Роль нервной и эндокринной систем в поддержании гомеостаза

Роль нервной и эндокринной систем в обеспечении гомеостаза

Системные механизмы обеспечиваются взаимодействием регуляторных систем: нервной, эндокринной и иммунной.

Нервная регуляция осуществляется и координируется центральной нервной системой. Нервные импульсы, поступая в клетки и ткани, вызывают не только возбуждение, но и регулируют химические процессы, обмен биологически активных веществ. В настоящее время известно более 50 нейрогормонов. Так в гипоталамусе вырабатывается вазопрессин, окситоцин, либерины и статины, регулирующие функцию гипофиза. Примерами системных проявлений гомеостаза являются сохранение постоянства температуры, артериального давления.

С позиций гомеостаза и адаптации нервная система является главным организатором всех процессов организма. В основе приспособления, уравновешивания организмов с окружающими условиями, по Н. П. Павлову, лежат рефлекторные процессы. Между разными уровнями гомеостатического регулирования существует частная иерархическая соподчиненность в системе регуляции внутренних процессов организма.



Самый первичный уровень составляют гомеостатические системы клеточного и тканевого уровня. Над ними представлены периферические нервные регуляторные процессы типа местных рефлексов. Далее в этой иерархии располагаются системы саморегуляции определенных физиологических функций с разнообразными каналами "обратной связи". Вершину этой пирамиды занимает кора больших полушарий и головной мозг.

В сложном многоклеточном организме как прямые, так и обратные связи осуществляются не только нервными, но и гормональными (эндокринными) механизмами. Каждая из желез, входящая в эндокринную систему, оказывает влияние на прочие органы этой системы и в свою очередь испытывает влияние со стороны последних.

Эндокринные механизмы гомеостаза по Б. М. Завадскому - механизм плюс-минус взаимодействия, т.е. уравновешивание функциональной активности железы с концентрацией гормона. При высокой концентрации гормона (выше нормы) деятельность железы ослабляется и наоборот. Такое влияние осуществляется путем действия гормона на продуцирующую его железу. У ряда желез регуляция устанавливается через гипоталамус и переднюю долю гипофиза, особенно при стресс-реакции.

Эндокринные железы можно разделить на две группы по отношению их к передней доле гипофиза. Последняя, считается центральной, а прочие эндокринные железы - периферические. Это разделение основано на том, что передняя доля гипофиза продуцирует так называемые тропные гормоны, которые активируют некоторые периферические эндокринные железы. В свою очередь, гормоны периферических эндокринных желез действуют на переднюю долю гипофиза, угнетая секрецию тропных гормонов.

Реакции, обеспечивающие гомеостаз, не могут ограничиваться какой-либо одной эндокринной железой, а захватывает в той или иной степени все железы. Возникающая реакция приобретает цепное течение и распространяется на другие эффекторы. Физиологическое значение гормонов заключается в регуляции других функций организма, а потому цепной характер должен быть выражен максимально.

Постоянные нарушения среды организма способствуют сохранению ее гомеостаза в течение длительной жизни. Если создать такие условия жизни, при которых ничто не вызывает существенных сдвигов внутренней среды, то организм окажется полностью безоружен при встрече с окружающей средой и вскоре погибает.

Объединение в гипоталамусе нервных и эндокринных механизмов регуляции позволяет осуществлять сложные гомеостатические реакции, связанные с регуляцией висцеральной функции организма. Нервная и эндокринная системы являются объединяющим механизмом гомеостаза.

Примером общей ответной реакции нервных и гуморальных механихмов является состояние стресса, которое развивается при неблагоприятных жизненных условиях и возникает угроза нарушения гомеостаза. При стрессе наблюдается изменение состояния большинства систем: мышечной, дыхательной, сердечно-сосудистой, пищеварительной, органов чувств, кровяное давление, состав крови. Все эти изменения являются проявлением отдельных гомеостатических реакций, направленных на повышение сопротивляемости организма к неблагоприятным факторам. Быстрая мобилизация сил организма выступает как защитная реакция на состояние стресса.

