Репаративное действие на нервную ткань

Нервные ткани в составе органов относятся к стабильным тканям, так как нейроны митозом не делятся. Физиологическая и репаративная регенерация происходит путем частичной полиплоидизации ядер, восстановления синапсов после их повреждения, роста поврежденных отростков, а главное — путем обновления химических и метаболических компонентов нейронов при внутриклеточном обмене веществ. На месте дефекта в нервной ткани разрастается нейроглия. Она является менее дифференцированной тканью, клетки которой способны делиться митозом. Описаны глиальные клетки, обладающие высокими потенциями к размножению и развитию. Эти клетки принимают активное участие в восстановительных процессах нервной ткани.

При повреждениях, приводящих к нарушению целостности нервных волокон (огнестрельные раны, разрывы), их периферические части распадаются на фрагменты осевых цилиндров и миелиновых оболочек, погибают и фагоцитируются макрофагами (уоллеровская дегенерация осевых цилиндров). В сохранившейся части нервного волокна начинается пролиферация нейролеммоцитов, формирующих цепочку (бюнгнеровская лента), вдоль которой происходит постепенный рост осевых цилиндров. Таким образом, нейролеммоциты являются источником факторов, стимулирующих рост осевого цилиндра. При отсутствии препятствий в виде очагов воспаления и соединительнотканных рубцов возможно восстановление иннервации тканей.

Регенерация нервных отростков идет со скоростью 2-4 мм в сутки. В условиях лучевого воздействия происходит замедление процессов репаративного гистогенеза, что обусловлено в основном повреждением нейролеммоцитов и клеток соединительной ткани в составе нерва. Способность нервных волокон к регенерации после повреждения при сохранении целостности тела нейрона используется в микрохирургической практике при сшивании дистального и проксимального отростков поврежденного нерва. Если это невозможно, то используют протезы (например, участок подкожной вены), куда вставляют концы поврежденных нервов (футлериз). Регенерацию нервных волокон ускоряет фактор роста нервной ткани — вещество белковой природы, выделенное из тканей слюнных желез и из змеиного яда.


Важнейшее свойство живого — отвечать комплексом изменений метаболизма, двигательной активности, размножения или гибели и др. на внешние и внутренние воздействия. Восприятие, трансформация и передача последних осуществляется рецепторно-трансдукторной системой клетки, элементы которой связаны с внутренней средой клетки. На клеточном уровне организации живого первично формируется каскад реакций, распространяющихся на тканевый, органный и организменный уровни.

Под реактивностью тканей с гистогенетических позиций следует понимать изменения основных закономерных сторон развития ткани — пролиферации, дифференцировки, интеграции клеток, межклеточных взаимодействий и других закономерных процессов гистогенеза, происходящих под действием внешних для ткани факторов. При самых разнообразных воздействиях (травмы, ожоги, стрессовые ситуации и т. п.) ткани, для которых в норме характерно клеточное обновление путем митоза, реагируют прежде всего понижением или повышением степени пролиферативной активности клеток. Угнетение митозов или, наоборот, "вспышки" митотической активности — непременные показатели реактивности таких тканей. В некоторых тканях результатом реактивного изменения пролиферации клеток являются эндомитоз и амитоз, образование двуядерных и многоядерных клеток.

Наряду с повышением уровня дифференцировки клеток, реактивность тканей может характеризоваться и явлениями дедифференцировки клеток. Дедифференцировка клеток — это упрощение их внутренней структуры, связанное с временным снижением уровня дифференцировки (специализации) клеток. Дедифференцированные клетки приобретают способность к пролиферации. В них активизируется синтез ДНК и общих неспецифических белков. Дедифференцировка как реактивно-приспособительное изменение клеток сопровождается увеличением относительных объемов ядер и ядрышек, увеличением числа свободных рибосом, исчезновением специальных органелл и включений в цитоплазме, редукцией мембран комплекса Гольджи, уменьшением числа митохондрий и другими признаками. Под дедифференцировкой следует понимать структурно-адаптационную реакцию клетки, а не обратное ее развитие.

При изменении функциональной нагрузки на ткани реактивно-приспособительные изменения клеток проявляются в метаболических сдвигах — трофических нарушениях типа гипертрофии, дистрофии, атрофии, гипо- или гиперсекреции и т. д.

При гипертрофии клеток наблюдается гиперплазия внутриклеточных структур (митохондрий, эндоплазматической сети, органелл) как морфологический эквивалент повышенной функциональной активности.

