Разветвляющийся отросток нервной клетки

Величайшее достижение эволюции – головной мозг и развитая нервная система организмов, со все усложняющейся информационной сетью, основанной на химических реакциях. Нервный импульс, бегущий по отросткам нейронов, – квинтэссенция сложной деятельности человека. В них возникает импульс, по ним он движется и именно нейроны их анализируют. Отростки нейрона – главная функциональная часть этих специфических клеток нервной системы, о них и пойдет речь.


Происхождение нейронов

Вопрос происхождения специализированных клеток открыт и сегодня. Есть по меньшей мере три теории на этот счет - Клейненберга (Kleinenberg, 1872), братьев Гертвиг (Hertwig, 1878) и Заварзина (Заварзин, 1950). Все они сводятся к тому, что нейроны возникли из первичных чувствительных эктодермальных клеток, а их предшественниками были глобулярные белки, объединившиеся в пучки. Белки, впоследствии получившие клеточную мембрану, оказались способными к восприятию раздражения, генерации и проведению возбуждения.

Современные представления о структуре нейрона и отростков

Специализированная клетка нервной ткани состоит из:

Все структуры нейрона имеют различное строение мембран и все они абсолютно разные. Среди множества нейронов (в нашем мозге их примерно 25 миллиардов) нет абсолютных двойников как по внешним признакам, так и по строению и, что самое главное, по специфике функционирования.


Короткие отростки нейронов: строение и функции

Тело нейрона имеет множество коротких и разветвленных отростков, которые называют дендритное дерево или дендритный регион. Все дендриты имеют множество ответвлений и точек соприкосновения с другими нейронами. Эта сеть восприятия повышает уровень сбора информации из окружающей нейрон среды. Все дендриты обладают следующими особенностями:

  • Они относительно короткие – до 1 миллиметра.
  • У них нет миелиновой оболочки.
  • Эти отростки нейрона характеризуются наличием рибонуклеотидов, эндоплазматического ретикулума и разветвленной сети микротрубочек, обладающей своей уникальностью.
  • Имеют специфические отростки – шипики.

Шипики дендритов

Эти выросты мембраны дендритов могут находиться на всей их поверхности в многочисленном количестве. Это дополнительные точки контакта (синапсы) нейрона, во много раз увеличивающие площадь межнейрональных контактов. Кроме расширения воспринимающей поверхности, они играют важную роль в ситуации внезапных экстремальных воздействий (например, при отравлениях или ишемии). Количество их в таких случаях резко меняется в сторону увеличения либо уменьшения и стимулирует организм увеличивать или уменьшать скорость и количество процессов метаболизма.


Проводящий отросток

Длинный отросток нейрона называется аксон (ἀξον – ось, греч.), его называют еще осевым цилиндром. В месте образования аксона на теле нейрона имеется холмик, играющий важную роль в формировании нервного импульса. Именно тут суммируется потенциал действия, поступивший от всех дендритов нейрона. В структуре аксона есть микротрубочки, но почти нет органелл. Питание и рост этого отростка полностью зависит от тела нейронов. При повреждениях аксона их периферическая часть погибает, а тело и оставшаяся часть остаются жизнеспособными. И иногда нейрон может отрастить новый аксон. Диаметр аксона всего несколько микрометров, а вот длина может достигать 1 метра. Таковы, например, аксоны нейронов спинного мозга, которые иннервируют конечности человека.


Миелинизация аксона

Оболочка длинных отростков нейрона образована клетками Шванна. Эти клетки обхватывают участки аксона, а их язычок обворачивается вокруг него. Цитоплазма клеток Шванна почти полностью утрачивается и остается только мембрана из липопротеидов (миелина). Предназначение миелиновой оболочки длинных отростков тел нейрона – обеспечение электрической изоляции, что приводит к увеличению скорости нервного импульса (с 2 м/сек до 120 м/сек.). Оболочка имеет разрывы – перетяжки Ранвье. В этих местах импульс, как ток гальванического характера, свободно выходит в среду и входит обратно. И именно в перетяжках Ранвье происходит возникновение потенциала действия. Таким образом, импульс движется по аксону скачками – от перетяжки к перетяжке. Миелин белого цвета, именно это послужило критерием для деления нервного вещества на серое (тела нейронов) и белое (проводящие пути).


