Регуляции обмена веществ нервных и гуморальных углеводов

В организме человека обменные процессы регулируются эндокринной системой. Гормоны влияют на:

- активность ферментов (приводят ферменты в активную форму, тормозят их деятельность);

- синтез ферментов (воздействуют на генетический аппарат клетки);

- проницаемость мембран (инсулин усиливает проницаемость мембран к глюкозе);

Влияние нервной системы на обменные процессы составляет ее трофическую функцию. Основную роль играет симпатическая нервная система, медиатором которой является норадреналин. Медиаторы вмешиваются в метаболизм клетки, влияя на их активность.

Центральная нервная система оказывает влияние на обмен веществ, воздействуя на эндокринные железы. Особая роль при этом принадлежит гипоталамусу. Гипоталамус через симпатическую нервную систему осуществляет регуляцию некоторых желез внутренней секреции, кроме того вырабатывает нейрогормоны, стимулирующие деятельность передней доли гипофиза, а через нее – ряд периферических эндокринных желез.

Тепловой гомеостаз является основным условием жизнедеятельности организма. Фактором, обеспечивающим непрерывное течение метаболизма в разных органах и тканях, является определенная температура крови.

Обмен веществ, заключающийся в процессах ассимиляции и диссимиляции, состоит из трех этапов:

1. Поступление различных органических и неорганических веществ в организм;

2. Их изменение в организме;

3. Выведение продуктов распада.

В процессе обмена веществ непрерывно идет превращение энергии, переход потенциальной энергии химических соединений, освобождаемой при их расщеплении, в другие виды энергии, в основном тепловую и механическую.

На всех этапах обмена веществ и энергии оба эти процесса неотделимы друг от друга. Это два проявления единого процесса.

Химические превращения различных веществ, протекающие в клетках, тканях и органах, составляют межуточный обмен.

Последний (также как и обмен веществ в целом) разделяют на обмен белков, жиров, обмен углеводов, минеральных солей и воды. Они являются неразрывными частями единого биологического процесса. Однако при некоторых физиологических и патологических условиях наблюдаются изменения в отдельных видах обмена веществ: белкового или жирового, или минерального, или углеводного.

39. Энергетический баланс организма. Основной обмен условия определения значение для клиники. Особенности основного обмена у детей

Энергетический баланс – соотношение между расходом энергии организмом человека и поступлением ее за счет пищи.

Различают 3 вида энергетического баланса:

- энергетическое равновесие - расход энергии соответствует ее поступлению, такой вид баланса является физиологичным для здорового взрослого человека;

- отрицательный энергетический баланс - расход энергии превышает энергопоступление. Наблюдается при различных видах голодания и характеризуется мобилизацией всех ресурсов организма на продукцию энергии для ликвидации энергетического дефицита.

- Положительный энергетический баланс характеризуется превышением энергетической ценности пищевого рациона над расходом энергии. Этот вид баланса является физиологичным для детей, беременных, кормящих женщин и т.д.

Для определения энергозатрат организма пользуются различными лабораторными и расчетными(табличными) методами.

К лабораторным методам относят:

- Метод прямой калориметрии основан на измерении тепла, которое выделяет организм при различных видах деятельности. Для этой цели используют калориметрическую камеру, в которой определяют количество тепла, выделенного человеком при выполнении определенного вида работы.

- Метод непрямой калориметрии заключается в том, что окислительные процессы, происходящие в организме, связаны с потреблением кислорода и выделением углекислоты. С этой целью вычисляют дыхательный коэффициент - отношение между количеством выделяемого углекислого газа и количеством поглощенного кислорода в 1 мин. По величине дыхательного коэффициента, пользуясь специальной таблицей, находят величину энергетического эквивалента кислорода, а затем вычисляют количество израсходованнной энергии в единицу времени. Определяя расход энергии в состоянии покоя и при выполнении той или иной работы, по разности полученных величин находят затраты энергии на выполнение работы.

Основной обмен - это минимальное количество энергии, необходимое для поддержания нормальной жизнедеятельности организма в состоянии полного покоя при исключении всех внутренних и внешних влиянии, которые могли бы повысить уровень обменных процессов. Основной обмен веществ определяют утром натощак (через 12-14 ч после последнего приема пищи) в положении лежа на спине, при полном расслаблении мышц, в комфортных температурных условиях окружающей среды (18-20°С). Выражают основной обмен количеством энергии, выделенной организмом (кДж или ккал).