Реактивность тканей характеризуется также изменениями межклеточных взаимодействий. При действии повреждающих факторов в тканях может возникнуть состояние дезинтеграции клеток (например, нарушение межнейронных связей при интоксикациях, дискомплексации эпителиев при нарушении контактов между эпителиоцитами и т. д.). Как проявление реактивности тканей следует рассматривать программированную гибель клеток за счет активации внутренней программы самоуничтожения или ее запуска внешними стимулами, например факторами, вырабатываемыми клетками микроокружения.

Реактивные изменения тканей зависят, конечно, во многом от силы раздражителя — повреждающего фактора. Существенное значение в реактивности тканей имеет наследственная природа клеток самой ткани, так как каждая ткань отличается генетически детерминированным диапазоном изменчивости или нормы адаптивной реакции, обеспечивающей нормальное функционирование ткани. После воздействия повреждающих факторов реактивные изменения клеток могут выходить за пределы диапазона изменчивости, характерного для нормального функционирования ткани. Однако обычно резко выраженные вначале реактивные изменения клеток постепенно сглаживаются, и структурно-функциональные свойства их приближаются к норме, обеспечивая адаптацию ткани к функционированию в новых условиях.

Эта группа препаратов используется для ускорения восстановительных процессов в организме.

В процессе жизнедеятельности организма клетки, прежде всего короткоживущие (клеточные элементы крови, эпителиальные клетки слизистой оболочки полости рта, желудочно-кишечного тракта и покровного эпителия кожи) и их функциональные элементы (нервные волокна, сократительные белки и т.д.), постоянно заменяются. Для осуществления физиологической регенерации необходимо стимулировать клеточное деление и биосинтез пуриновых и пиримидиновых оснований, нуклеиновых кислот, структурных и ферментных белков, фосфолипидов, формируемых из составных частей пищи (аминокислоты, моносахара, незаменимые жирные кислоты, витамины, микроэлементы и т.д.). При недостаточном питании нарушаются трофические процессы в тканях, возникает дефицит энергии, необходимой для биосинтетических процессов. При этом у пациентов развивается та или иная патология.

Восстановление структуры и функции органа после заболеваний, травм, чрезмерной нагрузки и т.д. обозначают термином "репаративная регенерация". Для стимуляции этого вида регенерации следует прежде всего устранить повреждающий агент, убрать нежизнеспособные ткани и учесть другие факторы, тормозящие регенерацию (стресс, воспаление, инфекция, перегружающие зубочелюстную систему протезы, недостаточная витаминная обеспеченность, нарушение кровоснабжения органов и тканей и т.д.).

В основе фармакологической регуляции процесса регенерации лежит стимуляция белкового синтеза и активация защитных механизмов, обеспечивающих функционирование организма как единого целого.

Для стимуляции процессов регенерации могут быть использованы различные группы лекарственных препаратов:

1. Витаминные препараты (особенно пластического обмена - кислота фолиевая, витамины В 12 , B 6 , B 1 , С, А, U и др.).

6. Неспецифические стимуляторы регенерации растительного и животного происхождения (масло облепихи, масло шиповника, каротолин, масло пихты, апилак, прополис, перга, румалон, церебролизин, актовегин, солкосерил и др.).

Влияние на процессы регенерации витаминных препаратов, стероидных анаболических средств и иммуномодуляторов рассматривается в соответствующих разделах ("Витаминные препараты", "Гормональные препараты", "Средства, влияющие на систему иммунитета").

К нестероидным анаболическим средствам относят препараты, стимулирующие биосинтез нуклеиновых кислот (субстратная активация). Это либо предшественники пуриновых или пиримидиновых оснований, либо продукты частичного гидролиза нуклеиновых кислот. В отличие от стероидных анаболических препаратов они не обладают гормональной активностью и имеют низкую токсичность.

Инозин ( рибоксин ) - предшественник адениловых и гуаниловых нуклеотидов и калия оротат - предшественник пиримидиновых оснований. Применяют их в основном при заболеваниях печени и миокарда.