Кустики аксона

В своем окончании, аксон многократно разветвляется и формирует кустик. На окончании каждой веточки находится синапс – место контакта аксона с другим аксоном, дендритом, телом нейронов или соматическими клетками. Такое многократное разветвление позволяет достичь множественной иннервации и дублирования передачи импульса.

Синапс – место передачи нервного импульса

Синапсы – уникальные образования нейронов, где сигнал передается посредством веществ, называемых медиаторами. Потенциал действия (нервный импульс) достигает окончания отростка – аксонного утолщения, которое называется пресинаптической областью. Здесь находятся множественные пузырьки с медиаторами (везикулы). Нейромедиаторы – биологически активные молекулы, предназначенные для передачи нервного импульса (например, ацетилхолин в мышечных синапсах). Когда трансмембранный ток в виде потенциала действия доходит до синапса, он стимулирует работу мембранных насосов, и в клетку поступают ионы кальция. Они инициируют разрыв везикул, медиатор поступает в синаптическую щель и связывается с рецепторами постсинаптической мембраны преемника импульса. Это взаимодействие запускает работу натрий-калиевых насосов мембраны, и возникает новый потенциал действия, идентичный предыдущему.


Аксон и клетка-мишень

В процессе эмбриогенеза и постэмбриогенеза организма нейроны отращивают аксоны к тем клеткам, которые должны ими иннервироваться. И рост этот строго направлен. Механизмы роста нейронов открыты не так давно, и их часто сравнивают с хозяином, ведущим на поводке собачку. В нашем случае хозяин – тело нейрона, поводок – аксон, а собачка – точка роста аксона с псевдоподиями (ложноножками). Ориентировка и выбор направления роста аксона зависит от множества факторов. Механизм этот сложен и во многом еще не до конца изучен. Но факт остается фактом – аксон достигает именно своей клетки-мишени, а отростки двигательного нейрона, который отвечает за мизинец, отрастут именно в мышцы мизинца.

Законы работы аксона

При проведении нервного импульса по аксонам работает четыре главных закона:

  • Закон анатомо-физиологической целостности. Проведение возможно только по неповрежденным отросткам нейронов. К этому правилу относится и повреждения в результате изменения проницаемости мембран (под действием наркотиков или ядов).
  • Закон изоляции возбуждения. Один аксон – проведение одного возбуждения. Аксоны не делятся друг с другом нервными импульсами.
  • Закон одностороннего проведения. Аксон проводит импульс либо центробежно, либо центростремительно.
  • Закон отсутствия потерь. Это свойство бездекрементности – при проведении импульса он не затихает и не меняется.


Разновидности нейронов

Нейроны звездчатые, пирамидальные, зернистые, корзинчатые – такими они могут быть по форме тела. По количеству отростков нейроны бывают: биполярные (по одному дендриту и аксону) и мультиполярные (один аксон и множество дендритов). По функционалу нейроны сенсорные, вставные и исполнительные (моторные и двигательные). Выделяют нейроны типа Гольджи 1 и типа Гольджи 2. Эта классификация основана на длине отростка нейрона аксона. Первый тип – это когда аксон выходит далеко за область расположения тела (пирамидные нейроны коры больших полушарий). Второй тип – аксон находится в той же зоне, что и тело (нейроны мозжечка).


Главный компонент мозга человека или другого млекопитающего – нейрон (другое название – неврон). Именно эти клетки образуют нервную ткань. Наличие невронов помогает приспособиться к условиям окружающей среды, чувствовать, мыслить. С их помощью передается сигнал в нужный участок тела. Для этой цели используются нейромедиаторы. Зная строение нейрона, его особенности, можно понять суть многих заболеваний и процессов в тканях мозга.