При "соматическом стрессе" решается задача повышения общей сопротивляемости организма по схеме:



В случае "психического стресса" при болевом и эмоциональном воздействии включается дополнительно функциональные изменения состояния коры больших полушарий, лимбической системы головного мозга, симпатической нервной системы, клеток мозгового слоя надпочечников и завершается выбросом в кровь адреналина.

Гомеостатические механизмы активные в состояние стресса, способны противостоять неблагоприятным условиям до определенного предела.

В развитии стресс-реакции различают три стадии:

1) Мобилизация защитных механизмов или тревоги.

2) Повышение сопротивляемости организма.

3) Истощение защитных механизмов.

Первые две - соответствуют сохранению гомеостаза, третья наступает при чрезмерных воздействиях и приводит к срыву механизмов гомеостаза.

Одно из основных свойств всего жи­вого — способность сохранять отно­сительное динамическое постоянство внутренней среды. Это свойство полу­чило название гомеостаз(гр. homoios — равный, stasis — состояние). Го­меостаз выражается в относительном постоянстве химического состава, ос­мотического давления, устойчивости ос­новных физиологических функций в организмах растений, животных,, че­ловека. Гомеостаз каждого индивиду­ума специфичен и обусловлен его ге­нотипом.

Регуляторные гомеостатические ме­ханизмы функционируют на клеточном, органном, организменном и над-организменном уровнях.

Таким образом, понятие гомеостаза не связано со стабильно­стью процессов. В ответ на действие внешних факторов происходит неко­торое изменение физиологических по­казателей, а включение регуляторных систем обеспечивает поддержание от­носительного постоянства внутренней среды. Способность к поддержанию постоянства внутренней среды пред­ставляет собой свойство, выработав­шееся в процессе эволюции и наслед­ственно закрепленное.

Основные компоненты гомеостаза. Клеточный и молекулярно-генетический уровни. Клетка является сложной биологической системой, которой присуща саморегуляция. Установление гомеостаза клеточной среды обеспе­чивается мембранными системами, с которыми связаны биоэнергетические процессы и регулирование транспорта веществ в клетку и из нее. В клетке непрерывно идут процессы изменения и восстановления органоидов. Это про­исходит и в обычных условиях среды, но особенно интенсивно при действии различных повреждающих факторов (изменение температуры, гипоксия, не­достаток питательных веществ).

В основе реакций, осуществляемых в клетке на ультраструктурном уровне, лежат генетические механизмы гомео­стаза.

Важнейшее свойство живого — самовоспроизведение — основано на про­цессе редупликации ДНК. Сам меха­низм этого процесса, при котором новая нить ДНК строится строго компле­ментарно около каждой из составляю­щих молекул двух старых нитей, яв­ляется оптимальным для точной пере­дачи информации. Точность этого про­цесса очень высока, но все же, хотя и очень редко, происходят ошибки при редупликации. Нарушение структуры молекулы ДНК может происходить и в ее первичных цепях вне связи с редупликацией под воздействием эндо­генных и экзогенных химических со­единений, под влиянием физических факторов. В большинстве случаев про­исходит восстановление генома клетки, исправление повреждения посредством системы репарирующих ферментов. Ре­парация играет важнейшую роль в восстановлении структуры генетиче­ского материала и сохранении нор­мальной жизнеспособности клетки. При повреждении механизмов репарации происходит нарушение гомеостаза как на клеточном, так и на организменном уровнях.

Важным механизмом сохранения го­меостаза является диплоидное состоя­ние соматических клеток у эукариот. Диплоидные клетки отличаются боль­шей стабильностью функционирования, так как наличие у них двух генетиче­ских программ повышает надежность генотипа. Большинство мутаций, ока­зывающих часто неблагоприятное дей­ствие, являются рецессивными. Нали­чие у гетерозиготной особи доминант­ного аллеля обеспечивает либо пол­ное, либо частичное подавление в фе­нотипе рецессивной мутации. Стабили­зация сложной системы генотипа обес­печивается и явлениями полимерии, а также другими видами взаимодей­ствия генов. Большую роль в процес­сах гомеостаза играют регуляторные гены, контролирующие активность оперонов.

Упрокариот, имеющих более при­митивную организацию генотипа, на­блюдается меньшая автономность ор­ганизмов от колебания внешней среды и более низкая стабильность самого генетического аппарата.

