных насосов в куда более крупных агрегатах.

На российском рынке эти насосы производят российские компании, поэтому вполне закономерно, что стоимость на них достаточно невелика.

ЦНС - центробежный электронасос. В качестве главного рабочего органа применяется рабочее колесо (многоступенчатое).

Многоступенчатые насосы предназначенные для перекачивания чистой воды с температурой до 105 градусов цельсия принято разделять на нормальные и высокооборотные.

Нормальные насосы ЦНС показывают технические характеристики по подаче в диапазоне 8 – 850 м 3 /час, напор от 40 до 1440 метров и КПД 67-77%.

Высокооборотные показывают подачу 38-1000 м 3 /ч при напоре 136 – 2000 метров, их устанавливают с подпором 2-6 м, КПД в районе 72-80%.

Характеристика насоса цнс позволяет перекачивать практически любые жидкости. Это может быть как вода, так и нефть. Для повышения эффективности работы это устройство приводится в действие электрическим двигателем. Он достаточно мощный.

Каждое колесо этого сложного устройство соединено последовательно. По этой причине эти агрегаты смонтированы сразу на 1 вал, сделанный из стали. При помощи электрического двигателя включают и колёса, поэтому вполне закономерно, что такие насосы часто используются для перекачки нефти. Сложно найти другой инструмент, который было бы возможно использовать для схожих задач.


Секционные насосы цнс отличаются особой конструкцией. Мотор устанавливают отдельным блоком. Это наиболее подходящий вариант для того, чтобы значительно повысить эффективность оборудования. Во время изготовления секционного насоса компании-производители используют чугун, а также стали марок 35Л и 40Х.

Непосредственно во время режима работы этого устройства можно изменять напор. По этой причине можно регулировать и длину вала, а также установки на определённый размер стяжных шпилек. Ротор, который находится внутри камеры, приводится в движение благодаря подшипникам.

Можно приобрести варианты как с водным, так и с масляным охлаждением подшипника. Некоторые модели применяют сразу несколько видов регуляции температуры. Это оптимальный вариант для того, чтобы секционный насос ЦНС работал в любых условиях.

Достоинства секционных насосов состоит в возможности изменения напора путем добавления или уменьшения числа секций и в малых габаритах насоса при больших напорах.

Недостатки заключаются в сложности разборки и сборки насосов, в невысоком КПД и в большом числе деталей, требующих высокой точности обработки на металлообрабатывающих станках.


Насос цнс 180 относится к типу центробежных многоступенчатых. Он используется для перекачивания нейтральной жидкости (техническая вода) и любых иных жидкостей, которые не относятся к взрывоопасным. Твёрдые включения в жидкости не должны составлять более 0.1%. Размер частиц - не более 0.25 мм.

Насос цнс 300 относится к секционных центробежным насосам. Он используется для того, чтобы перекачивать жидкость, чья температура составляет менее 45 градусов по Цельсию. В перекачиваемой жидкости не должно быть никаких механический примесей. Размер частиц, которые могут находится в жидкости, не должен превышать 0.1 мм.

Насосы цнс 60 также используют для перекачивания воды, которая может похвастаться нормальным водородным показателем (7-8.5) и температурой не более 45 градусов по Цельсию. Этот насос можно увидеть в шахтах.

Насос цнс 105 применяется для перекачивания жидкости, чья температура не достигает 45 градусов по Цельсию. Этот насос допускается производить только в климатическом исполнении УХЛ. Также следует обратить внимание на массу механических примесей. Она должна составлять не более 0.1%.

Все перечисленные секционные горизонтальные насосы отличаются друг от друга уровнем производительности. Как понятно из названия каждого устройства, они предназначены для перекачивания жидкости.

Каждый из перечисленных насосов (насос цнс 180, насос цнс 300, насос цнс 60, насос цнс 105) позволяет выполнять похожие задачи, однако их производительность накладывает определённые ограничения. Перед покупкой желательно проконсультироваться с продавцом и уточнить функционал насоса.