В состоянии полного физического и психического покоя организм расходует энергию на: 1) постоянно совершающиеся химические процессы; 2) механическую работу, выполняемую отдельными органами (сердце, дыхательные мышцы, кровеносные сосуды, кишечник и др.); 3) не прекращающуюся деятельность железисто-секреторного аппарата.

Интенсивность основного обмена веществ в жировой ткани в 3 раза ниже, чем в остальной клеточной массе организма. Худые люди производят больше тепла на 1 кг массы тела, чем полные. Если рассчитать энерговыделения на 1 м 2 поверхности тела, то эта разница почти исчезает, так как, согласно правилу Рубнера, основной обмен веществ приблизительно пропорционален поверхности тела для разных видов животных и человека.

У женщин основной обмен веществ ниже, чем у мужчин. Это связано с тем, что у женщин меньше масса и поверхность тела. Отмечены сезонные колебания величины основного обмена веществ - повышение его весной и снижение зимой. На величину основного обмена веществ влияет предшествующая мышечная работа. Мышечная деятельность вызывает повышение обмена веществ пропорционально тяжести выполняемой работы.

К значительным изменениям основного обмена приводят нарушения функций органов и систем организма. При повышенной функции щитовидной железы, малярии, брюшном тифе, туберкулезе, сопровождающихся лихорадкой, основной обмен веществ усиливается.

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций.


Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰).


Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни.


Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого.

В организме человека углеводы выполняют следующие биологические функции: энергетическую, пластическую, питательную, специфическую, защитную, регуляторную.

Обмен углеводов в организме человека

Обмен углеводов занимает центральное место в обмене веществ и энергии. Сложные углеводы пищи подвергаются расщеплению в процессе пищеварения до моносахаридов, в основном глюкозы. Моносахариды всасываются из кишечника в кровь и доставляются в печень и другие ткани, где включаются в промежуточный обмен. Часть поступившей глюкозы в печени и скелетных мышцах откладывается в виде гликогена либо используется для других пластических процессов. При избыточном поступлении углеводов с пищей они могут превращаться в жиры и белки. Другая часть глюкозы подвергается окислению с образованием АТФ и выделением тепловой энергии. В тканях возможны два основных механизма окисления углеводов -- без участия кислорода (анаэробно) и с его участием (аэробно). Анаэробное окисление глюкозы, которое называется гликолизом, включает реакции постепенного превращения ее молекулы в пировиноградную кислоту, а затем при недостаточности кислорода в тканях -- в молочную кислоту. Этот процесс сопровождается образованием АТФ и выделением тепловой энергии. Гликолиз протекает преимущественно в скелетных мышцах при интенсивных физических нагрузках или в условиях гипоксии. Образовавшаяся молочная кислота из мышц поступает в кровь, доставляется в печень, где аэробно окисляется или используется для новообразования глюкозы. Аэробное окисление глюкозы -- многостадийный процесс распада ее молекулы до конечных продуктов метаболизма СО2 и Н2О с высвобождением энергии. Это основной механизм энергообразования во многих тканях, особенно в мозге, для которого глюкоза является главным энергетическим субстратом. Глюкоза может окисляться по пентозофосфатному пути, который генерирует энергию в виде НАДФН2, используемую для биосинтеза веществ, и приводит к образованию рибозы и других пентоз. Важным звеном обмена углеводов в тканях организма является процесс новообразования глюкозы из неуглеводных веществ (глюконеогенез).