Общие закономерности гомеостаза.Способность сохранять гомеостаз — одно из важнейших свойств живой си­стемы, находящейся в состоянии дина­мического равновесия с условиями внешней среды. Способность к поддер­жанию гомеостаза неодинакова у раз­личных видов. По мере усложнения организмов эта способность прогрес­сирует, делая их в большей степени не­зависимыми от колебаний внешних ус­ловий. Особенно это проявляется у выс­ших животных и человека, имеющих сложные нервные, эндокринные и им­мунные механизмы регуляции. Влия­ние среды на организм человека в ос­новном является не прямым, а опосре­дованным, благодаря созданию им искусственной среды, успехам техники и цивилизации.

Молекулярно-генетический уровень гомеостаза обеспечивается процессами редупликации ДНК, репарации. На­дежность генетического аппарата эукариот обусловлена наличием двух гено­мов в каждой соматической клетке.

На уровне клетки происходит восста­новление ее мембран, компенсаторное увеличение ряда органоидов при необ­ходимости повышения функции (уве­личение количества митохондрий, ри­босом).

Контроль за генетическим постоян­ством осуществляется иммунной систе­мой. Эта система состоит из анатомиче­ски разобщенных органов, представля­ющих функциональное единство. Свой­ство иммунной защиты достигло высше­го развития у птиц и млекопитающих.

В системных механизмах гомеостаза действует кибернетический принцип от­рицательной обратной связи: при лю­бом возмущающем воздействии происхо­дит включение нервных и эндокринных механизмов, которые тесно взаимосвя­заны. Нормализация физиологических показателей осуществляется на основе свойства раздражимости. У более вы­соко организованных животных это ус­ложняется, дополняется сложными по­веденческими реакциями, включаю­щими инстинкты, условно-рефлектор­ную и элементарную рассудочную де­ятельность, а у человека абстрактное мышление — качественно новое явле­ние, положившее начало социальной эволюции, где действуют другие за­коны.

Кибернетика –наука, устанавливающая общие принципы управления саморегулирующимися системами. Живые организмы также являются саморегулирующимися системами, и поэтому к ним применимы все кибернетические понятия и принципы регуляции.

В основе работы кибернетической системы лежит процесс передачи и обработки информации. В работу системы постоянно вносятся коррективы, характер которых зависит от тех отклонений, которые наблюдаются на входе. Для живых организмов входными сигналами служат пища, вода, свет, звук, температура. Выходные сигналы – реакция органа или ткани, выделение секрета и т.д. Важным элементом кибернетической системы является обратная связьвлияние выходного сигнала на блок управления. Различают отрицательную и положительную обратную связь. Отрицательная обратная связь – направлена на восстановление исходного состояния кибернетической системы, в случае ее отклонения от нормы. Пример: работа термостата.

Положительная обратная связь – направлена на усиление возникшего отклонения кибернетической системы от исходного состояния. Пример: кровотечение из крупного сосуда, рост организма в онтогенезе.

Нервная регуляция:высокая скорость наступления ответной реакции;реакция кратковременная;реакция носит локальный характер.

Гуморальная регуляция(обеспечивается выделением в кровь гормонов):реакция наступает медленно;реакция длительна;реакция носит разлитой характер.

Таким образом, обе системы в целостном организме дополняют друг друга.В основе функционирования нервной и эндокринной систем лежит принцип действия отрицательной обратной связи.

Гомеостаз – поддержание постоянства внутренней среды организма в непрерывно изменяющихся условиях внешней среды.

Причина – отклонение от нормы реакции в организме. Решающая роль принадлежит обратной связи. Существует положительная и отрицательная обратная связь.

Отрицательная обратная связь уменьшает действие входного сигнала на выходной. Положительная обратная связь увеличивает действие входного сигнала на выходной эффект действия.

Живой организм – ультрастабильная система, осуществляющая поиск наиболее оптимального устойчивого состояния, которое обеспечивается адаптациями.

Адаптация – поддержание переменных показателей на поведенческом, анатомическом, биохимическом и других уровнях.