В рефлекторных дугах именно нейроны отвечают за рефлексы, регуляцию функций организма. Трудно найти в организме другой вид клеток, который отличался бы таким многообразием форм, размеров, функций, строения, реактивности. Мы выясним каждое различие, проведем их сравнение. В нервной ткани содержатся нейроны и нейроглия. Подробно рассмотрим строение и функции нейрона.


Благодаря своему строению нейрон является уникальной клеткой с высокой специализацией. Он не только проводит электрические импульсы, но и генерирует их. В ходе онтогенеза нейроны утратили возможность размножаться. При этом в организме присутствуют разновидности нейронов, каждой из которых отводится своя функция.

Нейроны покрыты крайне тонкой и при этом очень чувствительной мембраной. Ее называют нейролеммой. Все нервные волокна, а точнее их аксоны, покрыты миелином. Миелиновая оболочка состоит из глиальных клеток. Контакт между двумя нейронами называется синапс.

Строение

Внешне нейроны очень необычны. У них есть отростки, количество которых может варьироваться от одного до множества. Каждый участок выполняет свою функцию. По форме нейрон напоминает звезду, которая находится в постоянном движении. Его формируют:

  • сома (тело);
  • дендриты и аксоны (отростки).

Аксон и дендрит есть в строении любого нейрона взрослого организма. Именно они проводят биоэлектрические сигналы, без которых не могут происходить никакие процессы в человеческом теле.

Выделяют разные виды нейронов. Их отличие кроется в форме, размере, количестве дендритов. Мы подробно рассмотрим строение и виды нейронов, разделение их на группы, проведем сравнение типов. Зная виды нейронов и их функции, легко понять, как устроен мозг и ЦНС.

Анатомия невронов отличается сложностью. Каждый вид имеет свои особенности строения, свойства. Ими заполнено все пространство головного и спинного мозга. В теле каждого человека встречается несколько видов. Они могут участвовать в разных процессах. При этом данные клетки в процессе эволюции утратили способность к делению. Их количество и связь относительно стабильны.

Нейрон – это конечный пункт, который подает и принимает биоэлектрический сигнал. Эти клетки обеспечивают абсолютно все процессы в теле и имеют первостепенную важность для организма.


В теле нервных волокон содержится нейроплазма и чаще всего одно ядро. Отростки специализируются на определенных функциях. Они делятся на два вида – дендриты и аксоны. Название дендритов связано с формой отростков. Они действительно похожи на дерево, которое сильно ветвится. Размер отростков – от пары микрометров до 1-1,5 м. Клетка с аксоном без дендритов встречается только на стадии эмбрионального развития.

Задача отростков – воспринимать поступающие раздражения и проводить импульс к телу непосредственно нейрона. Аксон нейрона отводит от его тела нервные импульсы. У неврона лишь один аксон, но он может иметь ветви. При этом появляется несколько нервных окончаний (два и больше). Дендритов может быть много.

По аксону постоянно курсируют пузырьки, которые содержат ферменты, нейросекреты, гликопротеиды. Они направляются от центра. Скорость движения некоторых из них – 1-3 мм в сутки. Такой ток называют медленным. Если же скорость движения 5-10 мм в час, подобный ток относят к быстрому.

Если веточки аксона отходят от тела неврона, то дендрит ветвится. У него много веточек, а конечные являются самыми тонкими. В среднем насчитывается 5-15 дендритов. Они существенно увеличивают поверхность нервных волокон. Именно благодаря дендритам, невроны легко контактируют с другими нервными клетками. Клетки с множеством дендритов называют мультиполярными. Их в мозге больше всего.

А вот биполярные располагаются в сетчатке и аппарате внутреннего уха. У них лишь один аксон и дендрит.

Не существует нервных клеток, у которых вовсе нет отростков. В организме взрослого человека присутствуют невроны, у которых минимум есть по одному аксону и дендриту. Лишь у нейробластов эмбриона есть единственный отросток – аксон. В будущем на смену таким клеткам приходят полноценные.

В нейронах, как и во множестве других клеток, присутствуют органеллы. Это постоянные составляющие, без которых они не способны существовать. Органеллы расположены глубоко внутри клеток, в цитоплазме.