Уровень глюкозы в крови и его регуляція

Концентрация глюкозы в крови взрослого человека в норме поддерживается в пределах 4,4--6,0 ммоль л-1, или 80--120мг% (в 100 мл крови) несмотря на значительные изменения ее потребления и поступления в течение дня (рис. 4). Постоянный уровень глюкозы в крови регулируется прежде всего печенью, которая может поглощать или выделять глюкозу в кровь в зависимости от ее концентрации в крови и в ответ на воздействие гормонов. Повышение глюкозы в крови после приема углеводной пищи активирует ферментативный процесс синтеза гликогена в печени, а понижение ее уровня усиливает распад гликогена в печени до глюкозы с последующим выделением ее в кровь. Важную роль в регуляции постоянного содержания глюкозы в крови играют гормоны, главным образом инсулин и глюкагон, проявляющие взаимопротивоположное действие. Инсулин усиленно секретируется поджелудочной железой при повышении глюкозы в крови после приема пищи и стимулирует поступление глюкозы в скелетные мышцы, печень и жировую ткань, что активирует синтез гликогена или жира (в жировой ткани). Глюкагон усиленно выделяется при снижении глюкозы в крови и запускает процесс расщепления (мобилизации) гликогена в печени, выделение глюкозы в кровь. При уменьшении концентрации глюкозы в крови скелетные мышцы и печень в качестве источника энергии начинают использовать жирные кислоты. Это также вносит свой вклад в поддержание определенной концентрации глюкозы в крови.

Обмен углеводов регулируется нервным и гуморальным механизмами.

Участие нервной системы в регуляции обмена углеводов. Основным параметром регулирования углеводного обмена является поддержание уровня глюкозы в крови. Изменения в содержании глюкозы в крови воспринимаются глюкорецепторами сосредоточенными в основном в печени и сосудах, а также клетками вентромедиального отдела гипоталамуса. Показано участие ряда отделов ЦНС в регуляции углеводного обмена.

Мобилизация гликогена в печени и увеличение сахара в крови происходит при раздражении продолговатого мозга в области дна IV желудочка – сахарный укол.

Центральным звеном регуляции углеводного и других видов обмена и местом формирования сигналов, управляющих уровнем глюкозы, является гипоталамус. Отсюда регулирующие влияния реализуются вегетативными нервами и гуморальным путем, включающим эндокринные железы. В гипоталамусе имеются рецепторы реагирующие на изменения уровня глюкозы в крови. Их раздражение ведет к изменению эндокринного баланса и баланса между симпатической и парасимпатической нервными системами.

Если уровень глюкозы в крови низкий, то нарастает состояние тревожности, стресса, что увеличивает активность нервной симпатической системы, а следовательно увеличивается выработка адреналина, глюкагона, АКТГ, СТГ, т.е. увеличивается уровень катаболических гормонов и в эндогенный механизм включается внешний контур регуляции – возникает чувство голода, которое сопровождается поиском пищи.

Высшим уровнем регуляции уровня глюкозы в крови является кора больших полушарий. Участие этого отдела ЦНС в данном процессе доказывается методом условных рефлексов. Так, уровень глюкозы в крови повышается у студентов во время экзамена, у спортсменов перед ответственными соревнованиями, а также при гипнотическом внушении.

Гормональная регуляция уровня глюкозы в крови обеспечивается в основном действием инсулина и глюкагона. Если уровень глюкозы в крови высокий, то происходит уменьшение уровня катаболических гормонов, через парасимпатическую систему, блокируется выделение глюкагона и активируется секреция инсулина в крови.

Повышение секреции инсулина при гипергликемии происходит двумя путями:

1) в результате непосредственного стимулирующего действия глюкозы на β-клетки поджелудочной железы;

2) путем активирующего влияния глюкозы плазмы крови на глюкорецепторы гипоталамуса и последующего повышения парасимпатических влияний на секрецию инсулина.

Введении инсулина в кровь снижает уровень глюкозы. Это происходит за счет:

1. усиления инсулином синтеза гликогена в печени и мышцах;

2. повышения потребления глюкозы тканями организма.

Инсулин является единственным гормоном, понижающим уровень глюкозы в крови. Поэтому при уменьшении секреции этого гормона развивается стойкая гипергликемия с последующей глюкозурией (сахарное мочеизнурение).

Наиболее выраженным контринсулярным действие обладают:

Глюкагон – способствует расщеплению гликогена в печени.

Адреналин – действует на печень и мышцы, вызывает мобилизацию гликогена, увеличивает сахар в крови.

Гормональная регуляция обменных процессов обусловлена деятельностью эндокринной системы. Выделяют три основных вида влияний гормонов на метаболизм: 1) на активность ферментов, 2) на синтез ферментов, 3) на проницаемость мембран (Меньшиков, 1970).