Ремонт насосов ЦНС, как и всех сложных технических устройств, - это сложная задача даже для самых подготовленных пользователей. Неудивительно, что для этого нанимают профессиональных мастеров. Если такой возможности нет, то придётся как можно внимательнее изучить представленную инструкцию по ремонту. Она представляет интерес для всех, кто хотел бы как можно скорее отремонтировать насос. Для этого придётся воспользоваться массой инструментов и проявить недюжинную смекалку.

Все представленные рекомендации нужно соблюдать неукоснительно. Этого будет вполне достаточно для того, чтобы выполнить ремонт самостоятельно. В таком случае работа насоса цнс не будет вызывать никаких вопросов.

Основные выводы из теории переменного режима.

Работа турбинной ступени в переменном режиме. Работа турбины с уменьшением пропуска пара при постоянном начальном давлении и при постоянном начальном давлении.

Турбина и турбинная установка могут работать в самых различных режимах. Прежде всего эти режимы можно разделить на стационарные и нестационарные.

Стационарный режим отвечает работе турбины при некоторой фиксировано нагрузке. В этом режиме параметры пара в проточной части и температурное состояние её деталей не изменяются во времени. В свою очередь стационарная работа может происходить при номинальной или частичной нагрузке. Под номинальной нагрузкойТЭС понимается сумма номинальных (паспортных) нагрузок ее основных агрегатов. Под номинальной нагрузкой агрегата (котла, турбины, генератора) понимается мощность (паропроизводительность), развиваемая в соответствии с его паспортными характеристиками. Частичная нагрузка— режим работы основных агрегатов, при котором мощность (тепловая нагрузка отборов или паропроизводительность котла) меньше номинальной.

В настоящее время для турбин ТЭС, работающих на органическом топливе, не менее важное значение приобрели нестационарные режимы, при которых в той или иной степени изменяется тепловое состояние турбоагрегата. Наиболее сложным нестационарным режимом является пуск ПТУ, включающий многочисленные операции перед толчком ротора паром, разворот ротора, включение генератора в сеть и набор заданной нагрузки. К нестационарным режимам также относят резкие изменения нагрузки (сброс и наброс), при которых вслед за изменением температуры протекающего в турбине пара изменяется и её тепловое состояние. К нестационарным режимам относят режим остановки турбины (разгружение, отключение от сети, выбег ротора и остывание), от которого зависит возможность последующего быстрого пуска неостывшей турбины.

Любые нестационарные режимы всегда связаны со снижением надежности и экономичности энергетического оборудования. Задача эксплуатационного персонала состоит в том, чтобы вести эти режимы в строгом соответствии с инструкцией, составленной на основании расчетов и опыта эксплуатации аналогичного оборудования, допуская лишь минимальное снижение надежности и небольшой перерасход топлива.

Под переменными режимами работыпонимается эксплуатация оборудования ТЭС с систематическим чередованием стационарных и нестационарных режимов работы в течение достаточно короткого промежутка времени (например, суток). Фактически в течение всего времени эксплуатации станции работают при переменных режимах. При изменении режима работы турбоустановки давления и температуры в проточной части турбины изменяются. При переменном пропуске пара через турбину изменение давления и температуры перегретого пара в её проточной части приближенно подчиняется формуле Флюгеля-Стодолы:

Регулировочный диапазон энергоблока (агрегата)— это диапазон изменения мощности, в пределах которого энергоблок может надежно работать длительное время без существенных переключений и изменений в тепловой схеме. Для энергоблоков регулировочный диапазон, как правило, определяется значением допустимой минимальной нагрузки котла, которая, в свою очередь, зависит от возможности поддержания устойчивого режима горения топлива в топочной камере и температурного режима в перегревательной и радиационной частях котла, надежности гидравлического режима и устойчивости работы системы автоматического регулирования, предотвращения шлакования поверхностей нагрева при работе на твердом топливе. Наряду с регулировочным диапазоном еще одной характеристикой маневренности является технический минимум нагрузки. Технический минимум нагрузки— это режим работы оборудования с минимально допустимой нагрузкой длительное время, не приводящий к снижению надежности. Основные ограничения для этого режима такие же, как и для регулировочного диапазона.