У невронов есть крупное круглое ядро, в котором содержится деконденсированный хроматин. В каждом ядре имеется 1-2 довольно крупных ядрышка. В ядрах в большинстве случаев содержится диплоидный набор хромосом. Задача ядра – регулировать непосредственный синтез белков. В нервных клетках синтезируется много РНК и белков.

Нейроплазма содержит развитую структуру внутреннего метаболизма. Тут много митохондрий, рибосом, есть комплекс Гольджи. Также есть субстанция Ниссля, которая синтезирует белок нервных клеток. Данная субстанция находится вокруг ядра, а также на периферии тела, в дендритах. Без всех этих компонентов не получится передать или принять биоэлектрический сигнал.


В цитоплазме нервных волокон имеются элементы опорно-двигательной системы. Они располагаются в теле и отростках. Нейроплазма постоянно обновляет свой белковый состав. Она перемещается двумя механизмами – медленным и быстрым.

Постоянное обновление белков в невронах можно рассматривать, как модификацию внутриклеточной регенерации. Популяция их при этом не меняется, так как они не делятся.

У невронов могут быть разные формы тела: звездчатые, веретенообразные, шаровидные, в форме груши, пирамиды и т.д. Они составляют различные отделы головного и спинного мозга:

  • звездчатые – это мотонейроны спинного мозга;
  • шаровидные создают чувствительные клетки спинномозговых узлов;
  • пирамидные составляют кору головного мозга;
  • грушевидные создают ткань мозжечка;
  • веретенообразные входят в состав ткани коры больших полушарий.


Есть и другая классификация. Она делит нейроны по строению отростков и их числу:

  • униполярные (отросток лишь один);
  • биполярные (есть пара отростков);
  • мультиполярные (отростков много).

Униполярные структуры не имеют дендритов, они не встречаются у взрослых, а наблюдаются в ходе развития эмбриона. У взрослых есть псевдоуниполярные клетки, у которых есть один аксон. Он разветвляется на два отростка в месте выхода из клеточного тела.

У биполярных невронов по одному дендриту и аксону. Их можно найти в сетчатке глаз. Они передают импульс от фоторецепторов к ганглионарным клеткам. Именно клетки ганглии образуют зрительный нерв.

Большую часть нервной системы составляют невроны с мультиполярной структурой. У них много дендритов.

Разные типы нейронов могут существенно отличаться по размерам (5-120 мкм). Есть очень короткие, а есть просто гигантские. Средний размер – 10-30 мкм. Самые большие из них – мотонейроны (они есть в спинном мозге) и пирамиды Беца (этих гигантов можно найти в больших полушариях мозга). Перечисленные типы нейронов относятся к двигательным или эфферентным. Они столь велики потому, что должны принимать очень много аксонов от остальных нервных волокон.


Удивительно, но отдельные мотонейроны, расположенные в спинном мозге, имеют около 10-ти тыс. синапсисов. Бывает, что длина одного отростка достигает 1-1,5 м.

Существует также классификация нейронов, которая учитывает их функции. В ней выделяют нейроны:

  • чувствительные;
  • вставочные;
  • двигательные.

Итак, нейроны классифицируют по:

  • форме;
  • функциям;
  • числу отростков.

Невроны могут быть не только в головном, но и в спинном мозге. Они также присутствуют в сетчатке глаз. Данные клетки выполняют сразу несколько функций, они обеспечивают:

  • восприятие внешней среды;
  • раздражение внутренней среды.

Нейроны участвуют в процессе возбуждения и торможения мозга. Полученные сигналы отправляются в ЦНС благодаря работе чувствительных нейронов. Тут импульс перехватывается и передается через волокно в нужную зону. Его анализирует множество вставочных нейронов головного или спинного мозга. Дальнейшую работу выполняет двигательный нейрон.

Нейроглия


Эти мелкие клетки отделяют нейроны друг от друга, удерживают их на своем месте. У них длинный список функций. Благодаря нейроглии сохраняется постоянная система установленных связей, обеспечивается расположение, питание и восстановление нейронов, выделяются отдельные медиаторы, фагоцитируется генетически чужое.