Этология – наука, изучающая поведение животных и человека. Типы поведения животных и человека ограничены их морфологическими и физиологическими особенностями. У человека есть зависимость поведения от типа сложения. Существуют 3 типа сложения:

Важные свойства поведенческих реакций:

- поведение подвержено действию естественного отбора

- поведенческие признак возникают из анатомии, морфологии и физиологии животного неотделимы о них

- формы поведения обычно адаптивны и часто могут передаваться либо генетически, либо в результате обучения

- у многих биологических видов существуют определенные формы поведения.

Если организм не смог адаптироваться на поведенческом уровне, он делает это на биохимическом уровне. Биохимическая адаптация очень сложна, наиболее характерна для растений, т.к. животному проще мигрировать.

Процесс адаптации бывает по времени:

ü эволюционная адаптация

ü немедленная адаптация

Эволюционная адаптация – длительный процесс, приобретение новой генетической информации, изменяется генотип, следовательно, изменяется и фенотип. Для своего завершения подобная адаптация требует многих поколений.

Акклиматизация – адаптации, которые происходят в процессе жизни в естественных условиях.

Акклимация – адаптации, происходящие в искусственных условиях.

Происходит в течение нескольких часов – лет (зима – лето). Смена часовых поясов, перевод времени.

Немедленная адаптация сопровождается почти мгновенной адаптивной реакцией (психогенное воздействие, переход из тепла в холод). Кратковременная реакция.

Любая адаптация возникает в результате взаимодействия генетических факторов и факторов внешней среды.

Генетический аспект гомеостаза рассматривают с 3 позиций:

- гомеостаз организма как целого. Контроль за единством генотипа всего организма. Поддержание гомеостаза осуществляется при гибели видоизмененных клеток.

- гомеостаз популяции. Закон генетической стабильности в популяции.

В поддержании гомеостаза участвуют различные системы.

Нервная сигнализация – основной инструмент передачи и оценки сигналов из внутренней и внешней среды.

Гормоны принимают участие в регуляции гомеостаза. Регулируют обмен веществ, воды, белков, липидов, углеводов, энергии, электролитов. Контролируют работу всех органов, в том числе почек, печени, ЦНС.

Иммунная система защищает постоянство внутренней среды организма от факторов 2-х групп:

- микроорганизмов и экзогенных факторов с признаками чужеродной генетической информацией

- соматических мутаций. Достаточно изменений в 1-2 генах, чтобы сработала иммунная система.

61. Проблема трансплантации органов и тканей. Ауто-, алло - и гетеротрансплантация. Трансплантация жизненно важных органов. Тканевая несовместимость и пути её преодоления. Искусственные органы.

Из-за бурного развития трансплантологии остро встал вопрос о трансплантационном иммунитете.

Трансплантология – медико-биологическая наука, изучающая вопросы заготовки, консервирования и пересадки органов и тканей.

Трансплантационный иммунитет – своеобразная реакция организма на трансплантацию, проявляющаяся в отторжении пересаженных органов и тканей.

Трансплантат – пересаживаемая ткань или орган.

Реципиент – тот, кому пересаживается орган или ткань.

Донор – тот, от кого берут трансплантат.

Аутотрансплантация– пересадка тканей и органов в пределах одного организма (в такомслучае говорят об аутотрансплантате)

Изотрансплантация (изотрансплантат) - пересадка тканей и органов между организмами, идентичными по генетическим признакам.

Аллотранспланация (аллотрансплантат) - пересадка тканей и органов между организмами одного биологического вида.

Гетеротрансплантация (гетеротрансплантат) – пересадка тканей и органов между организмами разных биологических видов.

Эксплантация (эксплантат) – пересадка небиологического материала.

Остро стоят 2 проблемы:

1. сохранение органов и тканей с их неизмененными свойствами.

2. преодоление трансплантационного иммунитета.

Разные методы консервации.

1) Охлаждение (недолговременное).

Заморозка может разорвать ткань, что приводит к гибели ткани. Но сперматозоиды способны жить. Состояние анабиоза некоторых животных. Кровь заменяют криопротекторами, после разморозки производят обратную замену. Метод лиофилизации – заморозка высушиванием в воздухе. Хранение замороженных людей. Существуют банки тканей, банки органов на научной основе.