Достаточно часто назначают натрия дезоксирибонуклеат ( натрия нуклеинат ) и метилурацил ( метацил ). Стимулируя метаболические процессы, синтез нуклеиновых кислот и белковый обмен, анаболические средства ускоряют размножение и рост клеток, восстановление массы и функции поврежденных органов и тканей, активируют лейкопоэз, повышают лейкоцитарную активность, способствуют образованию антител, лизоцима, комплемента, пропердина, интерферона, оказывают противовоспалительное действие. Они не только ускоряют регенерацию, но и улучшают ее качество, способствуя заживлению раневых и язвенных поверхностей, делая рубец более эластичным, восстанавливая функцию ткани.

Процессы регенерации усиливают так называемые биогенные стимуляторы. К ним относят препараты животного или растительного происхождения, содержащие вещества, как правило, неустановленной природы, оказывающие стимулирующее влияние на организм и ускоряющие репаративные процессы. Считают, что подобные вещества образуются в переживающих и изолированных тканях для адаптации к неблагоприятным условиям.

Стимулируют процесс регенерации масло облепихи и масло шиповника , содержащие ненасыщенные и насыщенные жирные кислоты, каротиноиды, токоферолы, витамины группы В, С, Р и другие органические вещества. Местно (аппликации) их применяют для ускорения заживления ран, ожогов, трофических и радиационных язв, трещин и т.д. Внутрь масло облепихи и шиповника используют при язвенной болезни желудка и у онкологических больных после химиотерапии и облучения. Соки, отвары, настои и настойки из ряда лекарственных растений (зверобой, каланхоэ, подорожник большой, кровохлебка лекарственная, окопник лекарственный, ноготки лекарственные, сушеница болотная, софора японская и др.) стимулируют процессы регенерации, оказывают антибактериальное и противовоспалительное действие, в связи с чем их применяют в виде аппликаций, "ванночек", полосканий при лечении инфекционно-воспалительных заболеваний слизистой оболочки полости рта и горла, для улучшения заживления раневых и ожоговых поверхностей.

Продукты пчеловодства - апилак (маточное молочко пчел), прополис (пчелиный клей), мед и перга (мед с высоким содержанием пыльцы растений) оказывают стимулирующее влияние на регенерацию, улучшают трофические процессы в тканях, снимают спазмы сосудов, обладают антибактериальным действием, повышают иммунитет. Их используют для лечения длительно незаживающих ран, язв, афт, эрозий.

Активными стимуляторами регенерации являются безбелковые препараты, получаемые из крови крупного рогатого скота, солкосерил и актовегин . Их используют в виде мази, желе или геля местно для улучшения обменных процессов и ускорения регенерации при язвенно-некротических процессах, ожогах, травмах.

В неврологии и травматологии широко используются тканеспецифические стимуляторы регенерации - церебролизин (при заболеваниях нервной системы) и румалон (при дистрофии хряща, при длительно незаживающих переломах).

Стимулирующее влияние на процессы регенерации оказывает древний "чудотворный бальзам" - мумие , использующийся в народной медицине более 3000 лет. Его находят в виде натеков в труднодоступных для человека горных районах. Внешне оно представляет собой блестящую темно-коричневого цвета вязкую клейкую массу, которая хорошо растворяется в воде. В зависимости от места сбора химический состав его может меняться. Но в любом мумие содержится большое количество макро- и микроэлементов, окиси металлов, ряд витаминов, эфирные масла, пчелиный яд, смолоподобные вещества. Входящие в его состав компоненты активируют заживление ран и переломов, оказывают противовоспалительное, антитоксическое, общеукрепляющее действие, улучшают адаптацию организма к неблагоприятным условиям. Однако создание на основе мумие лекарственного препарата затруднено, поскольку оно с трудом поддается стандартизации.

Применяется внутрь (во время или после еды), в комплексной терапии заболеваний пародонта и слизистой оболочки полости рта, при длительно незаживающих язвах, переломах; местно - в виде 5-10% мази.

Выпускается в порошке; в таблетках по 0,5 г; 10% мази в тубах по 25 г.

Вводится в переходную складку полости рта (для стимуляции процесса регенерации при заболеваниях пародонта) и подкожно (при хронических воспалительных процессах).

Выпускается в ампулах по 1 мл.

Применяется местно, внутримышечно. внутривенно или внутриартериально.

Выпускается в ампулах по 2 мл; желе и мази в тубах по 20 г.