Таким образом, нейроглия выполняет ряд функций:

  1. опорную;
  2. разграничительную;
  3. регенераторную;
  4. трофическую;
  5. секреторную;
  6. защитную и т.д.

В ЦНС нейроны составляют серое вещество, а за границами мозга они скапливаются в специальные соединения, узлы – ганглии. Дендриты и аксоны создают белое вещество. На периферии именно благодаря этим отросткам строятся волокна, из которых и состоят нервы.

Вывод

Физиология человека поражает своей слаженностью. Мозг стал величайшим творением эволюции. Если представлять организм в форме слаженной системы, то нейроны – это провода, по которым проходит сигнал от головного мозга и обратно. Их число огромно, они создают уникальную сеть в нашем организме. Ежесекундно по ней проходят тысячи сигналов. Это потрясающая система, которая позволяет не только функционировать организму, но и контактировать с окружающим миром.

Без невронов тело просто не сможет существовать, потому следует постоянно заботиться о состоянии своей нервной системы. Важно правильно питаться, избегать переутомления, стрессов, вовремя лечить заболевания.

Нервная ткань состоит из высокоспециализированных клеток. Они обладают способностью к восприятию разного рода раздражителей. В ответ нервные клетки человека могут формировать импульс, а также передавать его друг другу и прочим рабочим элементам системы. В итоге образуется реакция, адекватная воздействию раздражителя. Условия, в которых проявляются те или иные функции нервной клетки, формируют глиальные элементы.


Развитие

Закладка нервной ткани происходит на третьей неделе эмбрионального периода. В это время формируется пластинка. Из нее развиваются:

  • Олигодендроциты.
  • Астроциты.
  • Эпендимоциты.
  • Макроглия.

В ходе дальнейшего эмбриогенеза нервная пластинка превращается в трубку. Во внутреннем слое ее стенки располагаются стволовые вентрикулярные элементы. Они пролиферируют и отходят кнаружи. В этой области часть клеток продолжает делиться. В результате они разделяются на спонгиобласты (компоненты микроглии), глиобласты и нейробласты. Из последних формируются нервные клетки. В стенке трубки выделяется 3 слоя:

  • Внутренний (эпендимный).
  • Средний (плащевой).
  • Внешний (краевой) – представлен белым мозговым веществом.


На 20-24 неделе в краниальном сегменте трубки начинается образование пузырей, которые являются источником формирования головного мозга. Оставшиеся отделы служат для развития спинного мозга. От краев нервного желоба отходят клетки, участвующие в образовании гребня. Он располагается между эктодермой и трубкой. Из этих же клеток формируются ганглиозные пластинки, служащие основой для миелоцитов (пигментных кожных элементов), периферических нервных узлов, меланоцитов покрова, компонентов APUD-системы.

Составляющие

Глиоцитов в системе в 5-10 раз больше, чем нервных клеток. Они выполняют разные функции: опорную, защитную, трофическую, стромальную, выделительную, всасывающую. Кроме этого, глиоциты обладают способностью к пролиферации. Эпендимоциты отличаются призматической формой. Они составляют первый слой, выстилают мозговые полости и центральный спинномозговой отдел. Клетки участвуют в продуцировании спинномозговой жидкости и обладают способностью всасывать ее. Базальная часть эпендимоцитов имеет коническую усеченную форму. Она переходит в длинный тонкий отросток, пронизывающий мозговое вещество. На его поверхности он формирует глиальную отграничительную мембрану. Астроциты представлены многоотросчатыми клетками. Они бывают:

  • Протоплазматическими. Они расположены в сером мозговом веществе. Эти элементы отличаются наличием многочисленных коротких разветвлений, широких окончаний. Часть последних окружает кровеносные капиллярные сосуды, участвует в формировании гематоэнцефалического барьера. Другие отростки направлены к нейронным телам и по ним осуществляется перенос питательных веществ из крови. Они также обеспечивают защиту и изолируют синапсы.
  • Волокнистыми (фиброзными). Эти клетки находятся в белом веществе. Их окончания слабоветвящиеся, длинные и тонкие. На концах у них присутствуют разветвления и формируются отграничительные мембраны.