Перечисленные стационарные и нестационарные режимы работы являются обязательными для каждого агрегата. Кроме них каждый турбоагрегат должен быть приспособлен к аварийным режимам, которые не исключены из-за неполадок или дефектов в различном оборудовании блока или в самой турбине. Некоторые турбоагрегаты эксплуатируются в специфических режимах, например в беспаровом режиме или в режиме синхронного компенсатора. Беспаровым режимом называет­ся работа турбоагрегата с включен­ным в сеть генератором при закры­тых стопорных и регулирующих клапанах, т. е. без пропуска пара через турбину. В этом случае гене­ратор работает в моторном режи­ме, вращая ротор турбины с син­хронной частотой и потребляя из сети активную мощность, необходи­мую для преодоления механических и вентиляционных потерь турбины и генератора.

Любые нестационарные режимы всегда связаны со снижением надежности и экономичности энергетического оборудования.

Для теплоэлектроцентралей можно выделить еще три режима работы. Режим работы по тепловому графику— это режим, при котором расход отработавшего пара в конденсатор минимален. В этом случае теплоэлектроцентраль или теплофикационная турбоустановка работает в базовой зоне графика нагрузки. Электрическая мощность установки определяется тепловой нагрузкой. Этот режим обеспечивает достижение максимальной экономичности работы оборудования. Конденсационный режим— режим работы ТЭЦ или отдельных теплофикационных турбоустановок при пропуске всего отработавшего пара в конденсатор. Режим работы с частичным пропуском пара в конденсатор— режим работы ТЭЦ или отдельных теплофикационных турбоустановок, когда выработка электроэнергии осуществляется в соответствии с электрическим графиком нагрузки, диафрагма находится в полуоткрытом состоянии, обеспечивая подачу пара в соответствии с тепловой нагрузкой на сетевые подогреватели и пропуск оставшегося пара в конденсатор. Этот режим характерен для переходного периода в начале отопительного сезона и летнего периода работы теплоэлектроцентрали для обеспечения нагрузки горячего водоснабжения.

Модуль 5 "Газотурбинные установки и двигатели внутреннего

сгорания"


Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ - конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой.

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим.

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций.


Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни.

Турбинный режим

Таким образом в турбинном режиме они выключаются из рабочего процесса. [16]

Пуск обратимого агрегата в турбинный режим производится так же, как пуск обычного гидроагрегата ГЭС; он продолжается не более 1 - 2 мин. Пуск агрегата в насосный режим сложнее и требует большего времени. [17]

Пуск обратимого агрегата в турбинный режим производится так же, как и пуск обычного гидроагрегата. Пуск в насосный режим сложнее и требует большего времени, так как мощность синхронных машин, выполняющих роль генератора и электродвигателя, установленных на ГАЭС, достигает 100 МВт и более. Прямой пуск электродвигателя такой мощности приведет к недопустимому снижению напряжения на шинах, к которым подключается машина. Поэтому при асинхронном пуске применяют реакторы или автотрансформаторы для ограничения пусковых токов. Возможен пуск с помощью вспомогательного асинхронного электродвигателя с фазным ротором, посаженным на вал агрегата. Когда агрегат достигает подсинхронной частоты вращения, он возбуждается и входит в синхронизм. Для агрегатов 100 - 250 МВт обычно применяется этот метод пуска. [18]

Пуск обратимого агрегата в турбинный режим производится так же, как пуск обычного гидроагрегата, он продолжается не более 1 - 2 мин. Пуск агрегата в насосный режим сложнее и требует большего времени. [19]

В рабочем колесе при турбинном режиме работы течение в основном конфузорное, а в насосном - диффузорное. Необходимость обеспечить безотрывность течения в лопастной системе колеса при насосном - диф-фузорном - течении требует в ОРО колесах малых лопастных углов на напорной стороне колеса. Необходимость обеспечить насосный режим и в обратимых колесах приводит к малым лопастным углам, что увеличивает наружный диаметр. [20]