Вторая проблема более сложна. Живые организмы многие миллионы лет были индивидуальными т.к. одни индивиды не смешивались с другими, поэтому преодолеть эту проблему весьма сложно, но паразиты не отторгаются организмом. В трансплантологии сначала считали, что отторжение происходит из-за различного макроскопического и микроскопического строения тканей. Однако теперь выяснилось, что реципиент и донор различаются набором специфических белков и антигенов. Аллогенные и гетерогенные органы и ткани, содержащие трансплантационные гены, в организме вызывают защитную реакцию – выработку антител. Защита направлена на уничтожение пересаженных органов и тканей у реципиента и состоит из нескольких сложнейших иммунно-биологических реакций. Человек ощущает эти процессы с 7 дня, максимум процесса достигается на 14-21 сутки.

Преодоление тканевой несовместимости – работа хирургов, иммунологов, физиологов и других специалистов. Целое медицинское направление – иммунодепрессивная терапия – направлено на решение этой проблемы. Используют химические, физические и биологические факторы воздействия на организм реципиента.

Физические методы – радиоактивное излучение, рентгеновские лучи.

Химические методы – введение препаратов, снижающих иммунитет. Они сильно влияют на жизненно важные органы.

Биологические методы– введение антитоксических сывороток, антибиотиков. Принцип действия -нейтрализация трансплантационных антител. Наиболее перспективный метод.

В настоящее время пересаживают практически все: и органы, и ткани.


Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни.


Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций.


Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого.

Нервная система. Нервная система состоит из трех основных звеньев: чувствительного (афферентного), центрального (интегративного) и двигательного (или моторного). Рецепторы чувствительного звена воспринимают разнообразную информацию о состоянии организма или внешней среды. Так, кожные рецепторы каждый раз сигнализируют о контакте любого участка кожи с каким-либо объектом. Глаз — это орган чувств, дающий визуальную информацию об окружающей обстановке. Ухо также относится к органам чувств. Центральное звено нервной системы состоит из головного и спинного мозга. Головной мозг способен хранить информацию, генерировать идеи, ставить цели и определять варианты реакции организма в ответ на ощущения. Воспринятые сигналы затем передаются на двигательное звено с целью выполнения необходимого действия.

Значительную часть нервной системы составляет автономная (вегетативная) нервная система. Незаметно для нашего сознания она управляет работой внутренних органов, в том числе регулирует сердечный выброс, моторику желудочно-кишечного тракта, а также секрецию разных желез организма.

Эндокринная система. В организме имеются восемь основных эндокринных желез, которые выделяют химические вещества, называемые гормона ми. Гормоны поступают во внеклеточную жидкость, с помощью которой транспортируются во все участки организма с целью регуляции клеточных функций. Так, тиреоидные гормоны увеличивают скорость большинства химических реакций во всех клетках, способствуя таким образом установлению определенного уровня обмена в организме. Инсулин регулирует обмен глюкозы, адренокортикотропный гормон (АКТГ) — содержание ионов натрия, а паратиреоидный гормон — содержание ионов кальция и фосфатов в костях. Таким образом, эндокринная система дополняет нервные механизмы регуляции. Нервная система регулирует в основном деятельность скелетных мышц, в то время как гормоны контролируют разнообразные метаболические функции.


Главные компоненты и физические характеристики внеклеточной жидкости.

В организме человека насчитывают тысячи регуляторных систем. Наиболее сложными являются системы генетической регуляции, которые существуют во всех клетках и обеспечивают контроль не только над внутриклеточными, но и внеклеточными функциями.

Множество других регуляторных систем действуют как на уровне органов, координируя работу их отдельных частей, так и на уровне всего организма, управляя взаимодействием органов. Так, дыхательная система вместе с нервной регулирует концентрацию углекислого газа, печень и поджелудочная железа — содержание глюкозы, почки — концентрацию протонов, фосфатов, ионов натрия, калия и других ионов во внеклеточной жидкости.