Олиодендроциты представляют собой мелкие элементы с отходящими короткими хвостами, расположенными вокруг нейронов и их окончаний. Они формируют глиальную оболочку. Посредством нее передаются импульсы. На периферии эти клетки называют мантийными (леммоцитами). Микроглия является частью макрофагальной системы. Она представлена в виде мелких подвижных клеток с малоразветвленными короткими отростками. В элементах содержится светлое ядро. Они могут формироваться из кровяных моноцитов. Микроглия восстанавливает строение нервной клетки, подвергшейся повреждениям.

Основной компонент ЦНС

Его представляет нервная клетка – нейрон. Всего их насчитывается порядка 50 млрд. В зависимости от размера выделяют гигантские, крупные, средние, мелкие нервные клетки. По своей форме они могут быть:

  • Пирамидными.
  • Звездчатыми.
  • Корзинчатыми.
  • Веретеновидными и прочими.


Также существует классификация по количеству окончаний. Так, может присутствовать только один отросток нервной клетки. Такое явление характерно для эмбрионального периода. В этом случае нервные клетки называются униполярными. Биполярные элементы обнаруживаются в сетчатке глаза. Они встречаются крайне редко. Такие нервные клетки имеют 2 окончания. Различают также псевдоуниполярные. От тела этих элементов отходит цитоплазматический длинный вырост, который разделяется на два отростка. Мультиполярные структуры обнаруживаются преимущественно непосредственно в ЦНС.

Строение нервной клетки

В элементе различают тело. В нем присутствует крупное светлое ядро с одним-двумя ядрышками. Цитоплазма содержит все органеллы, в особенности канальцы от гранулярной ЭПС. По всей цитоплазматической поверхности распространены скопления базофильного вещества. Они сформированы рибосомами. В этих скоплениях происходит процесс синтеза всех необходимых веществ, транспортирующихся от тела к отросткам. Вследствие напряжения происходит разрушение этих глыбок. Благодаря внутриклеточной регенерации постоянно происходит процесс восстановления-разрушения.

Образование импульса и рефлекторная деятельность

Среди отростков распространены дендриты. Разветвляясь, они формируют дендритное дерево. За счет них образуются синапсы с прочими нервными клетками и передается информация. Чем больше будет дендритов, тем мощнее и обширнее рецепторное поле и, соответственно, больше информации. По ним происходит распространение импульсов к телу элемента. Нервные клетки содержат только по одному аксону. В основании него образуется новый импульс. Он отходит от тела по аксону. Отросток нервной клетки может иметь длину от нескольких микрон до полутора метров.


Задачи

По функции нервной клетки выделяют следующие типы элементов:

  • Афферентные (чувствительные). Они формируют 1 звено в рефлекторной дуге (спинномозговые узлы). На периферию проходит длинный дендрит. Там он завершается окончанием. При этом короткий аксон поступает в рефлекторной соматической дуге в область спинного мозга. Он первым реагирует на раздражитель, в результате чего формируется нервный импульс.
  • Кондукторные (вставочные). Это нервные клетки мозга. Они формируют 2 звено дуги. Эти элементы также присутствуют в спинном мозге. От них информацию получают двигательные эффекторные клетки нервной ткани, разветвленные короткие дендриты и длинный аксон, достигающий скелетного мускульного волокна. Посредством нервно-мышечного синапса передается импульс. Также выделяют и эффекторные (эфферентные) элементы.

Рефлекторные дуги

У человека преимущественно они сложные. В простой рефлекторной дуге присутствует три нейрона и три звена. Усложнение их происходит вследствие увеличения числа вставочных элементов. Ведущая роль в образовании и последующем проведении импульса принадлежит цитолемме. Под влиянием раздражителя в области воздействия выполняется деполяризация - инверсия заряда. В таком виде импульс распространяется далее по цитолемме.