Индекс t соответствует работе в турбинном режиме , ар - в насосном. [21]

Агрегаты ПЭС включаются в работу з турбинном режиме при достаточно высоком экономически обоснован юм напоре. Вода проходит через турбины из бассейне в море и ПЭС вырабатывает электрическую энергию и отдает ее в сеть. [23]

Таким образом, для получения напорной характеристики турбинного режима ГАЭС следует вычесть гидравлические потери напора в водопроводящих сооружениях одного агрегата, загруженного на полную мощность, из напоров брутто при наполненном и сработанном верхнем резервуаре. [24]

Из рис. 110 видно, что при турбинном режиме бурения зазор в подшипнике скольжения на 25 % больше, чем при роторном. [25]

Соотношение расхода через агрегат ГАЭС [6] в турбинном режиме Q n и подачи в насосном QH для машин типа РО может быть получено из условия, что лопастной угол на напорной стороне рабочего колеса остается одним и тем же при обоих режимах. [26]

Обратный клапан предназначен для предотвращения обратного вращения ( турбинный режим ) ротора насоса под воздействием столба жидкости в колонне НКТ при остановках и облегчения, тем самым, повторного запуска насосного агрегата. Обратный клапан ввинчен в модуль-головку насоса, а спускной - в корпус обратного клапана. [27]

Особенности имеют и напорные характеристики несовмещенных ГАЭС в турбинном режиме . Здесь на Яа и Ягэс влияет не только режим ГАЭС в данный момент, но и его предыдущие режимы; аналогичные особенности имеет ПЭС в турбинном режиме. [28]

Из изложенного вытекает, что при работе в турбинном режиме электродвигатель должен работать, как генератор, в противном случае надо искусственно тормозить насос до его остановки. [30]

Номер патента: 1216440



Текст

(19) И 1) С 51) Р 04 Р 13 06 ВСЕ),М;л); ОПИСАНИЕ ИЗОБРЕТЕНИЯ К АВТОРСКОМУ СВИДЕТЕЛЬСТВУ ГОСУДАРСТВЕННЫЙ КОМИТЕТ СССРГЮ ДЕЛАМ ИЗОБРЕТЕНИЙ И ОТКРЫТИЙ(56) Проектирование насосных станций и испытание насосных установок. Под ред В.Ф.Чебаевского. М.: Колос, 1982.Карелин В.Я Новодережкин Р.А. и др, Переходные процессы в низконапорных станциях с горизонтальными насосами. - Гидротехническое строительство, 1979, У 8, с. 21-24.(54)(57) СПОСОБ РАБОТЫ НАСОСНОЙ СТАНЦИИ В ТУРБИННОМ РЕЖИМЕ, включающийслив воды из верхнего бьефа в нижнийчерез насос с приводом его во вращение, о т л и ч а ю щ и й с я тем,что, с целью повышения долговечностипутем снижения динамических нагрузок,частоту вращения насоса поддерживают в пределах 0,6-0,8 от номинальной частоты насосного режима.Составитель Н).НикитченкоТехред А.Бабннец Корректор А. Тяско Редактор А.Шишкина Заказ 979/41 Тираж 587 Подписное ВНИИПИ Государственного комитета СССР по делам изобретений и открытий 113035, Москва, Ж, Раушская наб., д. 4/5Филиал ППП "Патент", г.Ужгород, ул.Проектная, 4 Изобретение относится к гидротех" нике, а именно к области эксплуатации водопроводных, ирригационнных каналов с повышающими насосными станциями.Цель изобретения - повышение долговечности путем снижения динамических нагрузок.Способ работы насосной станции в турбинном режиме включает слив воды из верхнего бьефа в нижний насос с приводом его во вращение, при этом частоту вращения насоса поддерживают в пределах 0,6-0,8 от номинальной частоты насосного режима.Способ осуществляют следующим образом.Воду из верхнего бьефа сбрасывают через насос в нижний бьеф. Насос под действием напора воды вращается в обратном направлении. Для исключения разгонного режима, сопровождающегося значительным увеличением динамических нагрузок, к валу насоса прикладывается тормозной момент,1216440 гсоздаваемый за счет перевода двигателя насоса в генераторный режим сгашением вырабатываемой энергии надополнительных сопротивлениях. Тормозной момент, создаваемый двигателем, поддерживается на уровне, достаточном для удержания насоса в оптимуме турбинного режима при частотевращения насоса, равной 0,6-0,8 от 10 номинальной частоты насосного режима.При частоте вращения менее 0,6 иболее 0,8 от номинальной частоты насосного режима угол натекания потокана выходные кромки лопастей рабочего колеса не равен абсолютному углуустановки лопастей. В этих случаях режимы работы насоса сопровождаются образованиемвихревых зон, развитием кавитацион ных явлений, обуславливающих увеличение динамических нагрузок на лопасти рабочего колеса, элементы насоса и строительные конструкции станции в 5-10 раз по сравнению с номи наль ными.