Регуляция содержания кислорода и углекислого газа во внеклеточной жидкости. Кислород — одно из важнейших веществ, необходимых для протекания химических реакций в клетках. К счастью, существует механизм, позволяющий с высокой точностью поддерживать постоянную концентрацию кислорода во внеклеточной жидкости. В основе этого механизма лежат химические свойства гемоглобина, содержащегося во всех эритроцитах. Гемоглобин присоединяет кислород во время прохождения крови по легочным сосудам. Если концентрация кислорода в тканевой жидкости высокая, то гемоглобин благодаря высокому сродству к кислороду удерживает его. Если же содержание кислорода слишком низкое, гемоглобин высвобождает его в количестве, необходимом для восстановления достаточной концентрации. Таким образом, регуляция уровня кислорода в тканях обеспечивается в основном химическими свойствами гемоглобина. Этот процесс называют кислородно-буферной функцией гемоглобина.

Для регуляции уровня углекислого газа во внеклеточной жидкости используется совершенно другой механизм. Углекислый газ является основным конечным продуктом окислительных реакций в клетках. Если весь углекислый газ, выделенный клетками, будет накапливаться в тканевой жидкости, то все клеточные реакции по выработке энергии вскоре остановятся. К счастью, при повышении уровня углекислого газа в крови дыхательный центр возбуждается, в результате повышаются частота и глубина дыхания и увеличивается выделение углекислого газа, а его содержание в крови и тканевой жидкости снижается. Этот процесс продолжается, пока концентрация углекислоты не придет в норму.

Регуляция артериального давления. В регуляцию артериального давления вовлечены многие системы организма. Одна из них — барорецепторная система, которая является простым и ярким примером быстрых механизмов регуляции. В области бифуркации сонных артерий (на шее), а также на дуге аорты (в грудной клетке) находится множество барорецепторов-, которые реагируют на растяжение артериальной стенки. Когда давление в артерии сильно повышается, поток импульсов от барорецепторов поступает в продолговатый мозг, приводя к торможению сосудодвигательного центра, который, в свою очередь, снижает импульсацию от симпатической нервной системы к сердцу и сосудам, что приводит к снижению сердечного выброса и расширению сосудов. В результате артериальное давление снижается до нормы.

Если артериальное давление опускается ниже нормы, активность барорецепторов, напротив, уменьшается, что приводит к стимуляции сосудодвигательного центра и, как следствие, к сужению сосудов, увеличению сердечного выброса и повышению артериального давления до нормы.

Эндокринная система играет важную регуляторную роль в организме. Гор­моны, выделяемые железами внутрен­ней секреции, оказывают влияние на различные стороны обменных процес­сов, обеспечивающих гомеостаз. Ак­тивность этих желез определяется внут­ренними и внешними факторами. При изменении условий среды (температу­ра, свет, физическая нагрузка и др.) их активность может изменяться в соответствии с потребностями орга­низма.

Для сохранения гомеостаза необхо­димо уравновешивание функциональ­ной активности железы с концентра­цией гормона, находящегося в цирку­лирующей крови. В случае возраста­ния концентрации гормона выше нормы для данного организма деятельность железы, в которой он образуется, ослабляется. Если же уровень гормо­на ниже, чем необходимо организму в данных условиях, активность железы усиливается. Эту закономерность об­наружил еще в 30-х годах советский эндокринолог Б. М. Завадовский, на­звав ее механизмом плюс — минус взаи­модействия.

Такое влияние может осуществляться путем непосредственного действия гор­мона на продуцирующую его железу.

У ряда желез регуляция устанавли­вается не прямо, а через гипоталамус и переднюю долю гипофиза. Так, при повышении в крови уровня тиреоидного гормона угнетается тиреотропная (возбуждающая щитовидную железу) функция гипофиза и уменьшается ак­тивность щитовидной железы. Бывают случаи, когда в организме усиливается активность щитовидной железы (ги­перфункция), повышается основной обмен, усиливаются окислительные про­цессы, но отрицательная обратная связь не возникает, гипофиз перестает реагировать на избыток гормона щито­видной железы и не тормозит ее актив­ность. В результате развивается откло­нение от нормы — тиреотоксикоз.

При уменьшении продукции тиреоидных гормонов уровень их в крови становится ниже потребностей орга­низма, возбуждается деятельность ги­пофиза, усиливается продукция тиреотропного гормона и выделение тиреоидного гормона возрастает. По такому же принципу осуществляется регу­ляция коры надпочечников гипофизарным адренокортикотропным гормоном, половых желез — гонадотропными гор­монами гипофиза. Взаимоотношения гипофиза и зависимых от него желез основаны на принципе отрицательной обратной связи, восстанавливающей гомеостаз.