Волокна

Вокруг нервных отростков независимо располагаются глиальные оболочки. В комплексе они формируют нервные волокна. Ответвления в них называются осевыми цилиндрами. Существуют безмиелиновые и миелиновые волокна. Они отличаются по строению глиальной оболочки. Безмиелиновые волокна имеют достаточно простое устройство. Подходящий к глиальной клетке осевой цилиндр прогибает ее цитолемму. Цитоплазма смыкается над ним и формирует мезаксон - двойную складку. Одна глиальная клетка может содержать несколько осевых цилиндров. Это "кабельные" волокна. Их ответвления могут переходить в расположенные по соседству глиальные клетки. Импульс проходит со скоростью 1-5 м/с. Волокна данного типа обнаруживаются в ходе эмбриогенеза и в постганглионарных участках вегетативной системы. Миелиновые сегменты толстые. Они расположены в соматической системе, иннервирующей мускулатуру скелета. Леммоциты (глиальные клетки) проходят последовательно, цепью. Они формируют тяж. В центре проходит осевой цилиндр. В глиальной оболочке присутствуют:

  • Внутренний слой нервных клеток (миелиновый). Он считается основным. На некоторых участках между слоями цитолеммы присутствуют расширения, образующие миелиновые насечки.
  • Периферический слой. В нем присутствуют органеллы и ядро – нейрилемма.
  • Толстая базальная мембрана.

Места повышенной чувствительности

На участках, где граничат смежные леммоциты, происходит истончение нервного волокна и отсутствует миелиновый слой. Это места повышенной чувствительности. Они считаются наиболее уязвимыми. Расположенная между соседними узловыми перехватами часть волокна носит название межузлового сегмента. Здесь импульс проходит со скоростью в 5-120 м/с.


Синапсы

С их помощью клетки нервной системы соединяются между собой. Существуют разные синапсы: аксо-соматические, -дендритические, -аксональные (главным образом тормозного типа). Также выделяют электрические и химические (первые выявляются достаточно редко в организме). В синапсах различают пост- и пресинаптическую части. Первая содержит мембрану, в которой присутствуют высокоспецифичные протеиновые (белковые) рецепторы. Они реагируют только на определенные медиаторы. Между пре- и постсинаптической частями расположена щель. Нервный импульс достигает первой и активирует особые пузырьки. Они переходят к пресинаптической мембране и попадают в щель. Оттуда они влияют на рецептор постсинаптической пленки. Это провоцирует ее деполяризацию, передающуюся, в свою очередь, посредством центрального отростка следующей нервной клетки. В химическом синапсе передача информации осуществляется только по одному направлению.

Разновидности

Синапсы подразделяют на:

  • Тормозные, содержащие замедляющие нейромедиаторы (гамма-аминомасляная к-та, глицин).
  • Возбуждающие, в которых присутствуют соответствующие компоненты (адреналин, ацетилхолин, глютаминовая к-та, норадреналин).
  • Эффекторные, заканчивающиеся на рабочих клетках.

Нервно-мышечные синапсы формируются в волокне скелетной мускулатуры. В них присутствует пресинаптическая часть, образованная терминальным конечным отделом аксона от двигательного нейрона. Она внедряется в волокно. Прилежащий участок формирует постсинаптическую часть. В ней нет миофибрилл, но присутствуют в большом количестве митохондрии и ядра. Постсинаптическая мембрана образуется сарколеммой.

Чувствительные окончания

Они отличаются большим разнообразием:

  • Свободные обнаруживаются исключительно в эпидермисе. Волокно, проходя сквозь базальную мембрану и отбрасывая миелиновую оболочку, свободно взаимодействует с эпителиальными клетками. Это болевые и температурные рецепторы.
  • Неинкапсулированные несвободные окончания присутствуют в соединительной ткани. Глия сопровождает разветвления в осевом цилиндре. Это осязательные рецепторы.
  • Инкапсулированные окончания представляют собой разветвления от осевого цилиндра, сопровождающегося глиальной внутренней колбой и внешней соединительнотканной оболочкой. Это также осязательные рецепторы.

Читайте также:

Пожалуйста, не занимайтесь самолечением!
При симпотмах заболевания - обратитесь к врачу.