Влияние гормонов на активность ферментов обусловлено их воздействием на структуру молекулы фермента, переводом фермента из неактивной формы в активную и. т. д. При этом гормоны активируют одни ферменты и тормозят действие других.

Влияние гормонов на синтез ферментов осуществляется путем воздействия на генетический аппарат клетки. Так, гормоны коры надпочечников активируют гены ДНК и усиливают синтез РНК, как информационной, так и транспортной. В результате повышается синтез соответствующих ферментов.

Многие гормоны способны активно воздействовать и на проницаемость клеточных мембран и мембран клеточных органелл, в которых осуществляются отдельные фазы обмена веществ. Так, инсулин повышает проницаемость клеточных мембран некоторых тканей по отношению к глюкозе, в результате чего ее поступление в клетки усиливается. Гормон щитовидной железы — тироксин влияет на состояние мембраны митохондрий, гормон коры надпочечников — гидрокортикозона на мембрану лизосом.

Наиболее важная регуляция метаболизма осуществляется нервной системой.Воздействие нервной системы на метаболизм связывают главным образом с деятельностью симпатического отдела нервной системы, с его адаптационно-трофической функцией (Л. А. Орбели). Трофический эффект свойствен и другим нервным волокнам, кроме симпатических. Перерезка нервов приводит к нарушению метаболизма в тканях.

Сущность непосредственного трофического влияния нервной системы на клетки изучена недостаточно. Полагают, что вещества, регулирующие трофику тканей (возможно, продукты метаболизма нуклеиновых кислот), синтезируются в теле нервной клетки и поступают в аксоплазму. Последняя непрерывно передвигается в проксимально-дистальном направлении. Таким путем ток аксоплазмы обеспечивает транспорт их к периферическим органам. Существенная роль в регуляции метаболизма принадлежит медиаторам симпатической нервной системы — норадреналину и ацетилхолину. В метаболизме клетки эти медиаторы влияют на активность ферментов.

Центральная нервная система оказывает свое влияние на обмен веществ. Особая роль принадлежит гипоталамической области головного мозга, в гипоталамусе локализованы ядра и центры, в которых осуществляется анализ состояния внутренней среды организма, формируются управляющие сигналы и посредством эфферентных систем приспосабливают ход метаболизма потребностям организма.

Эфферентными звеньями системы регуляции обмена являются симпатический и парасимпатический отделы вегетативной нервной системы и эндокринная система. Сигналы из гипоталамуса могут доходить до отдельных эндокринных желез чисто нервным путем, главным образом по симпатическим ветвям. Кроме того, в гипоталамусе вырабатываются вещества пептидной структуры (нейрогормоны), стимулирующие функцию передней доли гипофиза, а через нее — ряда эндокринных желез.

Через гипоталамическую область мозга осуществляется и влияние коры больших полушарий мозга на обмен веществ. Таким образом, нервные и эндокринные механизмы функционируют как единая нейрогуморальная система (рис. 25).

Рис. 25. Интегрирующие функции нервной, эндокринной и сосудистой систем в метаболизме (по: Андреева и др., 1998)

Регуляция белкового обмена. Влияния центральной нервной системы на процессы синтеза и распада белка осуществляется как прямым путем, так и опосредовано, путем изменения функционального состояния желез внутренней секреции. Мозговая регуляция белкового обмена связана с деятельностью гипоталамической области промежуточного мозга.Удаление коры больших полушарий у животных вызывает понижение интенсивности белкового обмена, особенно синтеза белка. Это доказано в опытах на животных, так у молодых животных резко замедляется рост и накопление массы тела.

Влияние гормонов на белковый обмен довольно разнообразно: одни гормоны стимулируют синтез белка, то есть оказывают анаболическое действие, другие преимущественно активируют процессы распада белка, то есть являются гормонами катаболического действия (рис. 26).



АНАБОЛИЗМ

Гормоны щитовидной железы

Гормоны коры надпочечников

Рис. 26. Влияние гормонов на обмен белков (по: Држевецкая, 1994)

Соматотропин — гормон, вырабатываемый в передней доле гипофиза, является мощным анаболическим гормоном. В период роста организма он стимулирует рост скелета и увеличение белковой массы всех органов и тканей. На протяжении остальной жизни человека соматотропин обеспечивает процессы синтеза белка, необходимые для нормальной жизнедеятельности.