Заявка

МОСКОВСКИЙ ИНЖЕНЕРНО-СТРОИТЕЛЬНЫЙ ИНСТИТУТ ИМ. В. В. КУЙБЫШЕВА

НОВОДЕРЕЖКИН РОСТИСЛАВ АЛЕКСАНДРОВИЧ

МПК / Метки

Код ссылки


Номер патента: 781389

. Как толькоэто напряженке сравняется с напряжением на выходе из эадатчика 36, иавыходе порогового устройства 37 появится сигнал, соответствующий логическому нулю, что воспрепятствуетпрохождению команды давление выаезаданногоф с выхода а блока 9 управ- .ления через логический элемент 38 И,За счет этого электродвигатель исполнительного механизма 30 отключаетоя,на выходе тахогенератора 31 напряжение станет равно нулю, а на выходе порогового устройства 37 - логической единице, И если насосный агрегат4 к этому времени не вышел на заданный режим. работы, определяеьнйдавлением на его выходе, которое измеряется датчиком 24, снова происходит включение исполнительногомеханизма 30 и двигатель насосногоагрегата 4 увеличивает частоту вращения,. что.


Номер патента: 1309000

. же в результате неправильной установки насосной станции в линии трубопровода (вперед направлению потока), частота сигналов, поступающих с выхода датчика расхода 15, станет больше частоты сигналов, поступающих с выхода задатчика 19. Вследствие этого на первом выходе блока 18 сравнения частотных сигналов напряжение станет равно логическомус выходов дифференциальных усилите.1 ей 5и 9, также равны логическим единицам, то и на его выходе напряжение равно логической единице. Это напряжение подается на 5первый вход третьего элемента И 14, на втором входе которого напряжение, поступаощее с выхода порогового элемента 22, также равно логической единице. Напряжение с выхода элемента И 14 поступает на первый вход усилителя 24 мощности. Усилен ное.


Номер патента: 1493984

. испол 5 нительному механизму 25 снова пройдет команда на увеличение частоты вращения вала насоса насосной станции. Так будет до тех пор, пока фактическая производительность трубопровода не станет равна заданной, т.е, частота сигналов, поступающих с датчика расхода 15 через формирователь прямоугольного сигнала 16 на первый вход блока сравнения 18, сравняется с частотой сигналов, поступающих с выхода задатчика производительности трубопровода 19 на его второй вход. В этом случае на первом и втором вы ходах блока сравнения 18 напряжения станут равны логическому нулю. Прохождение команд через логические элементы И 12 и 14 прекратится. Исполнительный механизм 25 обесточится. 25 Насосная станция 27 и трубопровод 28 будут работать с заданной.