4.1. Общая характеристика нервной ткани

Нервная ткань — это система взаимосвязанных нервных клеток и нейроглии, обеспечивающих специфические функции восприятия раздражений, возбуждения, выработки импульса и его передачи. Нервные клетки (нейроны) — основные структурные компоненты нервной ткани, выполняющие специфическую функцию. Нейроглия обеспечивает существование и функционирование нервных клеток, осуществляя опорную, трофическую, разграничительную, секреторную и защитную функции. Источником развития нервной ткани служит дорсальная эктодерма. [1],[5]

Из нервной трубки в дальнейшем формируются нейроны и макроглия центральной нервной системы. Нервный гребень дает начало нейронам чувствительных и автономных ганглиев и некоторым видам глии: нейролеммоцитам (шванновским клеткам), клеткам-сателлитам ганглиев. Нервная трубка на ранних стадиях эмбриогенеза представляет собой многорядный нейроэпителий, состоящий из вентрикулярных, или нейроэпителиальных клеток. [1],[5]

В дальнейшем в нервной трубке дифференцируется 4 концентрических зоны: внутренняя - вентрикулярная (или эпендимная) зона, вокруг нее – субвентрикулярная зона, затем промежуточная (или мантийная зона) и, наконец, наружная - краевая (или маргинальная) зона нервной трубки. Вентрикулярная (эпендимная), внутренняя, зона состоит из делящихся клеток цилиндрической формы. Вентрикулярные (или матричные) клетки являются предшественниками нейронов и клеток макроглии. Субвентрикулярная зона состоит из клеток, сохраняющих высокую пролиферативную активность и являющихся потомками матричных клеток. Промежуточная (плащевая, или мантийная) зона состоит из клеток, переместившихся из вентрикулярной и субвентрикулярной зон — нейробластов и глиобластов. Нейробласты утрачивают способность к делению и в дальнейшем дифференцируются в нейроны. Глиобласты продолжают делиться и дают начало астроцитам и олигодендроцитам. [1], [5]

Способность к делению не утрачивают полностью и зрелые глиоциты. Новообразование нейронов прекращается в раннем постнатальном периоде. Из клеток плащевого слоя образуются серое вещество спинного и часть серого вещества головного мозга. Маргинальная зона (или краевая вуаль) формируется из врастающих в нее аксонов нейробластов и макроглии и дает начало белому веществу.[5]

4.2. Регенерация нервной ткани

Рассматривая процессы регенерации в нервных тканях следует сказать, что нейроциты являются наиболее высокоспециализированными клетками организма и поэтому утратили способность к митозу. Физиологическая регенерация (восполнение естественного износа) в нейроцитах хорошая и протекает по типу "внутриклеточной регенерации" - т.е. клетка не делится, но интенсивно обновляет изношенные органоиды и другие внутриклеточные структуры. Для этого в нейроцитах хорошо выражены гранулярный ЭПС, пластинчатый комплекс и митохондрии, т.е. имеется мощный синтетический аппарат для синтеза органических компонентов внутриклеточных структур.[5]

К компенсаторно-приспособительным процессам в нервной ткани относится обнаружение многоядрышковых, двухъядерных и гипертрофированных нервных клеток при различного рода болезнях, сопровождающихся дистрофическими процессами, при условии сохранения общей структуры нервной ткани. Нервные клетки вегетативной нервной системы восстанавливаются путем гиперплазии органелл, а также не исключается возможность их размножения. Периферические нервы являются в большинстве своем смешанными и состоят из двигательных волокон передних корешков (аксонов клеток передних рогов), чувствительных волокон (дендритов клеток межпозвонковых узлов) и вазомоторно-секреторно-трофических волокон (симпатических и парасимпатических) от соответствующих клеток серого вещества боковых рогов спинного мозга и ганглиев симпатического пограничного ствола. Нервное волокно, входящее в состав периферического нерва, состоит из осевого цилиндра, расположенного в центре волокна, миелиновой или мякотной оболочки, одевающей осевой цилиндр и шванновской оболочки. Миелиновая оболочка нервного волокна местами прерывается, образуя так называемые перехваты Ранвье. В области перехватов осевой цилиндр прилежит непосредственно к шванновской оболочке. Миелиновая оболочка обеспечивает роль электрического изолятора, предполагается ее участие в процессах обмена осевого цилиндра. Шванновские клетки имеют общее происхождение с нервными элементами. Они сопровождают осевой цилиндр периферического нервного волокна подобно тому, как глиозные элементы сопровождают осевые цилиндры в центральной нервной системе, поэтому шванновские клетки иногда называют периферической глией. На месте дефекта в нервной ткани разрастается нейроглия. Она является менее дифференцированной тканью, клетки которой способны делиться митозом. Существуют глиальные клетки, обладающие высокими потенциями к размножению и развитию. Эти клетки принимают активное участие в восстановительных процессах нервной ткани. Наиболее частыми формами травматического повреждения нервов, возникающими вследствие техногенного травматизма на производстве, при дорожно- транспортных происшествиях, в ходе военных действий, являются размозжение, ушиб, растяжение, а также сдавление с наличием или отсутствием разрыва нервного ствола. Однако эффективность репарации структуры и функции поврежденной ткани с применением лечебных мероприятий и лекарственных средств остается относительно низкой. Это во многом связано с малой изученностью динамики регенерации нервов после травмы. Для исследования воздействия модулирующих средств на посттравматический процесс необходимы более полные данные о динамике репаративной регенерации поврежденного нерва.[5]