Инсулин также является гормоном анаболического действия. Он оказывает на белковый обмен как непосредственное влияние, так и опосредовано через углеводный обмен. Непосредственное влияние инсулина на белковый обмен обусловлено тем, что он повышает проницаемость клеточных мембран по отношению к аминокислотам. В результате усиливается переход аминокислот из внеклеточной среды внутрь клетки и тем самым активируется внутриклеточный синтез белка. Кроме того, под влиянием инсулина усиливается потребление глюкозы клетками ряда тканей, в результате чего освобождается значительное количество энергии. Эта энергия частично используется на процессы белкового синтеза.

Гормоны щитовидной железы (тироксин и трийодтиронин)оказывают на белковый обмен различное действие в зависимости от белкового питания, исходного состояния белкового обмена и функции самой щитовидной железы. При нормальном функционировании щитовидной железы гормоны стимулируют синтез белка и благодаря этому активируют рост, развитие и дифференциацию тканей и органов. Наиболее выраженное анаболическое влияние гормоны щитовидной железы оказывают в условиях недостатка белкового питания, тем самым способствуя максимальному использованию поступающих в организм аминокислот. В условиях избыточного белкового питания гормоны щитовидной железы оказывают катаболическое действие, активируя процессы распада белка.

Глюкокортикоиды (гидрокортизон, кортикостерон) — гормоны коры надпочечников — оказывают на обмен белка выраженное катаболическое действие, причем степень этого действия в разных тканях неодинакова. Наиболее усиленный распад белка под влиянием глюкокортикоидов обнаруживается в лимфоидной, мышечной и соединительной тканях. При этом освобождаются аминокислоты, которые подвергаются дезоминированию. Безазотистый остаток аминокислот превращается затем в глюкозу и гликоген. Таким образом, глюкокортикоиды не только усиливают распад белка ряда тканей, но и активируют гликогенез — новообразование углеводов. Иное действие оказывают глюкокортикоиды на печень. Они активируют процессы синтеза белковых структур в печени, а также происходящий в печени синтез белков плазмы крови.

Кортикотропин влияет на белковый обмен в основном через кору надпочечников, стимулируя биосинтез глюкокортикоидов.

Половые гормоны. Женские половые гормоны (эстрогены) стимулируют синтез белка в тканях женской половой сферы (матка, грудные железы и др.) Мужские половые гормоны (андрогены) также обладают анаболическим действием, но значительно более широким, чем эстрогены. Андрогены усиливают синтез белка не только в мужских половых органах, но и в других тканях. Анаболическое свойство андрогенов имеет практическое значение и используется для создания синтетических препаратов, обладающих выраженным анаболическим влиянием на белковый обмен. Они применяются для стимуляции роста детей, отстающих в физическом развитии.

У детей в регуляции белкового обмена отмечаются существенные изменения. Так, в периоде внутриутробного развития синтез белка активирует гормон плаценты — соматотропин. После рождения усиленный синтез белка продолжается под влиянием собственного соматотропина ребенка. Он стимулирует рост скелета и увеличение массы органов. В связи с этим в здоровом растущем организме азотистый баланс всегда положителен.

Важное анаболическое действие осуществляет инсулин, продукция которого у детей относительно больше, чем у взрослых людей. Инсулин усиливает транспорт аминокислот через цитоплазматические мембраны, а вызываемое им понижение уровня глюкозы в крови стимулирует выделение соматотропина из гипофиза. При недостатке инсулина (сахарном диабете) дети отстают в росте от своих здоровых сверстников.

После начала функционирования гонад анаболическое действие на белковый обмен начинают оказывать половые гормоны. Тестостерон активирует синтез белка в печени, почках, сердце и скелетных мышцах.

Глюкокортикоиды действуют двояко: в лимфоидной, мышечной и соединительной ткани они усиливают распад белка, в результате чего освобождаются аминокислоты для синтеза белка в других тканях, а также углеводов — важнейшего источника энергии.

Регуляция углеводного обмена. Нервная регуляция углеводного обмена осуществляется структурами продолговатого мозга (расположенными в области дна IV желудочка), гипоталамической областью и корой больших полушарий головного мозга. Центральным звеном регуляции углеводного и других видов обмена является гипоталамус. Отсюда регулирующие влияния реализуются через вегетативную нервную систему и гуморальным путем, включающим эндокринные железы.