Номер патента: 205834

. 50 - 60 сек с момента вызова. В зависимости от положения насосного агрегата устройство дистанционного контроля передает следующие сигналы: Качает, Довольно, Авария,В случае подачи на устройство сигнала Качает, при соответствующем включении датчиков уровня воды в насосе, на клеммы 34 - 34, устроиства поступает сигнал от аппаратуры автоматического управления АУ в виде направленного тока, под воздействием которого срабатывает реле Рю. Реле Р, контактами Рю 35 - 36 включает цепь питания полупроводникового зуммера по цепи; плюс - контакты реле аварийной сигнализации Р-, 37 - 38 - реле Р, 35 - 36 - реле Р, 39 -40 плюсовая клемма зуммера.Так как при работе пульс-пары замыкается и размыкается контакт реле Рю 39 - 40, то на зуммер будет.


Номер патента: 989151

. группы данных с выходов блоков 33, 34 и 35 и 30, 31 и 32, поступают на соответствующие входы блока 1 формирования управляющего сигнала.Параллельно с ними по сигналам от датчиков 17, 18 и 19 расхода на выходах моделей 14, 15 и 16 напорных характеристик формируются сигналы, пропорциональные напорам, развиваемые исправными насосами 8, 9 и 10, которые поступают на одни из входов соответствующих элементов 2, 3 и 4 сравнения, на другие входы которых поступают текущие сигналы от датчиков 11, 12 и 13 давления. После сравнения модельных и действительных напоров в соответствующих элементах 2, 3 и 4 сравнения на их выходах формируются сигналы, пропорциональные отклонениям модельного напора от действительного, развиваемого каждым насосом.

Центробежные насосы ЦНС (рис. 1) – горизонтальные, секционные изготавливаются с числом ступеней от двух до десяти.

Насос состоит из корпуса и ротора.

К корпусу крепятся крышки всасывания 21 и нагнетания 11, а также корпуса направляющих аппаратов 17 с направляющими аппаратами 18, задний 3 и передний 35 кронштейны. Корпуса направляющих аппаратов и крышки всасывания и нагнетания стягиваются стяжными шпильками с гайками. Стыки корпусов направляющих аппаратов уплотняются резиновым шнуром средней твердости.

Ротор насоса состоит из вала 36, на который установлены распорная втулка 30, рубашка вала 26, рабочие колеса 13 и 16, дистанционная втулка 10, регулировочные кольца и диск гидравлической пяты 37. Все эти детали стягиваются на валу гайкой вала 6.

Места выхода вала из корпуса уплотняются набивкой многослойного плетения. Кольца набивки устанавливаются с относительным смещением разрезов на 120 0 С.

Сальниковые набивки поджимаются втулками сальника.

Для предотвращения попадания воды в подшипниковые камеры установлены отбойные кольца.

Корпус направляющего аппарата с уплотнительным кольцом, направляющий аппарат с уплотнительным кольцом и рабочее колесо в совокупности образуют ступень насоса.

Работа насоса основана на взаимодействии лопаток вращающегося рабочего колеса и перекачиваемой жидкости.

Рабочее колесо, вращаясь, сообщает движение жидкости, находящейся между лопатками. Вследствие возникающей центробежной силы, жидкость от центра колеса перемещается к выходу, а освобождающееся пространство вновь заполняется жидкостью, поступающей из всасывающего трубопровода под действием атмосферного или избыточного давления.

Из рабочего колеса жидкость поступает в каналы направляющего аппарата и затем во второе рабочее колесо с давлением, созданным впервой ступени. Далее жидкость поступает в третье рабочее колесо с увеличенным давлением, созданным второй ступенью и т.д.

Из последнего рабочего колеса, жидкость через направляющий аппарат проходит в крышку нагнетания, откуда поступает в нагнетательный трубопровод.

Благодаря тому, что корпус насоса состоит из отдельных ступеней, имеется возможность, не меняя подачи, менять напор путем установки нужного количества секций насоса. При этом меняется только длина вала, стяжных шпилек и трубки системы обводнения.

Во время работы насоса, вследствие давления жидкости на неравные по площади боковые поверхности рабочих колес, возникает осевое усилие, которое стремится сместить ротор насоса в сторону всасывания. Для уравновешивания осевого усилия в насосе применяется гидравлическая пята, состоящая из диска гидравлической пяты 37, кольца гидравлической пяты 8, втулки разгрузки 9 и дистанционной втулки 10.