При повреждениях, приводящих к нарушению целостности нервных волокон, их периферические части распадаются на фрагменты осевых цилиндров и миелиновых оболочек, погибают и фагоцитируются макрофагами. В сохранившейся части нервного волокна начинается пролиферация нейролеммоцитов, формирующих цепочку (бюнгнеровская лента), вдоль которой происходит постепенный рост осевых цилиндров. [5],[6]

Выделяемые шванновской клеткой различные стимуляторы (нейтрофические факторы) поглощаются аксоном и ретроградно транспортируются в перикардион. В перикарионе эти факторы стимулируют синтез белка и поддерживают его на высоком уровне. В регенерирующем нерве шванновские клетки пролиферируют, синтезируют компоненты базальной мембраны, внеклеточного матрикса и формируют миелин. Шванновские клетки стимулируют удлинение аксона и контролируют его направленный рост и мишени. При отсутствии Шванновских клеток аксоны не могут расти на значительные расстояния. [5]

Восстановление утраченных связей может происходить и за счет образования коллатеральных ветвей из окружающих и неповрежденных нервных волокон. Чаще коллатеральные ветви отходят от участка аксона в области перехвата Ранвье. Наличие в зоне перерезки нерва мертвых тканей, которые стимулируют разрастание здесь рубцовой ткани, большое расстояние между отрезками нервного волокна, сильное повреждение сосудов и нарушение кровоснабжения нерва ведут к резкому нарушению его регенерации. [5],[6]

Разрастание рубцовой ткани иногда вызывает развитие ампутационной невромы, состоящей из разросшихся отростков нейронов и глии, окруженных грубой рубцовой тканью. Невромы могут вызывать сильные (фантомные) боли. Регенерация нервных отростков идет со скоростью 2-4 мм в сутки. В условиях лучевого воздействия происходит замедление процессов репаративного гистогенеза, что обусловлено в основном повреждением нейролеммоцитов и клеток соединительной ткани в составе нерва. Способность нервных волокон к регенерации после повреждения при сохранении целостности тела нейрона используется в микрохирургической практике при сшивании дистального и проксимального отростков поврежденного нерва. Если это невозможно, то используют протезы (например, участок подкожной вены), куда вставляют концы поврежденных нервов (футлериз). Регенерацию нервных волокон ускоряет фактор роста нервной ткани — вещество белковой природы, выделенное из тканей слюнных желез и из змеиного яда. Нервная ткань на повреждение реагирует неоднозначно. Повреждение клеток центральной нервной системы, нейронов спинного мозга, симпатических ганглиев завершается их гибелью. Аксоны же нервных клеток сохраняют способность к репаративной регенерации. Повреждение периферического нерва сопровождается дегенерацией и атрофией конца нерва, идущего к периферии. Регенерация начинается на конце аксона, связанного с нервной клеткой. Регенерирующий конец нерва врастает в трубочки и способен восстановить иннервацию. Если же аксон не совмещен с объектом врастания, то на его конце могут образоваться своеобразные утолщения — невромы. Эффективность процесса регенерации во многом определяется условиями, в которых он протекает.[5],[6]

Значение имеет общее состояние организма. Так, истощение, авитаминозы, нарушения иннервации затормаживают репаративную регенерацию и способствуют ее переходу в патологическую. Изменение условий, в которых протекает процесс регенерации, может приводить как к количественным, так и качественным его изменениям.[5]

4.3. Возрастные особенности периферической нервной системы.