Выраженным влиянием на углеводный обмен обладает инсулин — гормон, вырабатываемый В-клетками островков поджелудочной железы. При введении инсулина уровень глюкозы в крови снижается. Это объясняется тем, что под влиянием инсулина увеличивается потребление сахара клетками тканей, особенно мышечной и жировой. В печени и мышцах усиливается синтез гликогена, а в жировой ткани происходит образование жира из глюкозы. Наряду с этим инсулин тормозит процессы гликогенеза в печени.

Гюкогон — гормон, продуцируемый А-клетками поджелудочной железы. Он активирует гликогенолиз в печени, в результате чего освобождается свободная глюкоза, поступающая затем в кровь. Адреналин — гормон мозгового слоя надпочечников. Совместно с глюкагоном активирует фосфорилазу печени, тем самым вызывает распад печеночного гликогена. Одновременно усиливает распад гликогена мышц, поэтому после введения адреналина или избыточного его образования увеличивается концетрация и сахара, и молочной кислоты в крови.

Глюкокортикоиды — гормоны коркового слоя надпочечников. Под их действием усиливается глюконеогенез — образование сахара из неуглеводов, что приводит к увеличению уровня глюкозы в крови и содержания гликогена в печени. Соматотропин — гормон гипофиза — уменьшает утилизацию глюкозы периферическими тканями и одновременно усиливает распад жира, доставляя тем самым исходный материал для глюконеогенеза. Гормоны щитовидной железы — тироксин и трийодтиронин, по современным представлениям, в умеренных дозах усиливают всасывание моносахаридов в кишечнике.

Регуляция жирового обмена осуществляется нервной и эндокринной системами, а также тканевыми механизмами и тесно связана с углеводным обменом. Так повышение концентрации глюкозы в крови уменьшает распад триглицеридов и активизирует их синтез. Понижение концентрации глюкозы в крови, наоборот тормозит синтез триглицеридов и усиливает их расщепление.

Таким образом, осуществляется взаимосвязь жирового и углеводного обмена в обеспечении энергетических нужд в организме: при избытке одного из источников энергии (глюкозы) происходит депонирование триглицеридов в жировой ткани, при недостатке углеводов (гипогли­кемия) триглицериды расщепляются с образованием неэстерифицированных жирных кислот, служащих источником энергии. Указанные процессы находятся под влиянием нервных и эндокринных воздействий. Нервные влияния на жировой обмен контролируются гипоталамусом. Особую роль играют ядра, расположенные в его задней доле.

Так, при разрушении вентромедиальных ядер гипоталамуса развивается длительное повышение аппетита и усиление отложения жира. Разрушение вентролатеральных ядер напротив ведет к потере аппетита и исхуданию.

Имеются данные, свидетельствующие о прямых нервных влияниях на обмен жиров (опыты с перерезкой нервов). Симпатические влияния тормозят синтез триглицеридов и усиливают их распад, а парасимпатические, наоборот, способствуют отложению жира.

Ряд гормонов оказывает влияние на жировой обмен. Так, выраженным жиромобилизующим действием обладают адреналини норадреналин — гормоны мозгового слоя надпочечников. Аналогичным действием обладают соматотропный гормон гипофиза и тироксин — гормон щитовидной железы. Наоборот тормозят мобилизацию жира глюкокортикоиды — гормоны коры надпочечников. Подобное действие оказывает инсулин — гормон поджелудочной железы.

| следующая лекция ==>
Возрастные особенности жирового обмена | Роль минеральных веществ и воды в жизнедеятельности организма

Дата добавления: 2017-11-04 ; просмотров: 4039 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Организм людей – это уникальная по своему развитию и контролю система, в которой каждой клетке отведено свое место и роль. В процессе эволюции она непрерывно усложнялась, чтобы добиться преимуществ над остальными представителями природы. Так, гуморальная регуляция – с помощью жидких сред, уже не справлялась со своими обязанностями. Возникла нервная регуляция – с множеством промежуточных нейронов и отдаленных центров контроля. Однако, обе они тесно взаимодействуют для достижения жизненных целей – обеспечения постоянства и безопасности внутренней среды.