Жидкость, проходя через кольцевой зазор между втулками разгрузки и дистанционной втулкой в полость разгрузки В, давит на диск гидравлической пяты, в результате чего ротор смещается в сторону крышки нагнетания и между рабочими поверхностями диска гидравлической пяты образуется щель, через которую жидкость проходит в полость кронштейна Г. Величина образующейся щели зависит от величины давления в разгрузочной полости и устанавливается автоматически.

Из полости Г жидкость частично проходит через сальниковую набивку, охлаждая гайку вала, а основная часть жидкости по обводной системе поступает в полость Дгидрозатвора, предотвращая подсос воздуха через сальник.

Из полости Дчасть жидкости проходит наружу между рубашкой вала и сальниковой набивкой, а остальная часть отводится через ниппель в дренаж. При работе насоса с давлением на входе до 0,3 МПа, вытекающую из сливной трубки жидкость можно направлять во всасывающий трубопровод.

Давление в полости гидрозатвора несколько превышает атмосферное (до 0,3 МПа), что предупреждает засасывание воздуха в насос через сальниковую набивку.

Необходимо, чтобы перекачиваемая жидкость могла всегда просачиваться между рубашкой вала и сальниковой набивкой наружу. Излишнее затягивание сальника ускоряет износ рубашки вала и увеличивает потери на трение.

Ротор насоса приводится во вращение от электродвигателя через упругую втулочно-пальцевую муфту, состоящую из двух полумуфт, которые соединяются между собой через резиновые втулки, установленные на цилиндрические стальные пальцы, жестко закрепляемые в полумуфте электродвигателя. Направление вращения ротора насоса – правое (по линии часовой стрелки), если смотреть со стороны электродвигателя.

Пуск насоса.

Перед пуском насоса необходимо сделать следующее:

· проверить вращения ротора от руки (при этом ротор должен вращаться легко без заедания);

· проверить направления вращения электродвигателя при отсоединенной муфте (направление вращения должно быть по часовой стрелке, если смотреть со стороны электродвигателя);

· удалить с насоса все посторонние предметы, проверить, нет ли повреждений частей насоса, нет ли ослабленных болтов в обвязке насоса;

· проверить наличие и качество масла в подшипниках, исправность системы смазки, а также смазать движущиеся части в местах их соединения;

· проверить установку ограждений на муфтах сцепления и их крепление;

· проверить состояние сальников, нет ли перекоса грундбуксы и достаточно ли сальники набиты и затянуты;

· проверить уход ротора в сторону всасывания по риске (рис. 2), проверку положения риски производить при роторе, сдвинутом до упора в сторону всасывания. Риска должна быть заподлицо с торцовой плоскостью передней крышки 1 переднего кронштейна. Уход ротора должен составлять не более 3 мм;

· проверить наличие и исправность манометров на выкиде насоса и приемном трубопроводе;

· убедиться в наличие заземления насоса и электромотора;

· произвести заливку насоса продуктом, воздух из насоса стравить через дренажную линию.

В зимнее время при длительных остановках насосов необходимо пускать их в работу после подогрева обвязки паром или горячей водой и пробной прокачки жидкости по трубам. Запрещается прогревать обвязку насоса открытым источником огня.

После пуска насоса, как он набрал полное число оборотов, необходимо постепенно открывать на напорном трубопроводе запорную задвижку и добиться получения требуемых подачи и напора, регулируя степень открытия задвижки.

· работать при закрытой задвижке более 5 минут, так как это приводит к значительному нагреву жидкости в насосе;

· открывать быстро и полностью задвижку на нагнетательной линии, так как это может привести к срыву подачи жидкости;

· пускать насос в работу без предварительной его заливки продуктом, даже на очень короткое время;

· производить регулировку производительности и давления насоса задвижками на приемном трубопроводе.

После пуска следует дополнительно послушать и осмотреть насос: нет ли в нем постоянных стуков.

Читайте также:

Пожалуйста, не занимайтесь самолечением!
При симпотмах заболевания - обратитесь к врачу.