Развитие нервной системы у детей с моментом рождения не останавливается. После рождения увеличивается количество нервных пучков в составе периферических нервов: усложняется их ветвление, расширяются межнейрональные связи, усложняются рецепторные аппараты.[5]

С возрастом увеличивается толщина нервных волокон. К 9 годам во всех периферических нервах миелинизация близится к завершению. В пожилом и старческом возрасте количество нейронов в спинномозговых ганглиях снижается на 30%, часть нейронов атрофируется. Возрастные изменения в нервной ткани связаны с утратой нейроцитов в постнатальном периоде способности к делению, и как следствие этого постепенным уменьшением количества нейроцитов, особенно чувствительных нейроцитов, а также уменьшением уровня метаболических процессов в оставшихся нейроцитах. Отсутствие клеточной формы регенерации нейроцитов обуславливает разрастание нейроглии и соединительной ткани на месте повреждения.[5]

Заключение

Таким образом, на основании проанализированной литературы, можно сделать вывод о том, что нервная ткань обладает плохой способностью к регенерации. В эксперименте показано, что клетки периферической и вегетативной нервной системы, двигательные и чувствительные нейроны в спинном мозге мало регенерируют.[5]

Регенерация нервной ткани может происходить путём роста тканей на раневой поверхности, перестройки оставшейся части органа в новый, или путём роста остатка органа без изменения его формы. [2],[5]

Уровни регенерации в ходе восстановления структур следующие: молекулярный, ультраструктурный, клеточный, тканевой, органный.[5]

Новые нейроны образуются из недифференцированных предшественников, которые способны давать начало также астроцитам и олигодендроцитам и поэтому могут рассматриваться как стволовые нервные клетки. Идентификация стволовых клеток в мозге представляет большие сложности особенно в зрелом возрасте. [2],[5]

Сочетание классических хирургических способов восстановления нервных стволов и методов прямой терапии ростовыми факторами ускоряет аксональный рост, стимулирует реваскуляризацию нерва, что подтверждается многочисленными экспериментальными исследованиями и, в итоге, улучшает результаты посттравматического восстановления функции реиннервации поврежденного органа или ткани. [5], [6]

Список литературы

1. Гистология, эмбриология, цитология: учебник / Ю. И. Афанасьев, Н. А. Юрина, Б. В. Алешин и др.; под ред. Ю. И. Афанасьева, Н. А. Юриной. - 6-е изд., перераб. и доп. – М.: ГЭОТАР-Медиа, 2014. - 800 с.

2. Корочкин Л. И. Что такое стволовые клетки // Природа. – 2005. - № 6. – С. 3-11.

3. Кузнецов С.Л., Мушкамбаров Н.Н.Гистология, цитология и эмбриология: Учебник. – М.: Медицинское Информационное Агентство, 2007. – 540с.

4. Руководство по гистологии/ под ред. Р.К. Данилов. – СПб.: СпецЛит.- 2011.–Том 1.-С.160-165; 190-195; 210-216; 252-258; 280-299; 440-442; 656-669.

5. Регенерация тканей: учебное пособие – Благовещенск, 2016. – 136 с.

Дата добавления: 2018-02-15 ; просмотров: 2321 ;

Удивительно, но если хвост ящерицы отпадет, то недостающая его часть вновь сформируется из оставшейся. В некоторых случаях репаративная регенерация настолько совершенна, что весь многоклеточный организм восстанавливается лишь из небольшого фрагмента ткани. Наше тело самопроизвольно теряет клетки с поверхности кожи и замещает их вновь образованными. Это происходит именно из-за регенерации.

Виды регенерации

Репаративная регенерация - это естественная способность всех живых организмов. Она применяется для замены изношенных частей, обновления поврежденных и утраченных фрагментов или воссоздания тела из небольшого участка в период постэмбриональной жизни организма. Регенерация - это процесс, который включает в себя рост, морфогенез и дифференцировку. Сегодня все типы и виды репаративной регенерации активно используются в медицине. Такой процесс встречается не только у людей, но и у животных. Регенерация делится на два типа:

  • физиологическая;
  • репаративная.

Существует постоянная потеря многих структур нашего организма из-за износа и повреждений. Замена этих клеток обусловлена физиологической регенерацией. Примером такого процесса может служить обновление эритроцитов. Изношенные клетки кожи постоянно заменяются новыми.


  • Регенерация конечностей у саламандры.
  • Восстановление утраченного хвоста ящерицы.
  • Заживление раны.
  • Замена поврежденных клеток.