Особенности гуморальной регуляции

Механизм гуморальной регуляции функций организма осуществляется с помощью специфических химических соединений – биологических веществ. Они поступают в жидкие среды – кровь, а также лимфу, затем перемещаются к тканям и внутренним структурам. Ведущая роль при этом, безусловно, принадлежит гормонам.


Их вырабатывают особые структурные единицы – железы внутренней секреции. Как правило, они локализуют вдали от контролируемого органа. При этом благодаря гуморальной регуляции осуществляется воздействие сразу на несколько зон организма. К примеру, половое созревание, пищеварение, рост.

Тем не менее, возможности гуморальной регуляции в организме человека ограничены. Ведь она воздействует сравнительно медленно – требуется выработка химических соединений, их поступление в русло крови и достижение подконтрольной области. Действие гормона продолжительное, оно не прекращается даже при значительном снижении его концентрации. В этом основная особенность эндокринной регуляции, что актуально для сохранения постоянства внутренней среды.

В чем же суть гуморальной регуляции, можно понять на примере роста человека. По мере развития плода и формирования внутренних желез секреции, начинается выработка биологических веществ для правильного телосложения. Если гормонов в крови много – вырастет гигант, тогда как при их низкой концентрации – карлик. Приемлемый рост обеспечивается тщательно выверенным самой природой соотношением количества гормона.

То же самое можно отнести к каждой функциональной деятельности – для пищеварения это инсулин, для движения и скорости реакции – адреналин и норадреналин, для репродуктивной деятельности – половые гормоны. Все, даже самые мелкие и, на первый взгляд, незначительные изменения в организме людей, находятся под строгим гуморальным контролем.

Особенности нервной регуляции

В процессе эволюции нервная регуляция сформировалась позже – к этому были необходимы предпосылки. Так, по мнению специалистов, живым единицам уже стало не хватать только гуморальных связей между клетками. Ведь требовалось быстрее передавать получаемую информацию и реагировать на внешние и внутренние угрозы.

У людей все этапы нервной регуляции осуществляются с помощью центральных структур – головного мозга с подкорковыми ядрами, а также периферических образований – нервных сплетений. К примеру, человек опаздывает на работу и видит приближение подходящей ему электрички. Его мозг просчитывает, какое время необходимо для достижения платформы и отдает команды дыхательной, сердечнососудистой системе, а также мышцам конечностей. В итоге опаздывающий человек успевает добежать и впрыгнуть в вагон электрички.

Только нервной регуляцией, конечно, не обойтись. Она отличается нейрогуморальной направленностью. Ведь, требуется и выработка гормонов, и их влияние на функциональные возможности людей.

Взаимодействие систем

Все разнообразие механизмов регуляции функциональной активности человеческого организма специалисты традиционно классифицируют на нервные, а также гуморальные процессы. Тогда как они практически неотделимы и составляют единую систему. Ее задача – обеспечение постоянства внутренней среды организма. Благодаря этому люди приспосабливаются к изменениям извне, и вид получает возможность сохраняться в природе.


И нервный, и гуморальный механизм имеют разнообразные связи на всех уровнях функционирования мозговых центров, а также при передаче сигнальной информации к контролируемым структурам. Так, регуляция функций в организме осуществляется в большинстве случаев с помощью рефлекторной дуги, в которой взаимосвязь между сигнальными молекулами осуществляется посредством гуморальных факторов. В таком качестве выступают нейромедиаторы – особые химические соединения. Именно они корректируют восприимчивость рецепторов и их функциональные возможности.

Однако, гуморальная регуляция организма находится под контролем головного мозга. Он может запускать или замедлять выделение гормонов. Как правило, эти процессы между кровью и мозгом осуществляются на бессознательном уровне. Особенно в дыхательной, пищеварительной, сердечнососудистой системах. В ряде ситуаций требуется сознательный контроль – к примеру, быстро добежать на работу, чтобы не опоздать. Именно в том, как взаимодействуют нервная и гуморальная регуляции, и заключается их единство и эффективность.