В свою очередь, гипофиз находится под контролем гипоталамической об­ласти, где выделяются особые активи­рующие гипофиз факторы.

Высшим центром регуляции эндо­кринных функций является подбугор-ная область (гипоталамус), которая располагается в основании мозга. Именно здесь происходит интеграция нервных и эндокринных элементов в общую нейроэндокринную систему. В этом небольшом участке мозга насчи­тывается около 40 ядер — скоплений нервных клеток. С одной стороны, ги­поталамус — высший центр вегетатив­ной нервной системы, контролирующей вегетативные функции по типу нерв­ной регуляции: здесь находятся цент­ры поддержания температуры тела, голода, жажды, водно-солевого обмена и половой активности. Вместе с тем есть особые клетки в некоторых ядрах гипоталамуса, которые, имея харак­терные особенности нейронов, обла­дают и железистыми функциями, продуцируя нейрогормоны. Нейрогормоны, попадая с кровью в переднюю долю гипофиза, регулируют выделение трой­ных гормонов гипофиза. Особенно боль­шую активность проявляет область ги­поталамуса при стресс-реакции, когда мобилизуются все силы для отраже­ния нападения, бегства или другого выхода из трудно преодолимой ситуа­ции. Подбугровая область образует с гипофизом единый структурный и функциональный комплекс. При экс­периментальном разъединении этой связи путем перерезки гипофизарной ножки у животных почти полностью прекращается продукция гипофизом тропных гормонов. В результате раз­виваются тяжелые расстройства эндокринной системы.

Особенность нервной регуляции со­стоит в быстроте наступления ответ­ной реакции, причем эффект ее про­является непосредственно в том ме­сте, куда поступает по соответствую­щей иннервации этот сигнал; реакция кратковременна. В эндокринной системе регуляторные влияния связаны с действием гормонов, разносимых с кровью по всему организму; эффект действия длительный и не имеет ло­кального характера. Например, гор­моны щитовидной железы стимули­руют окислительные процессы во всех тканях. Объединение в гипоталамусе нервных и эндокринных механизмов регуляции позволяет осуществлять сложные гомеостатические реакции, связанные с регуляцией висцераль­ных функций организма. Понятно, что управление такими функциями должно обеспечиваться гормонами, обеспечивающими длительное и рас­пространенное воздействие.

Отдельные группы нейросекреторных клеток продуцируют гормоны, не регулирующие активность других же­лез, а непосредственно влияющие на определенные органы. Например, ан­тидиуретический гормон стимулирует процесс обратного всасывания воды в почечных канальцах, что приводит к образованию вторичной мочи.

При недостатке питьевой воды сек­реция этого гормона увеличивается, способствуя задержке воды в орга­низме. При длительной жажде этого оказывается недостаточным. Концен­трация воды в клетках и осмотиче­ское давление изменяются. Включа­ются нервные механизмы регуляции: через хеморецепторы в центральную нервную систему поступают импульсы о начинающемся нарушении водно-со­левого гомеостаза. На основании это­го возникает очаг возбуждения в коре головного мозга (мотивационное возбуждение), и действия животного на­чинают направляться на устранение отрицательной эмоции, возникает по­веденческая реакция на удовлетворе­ние жажды, при этом активизируются слуховые, обонятельные, зрительные рецепторы в комплексе с двигательны­ми центрами, направляющими движе­ния животного.

Некоторые периферические эндо­кринные железы не испытывают пря­мой зависимости от гипофиза, и после его удаления их активность практиче­ски не изменяется. Это панкреатиче­ские островки, продуцирующие инсу­лин и глюкагон, мозговая часть надпо­чечников, эпифиз, вилочковая железа (тимус), околощитовидные железы.

Особое положение в эндокринной системе занимает зобная железа (ти­мус). В ней вырабатываются гормоноподобные вещества, которые стимули­руют образование особой группы лим­фоцитов, и устанавливается взаимо­связь между иммунными и эндокрин­ными механизмами.

Читайте также:

Пожалуйста, не занимайтесь самолечением!
При симпотмах заболевания - обратитесь к врачу.