Разновидности репаративной регенерации. Морфаллаксис и эпиморфоз

Существуют различные типы репаративной регенерации. В нашей статье вы можете найти более подробную информацию о них. Регенерация эпиморфозного типа включает в себя дифференцировку взрослых структур с целью формирования недифференцированной массы клеток. Именно с этим процессом связано восстановление удаленного фрагмента. Примером эпиморфоза является регенерация конечностей у амфибий. В морфаллаксисном типе регенерация происходит в основном за счет перестановки уже существующих тканей и восстановления границ. Примером такого процесса является формирование гидры из небольшого фрагмента ее тела.

Репаративная регенерация и ее формы

Восстановление происходит благодаря распространению соседних тканей, которые заполняют собой молодые клетки с дефектом. В дальнейшем из них формируются полноценные зрелые фрагменты. Такие формы репаративной регенерации называют восстановлением.


  • Убыток возмещается тканью аналогичного типа.
  • Дефект заменяется новой тканью. Образуется рубец.

Регенерация костной ткани. Новый метод

В современном медицинском мире, репаративная регенерация костной ткани - это реальность. Такая техника наиболее часто используется в операции по пересадке костного трансплантата. Стоит отметить, что собрать достаточное количество материала для такой процедуры невероятно трудно. К счастью, новый операционный метод восстановления поврежденных костей возник.

Благодаря биомимикрии исследователи разработали новый метод восстановления костной структуры. Главная его цель - это использование кораллов морских губок в качестве каркасов или рам для костной ткани. Благодаря этому поврежденные фрагменты смогут восстанавливать себя самостоятельно. Кораллы идеально подходят для такого рода операций, потому что они легко интегрируются в существующие кости. Совпадает и их структура с точки зрения пористости и состава.

Процесс восстановления костной ткани при помощи кораллов

Для того чтобы восстановить костную ткань, используя новый метод, хирурги должны подготовить коралловые или морские губки. Им также необходимо подобрать такие вещества, как стромальные или стволовые клетки костного мозга, которые способны стать любым другим адамантобластом в организме. Репаративная регенерация тканей - это достаточно трудоемкий процесс. В ходе операции губки и клетки вставляются в секцию поврежденной кости.


Со временем костные фрагменты либо восстанавливаются, либо стволовые адамантобласты расширяют существующую ткань. Как только кость срастается, коралл или морская губка становятся ее частью. Это происходит благодаря их сходству по строению и составу. Репаративная регенерация и способы ее осуществления изучаются специалистами со всего мира. Именно благодаря этому процессу можно справиться с некоторыми приобретенными недостатками организма.

Восстановление эпителия

Способы репаративной регенерации играют важную роль в жизни любого живого организма. Переходный эпителий - это многослойный покров, который характерен для мочеотводящих органов, таких как мочевой пузырь и почки. Они наиболее подвержены растяжениям. Именно в них между клетками расположены плотные контакты, которые предотвращают проникновение жидкости через стенку органа. Адамантобласты мочеотводящих органов быстро изнашиваются и ослабевают. Репаративная регенерация эпителиев происходит за счет содержания в органах стволовых клеток. Именно они сохраняют способность к делению на протяжении всего жизненного цикла. Со временем процесс обновления значительно ухудшается. С этим связаны многочисленные заболевания, которые возникают у многих с возрастом.

Механизмы репаративной регенерации кожных покровов. Их влияние на восстановление тела после ожоговых повреждений

Известно, что ожоги - это самая распространенная травма среди детей и взрослых. Сегодня тема такого травматизма необычайно популярна. Не секрет, что ожоговые повреждения могут не только оставить на теле рубец, но и стать причиной хирургического вмешательства. На сегодняшний день не существует такой процедуры, которая позволила бы полностью избавиться от полученного шрама. Это связано с тем, что механизмы репаративной регенерации изучены не до конца.


Различают три степени ожоговых повреждений. Известно, что более 4 миллионов человек страдают от повреждений кожи, которые появились после воздействия на нее пара, горячей воды или химического вещества. Стоит отметить, что рубцовая кожа не соответствует той, которую она заменяет. Отличается она и по своим функциям. Новообразованная ткань более слабая. Сегодня специалисты активно изучают механизмы репаративной регенерации. Они считают, что в скором времени смогут полностью избавить пациентов от ожоговых шрамов.