Различия

Несмотря на явную взаимосвязь механизмов нервной, а также гуморальной регуляции, на уровне биологической и морфофункциональной единицы они имеют различия. В большинстве своем их разделяют по свойствам:

  • нервная регуляция в отличие, от гуморальной, целенаправленная – импульс перемещается в строго предназначенную зону;
  • гуморальный сигнал – с током крови распространяется по всему организму, а реакция тканей зависит от присутствия молекулярных рецепторов;
  • скорость сигналов выше по нервному волокну, а не в жидких средах организма;
  • время сохранения сигнала в нервной системе короткое, поэтому и реакция контролируемого органа быстрая, тогда как концентрация гормонов сохраняется продолжительный период;
  • изученность нервной регуляции лучше, поскольку она поддается регистрации инструментальными аппаратами, а исследование гуморальных функций затрудненно обширностью подчиненных тканей.

Результатом, как отличий, так и сходства гуморальных и нервных механизмов контроля деятельности внутренних органов является целостность человека, как биологической единицы. Преимущества одной системы компенсируют возможные недочеты другой, однако, ведущая роль принадлежит, все же высшей нервной регуляции.

Гуморальные железы

Внутренние органы, которые выделяют гормональные вещества, локализуются у людей в разных частях тела. Благодаря этому они прицельнее осуществляют гуморальную регуляцию. Так, в основании полушарий головного мозга расположен гипофиз. Сам по себе небольшого размера, он выделяет крайне важные для человека биологически активные соединения. К примеру, гормон роста.


Тогда как контроль концентрации в русле крови возложен на инсулин. Его выделяют особые клетки в ткани поджелудочной железы. При его малом количестве формируется тяжелое своими осложнениями заболевание – диабет.

Двойственное влияние оказывают на организм человека гормоны щитовидной железы. При их чрезмерном выделении развивается гипертиреоз, а при дефиците гипотиреоз. Оба расстройства негативно отражаются на деятельности остальных внутренних органов, а у детей – на интеллектуальном и физическом развитии.

Другими железами гуморальной регуляции являются – паращитовидные клетки, надпочечники, вилочковое образование, а также половые структуры – яичники и яички. Все они тесно взаимодействуют между собой и с центральной нервной системой. Это позволяет человеку адаптироваться и к внутренним изменениям – в периоды полового созревания/угасания, и к внешним факторам – плохая экология, неправильное питание, интоксикации. При сбое в работе гуморальных механизмов, будет наблюдаться усиление работы нервных клеток. При исчерпании компенсаторных возможностей – возникнут различные болезни.

Патологии

Влияние тесной взаимосвязи нервной регуляции с гуморальным контролем человек ощущает на себе лучше всего в непривычных для него условиях – когда требуется приложить больше усилий для выполнения поставленных задач. К примеру, в случае пожара при высокой загазованности воздуха, нагрузка возрастает на дыхательную, а также сердечнососудистую системы. Организм при возрастании концентрации углекислого газа, старается его компенсировать. Если же это не удается, появляются такие заболевания, как бронхит, астма, фарингит хронического течения.

Патологические состояния в сердечной мышце – это часто результат сбоя в выделении гормонов надпочечников, адреналина с норадреналином. При их колебаниях в кровяном русле возникают различные сердечные аритмии, тахикардии, а затем и сердечная недостаточность. Нервная регуляция далеко не всегда справляется с защитной функцией, ведь гормоны длительное время могут сохранять свое влияние на сердце.

Хорошо изучены патологии щитовидной железы. Они приводят к изменениям в обменных процессах. От их концентрации напрямую зависит потребление тканями кислорода. Если их много, то температура тела повышается, усвоение питательных веществ ускоряется, рост тела усиливается. Все эти симптомы характерны для гипертиреоза. Тогда как при замедлении поступления гормонов возникает микседема – повышение массы, тела, апатия, снижение обменных процессов и температуры.

Тяжело протекают патологии репродуктивной системы, если в основе лежат сбои гормонального фона. К примеру, изменяется характер волосяного покрова, телосложения, модуляции голоса, способность к размножению.

Прогноз при заболеваниях гуморального характера во многом будет определен своевременностью обращения человека за медицинской помощью и грамотностью подбора гормональной терапии. В большинстве случаев врачам удается достичь положительных результатов в борьбе за восстановление адекватной регуляции внутренних органов.

Читайте также:

Пожалуйста, не занимайтесь самолечением!
При симпотмах заболевания - обратитесь к врачу.