Уровень репаративной регенерации костной ткани. Оптимальные условия для процесса

Репаративная регенерация костной ткани и ее уровень определяются степенью повреждений в области перелома. Чем больше микротрещин и травм, тем медленнее будет протекать образование костной мозоли. Именно по этой причине специалисты отдают предпочтение методам лечения, которые не связаны с нанесением дополнительных повреждений. Наиболее оптимальные условия для репаративной регенерации в костных фрагментах - это неподвижность обломков и замедленная дистракция. В случае их отсутствия на месте перелома образуются соединительные волокна, которые в дальнейшем формируют ложный сустав.

Патологическая регенерация

Физическая и репаративная регенерация играет важную роль в нашей жизни. Не секрет, что у некоторых такой процесс может быть замедлен. С чем это связано? Это и многое другое вы можете выяснить в нашей статье.

Патологическая регенерация - это нарушение восстановительных процессов. Существует два вида такого восстановления - гиперрегенерация и гипорегенерация. Первый процесс образования новой ткани ускоренный, а второй замедленный. Два этих вида являются нарушением регенерации.


Как ускорить процесс физиологической и репаративной регенерации

В жизни каждого живого существа важную роль играет физиологическая и репаративная регенерация. Примеры такого процесса известны абсолютно каждому. Не секрет, что у некоторых пациентов достаточно долго заживают травмы. Любой живой организм должен иметь полноценный рацион, который включает в себя разнообразие витаминов, микроэлементов и полезных веществ. При недостатке питания возникает дефицит энергии, и нарушаются трофические процессы. Как правило, у пациентов развивается та или иная патология.

Для ускорения процесса регенерации необходимо в первую очередь удалить отмершие ткани и взять во внимание иные факторы, которые могут повлиять на восстановление. К ним можно отнести стрессы, инфекции, протезы, недостаток витаминов, плохое кровообращение и многое другое.


Мумие для ускорения регенерации

К репаративной регенерации относят полное или частичное восстановление поврежденных тканей и органов. Ускоряет ли такой процесс мумие? Что это такое?
Известно, что мумие используют уже на протяжении 3 тысяч лет. Это биологически активное вещество, которое вытекает из расщелин скал южных гор. Его месторождение встречается в более чем 10 странах мира. Мумие представляет собой клейкую массу темно-коричневого цвета. Вещество хорошо растворяется в воде. В зависимости от места сбора состав мумие может отличаться. Тем не менее абсолютно в каждом из них содержится витаминный комплекс, ряд минеральных веществ, эфирные масла и пчелиный яд. Все эти компоненты способствуют быстрому заживлению ран и травм. Они также улучшают реакцию организма на неблагоприятные условия. К сожалению, препарата на основе мумие для ускорения регенерации нет, поскольку вещество плохо поддается обработке.

Регенерация у животных. Общая информация

Как мы говорили ранее, процесс регенерации происходит в абсолютно любом живом организме, в том числе и у животного. Стоит отметить, что чем выше оно организованно, тем хуже в его организме проходит восстановление. У животных репаративной регенерацией является процесс воспроизведения утерянных или поврежденных органов и тканей. Простейшие организмы восстанавливают свое тело только при наличии ядра. В случае если оно отсутствует, то утерянные части не воспроизводятся.


Проведя целый ряд исследований, ученые доказали, что если ящерице отрезать хвост наискось и задеть при этом не один, а два или более позвоночников, то у рептилии вырастет 2-3 хвоста. Встречаются также случаи, когда у животного может восстановиться орган не там, где он был расположен ранее. Удивительно, но путем регенерации может быть также воссоздан орган, которого не было раньше в теле того или иного существа. Такой процесс называется гетероморфозом. Все способы репаративной регенерации необычайно важны не только для млекопитающих, но и для птиц, насекомых, а также одноклеточных.

Подводим итоги

Каждому из нас известно, что ящерицы с легкостью могут полностью восстановить свой хвост. Далеко не все знают, почему это происходит. Физиологическая и репаративная регенерация играет важную роль в жизни каждого. Для ее восстановления можно использовать как лекарственные препараты, так и домашние методы. Одним из лучших средств считается мумие. Оно не только ускоряет процесс регенерации, но улучшает общий фон организма. Будьте здоровы!

Читайте также:

Пожалуйста, не занимайтесь самолечением!
При симпотмах заболевания - обратитесь к врачу.