Сетчатую или диффузную нервную систему имеют

Возникла она у пресноводной гидры, имеет форму сети, образованной соединениями отросчатых клеток и равномерно распределяясь по всему телу, сгущаясь около ротовых придатков. Клетки, входящие в состав сети, существенно отличаются от нервных клеток высших животных: они малы по размеру, не имеют характерного для нервной клетки ядра и хроматофильной субстанции. Эта нервная система проводит возбуждение диффузно, по всем направлениям, обеспечивая глобальные рефлекторные реакции. На дальнейших ступенях развития многоклеточных животных она теряет значение единой формы нервной системы, но в организме человека сохраняется в виде мейснеровского и ауэрбахового сплетений пищеварительного канала.

2. Ганглионарная нервная система(у червеобразных) - синаптическая, проводит возбуждение в одном направлении и обеспечивает дифференцированные приспособительные реакции. Этому соответствует высшая степень эволюции нервной системы: развиваются специальные органы движения и рецепторные органы, в сети возникают группы нервных клеток, в телах которых содержится хроматофильная субстанция. Она имеет свойство разлагаться при возбуждение клеток и восстанавливаться в состоянии покоя. Клетки с хроматофильной субстанцией располагаются группами или узлами - ганглиями, поэтому и сами клетки получили название ганглионарных. Итак, на второй ступени развития нервная система из сетчатой превратилась в ганглионарно-сетчатую. У человека этот тип строения нервной системы сохранился в виде паравертебральных стволов и периферических узлов (ганглиев), которым свойственны вегетативные функции.

3. Трубчатая нервная система (у позвоночных) отличается от нервной системы червеобразных тем, что у позвоночных возникли скелетные моторные аппараты с поперечнополосатыми мышцами. Это обусловило развитие центральной нервной системы, отдельные части и структуры которой формируются в процессе эволюции постепенно и в определенной последовательности. Сначала из каудальной, недифференцированной части медуллярной трубки образуется сегментарный аппарат спинного мозга, а из передней части мозговой трубки вследствие кефализации (от греч. Kephale - голова) формируются основные отделы головного мозга. В онтогенезе человека они последовательно развиваются по известной схеме: сначала формируются три первичных мозговых пузыря: передний (prosencephalon), средний (mesencephalon) и ромбовидный, или задний (rhomencephalon). В дальнейшем из переднего мозгового пузыря образуются конечный (telencephalon) и промежуточный (diencephalon) пузыри. Ромбовидный мозговой пузырь также фрагментируется на два: задний (metencephalon) и продолговатый (myelencephalon). Таким образом, стадии трех пузырей сменяются стадией пяти пузырей, из которых формируются различные отделы центральной нервной системы: из telencephalon - большие полушария мозга, diencephalon - промежуточный мозг, mesencephalon - средний мозг, metencephalon - мост мозга и мозжечок, myelencephalon - продолговатый мозг.

Эволюция нервной системы позвоночных обусловила развитие новой системы со способностью ее создавать временные сообщения функционирующих элементов, которые обеспечиваются расчленением центральных нервных аппаратов на отдельные функциональные единицы - нейроны. Следовательно, с возникновением скелетной моторики у позвоночных развился нейронная цереброспинальная нервная система, которой подчинены сохранившиеся древние формации. Дальнейшее развитие центральной нервной системы обусловило возникновение особых функциональных взаимосвязей между головным и спинным мозгом, которые построены по принципу субординации, или подчинения. Суть принципа субординации заключается в том, что эволюционно более молодые мозговые образования не только регулируют функции древних, низших нервных структур, но и подчиняют их себе путем торможения или возбуждения. Причем субординация существует не только между головным и спинным мозгом, она наблюдается между корой и подкоркой, между подкоркой и стволовой частью мозга и в некоторой степени даже между шейным и поясничным утолщениями спинного мозга.

Таким образом, в процессе эволюции нервной системы можно выделить несколько основных этапов, которые являются основными в ее морфологическом и функциональном развитии. Из морфологических этапов следует назвать централизацию нервной системы, кефализацию, кортикализацию у хордовых, появление симметричных полушарий - у высших позвоночных. В функциональном отношении эти процессы связаны, по принципу субординации и растущей специализации центров и корковых структур.

Нервная система имеет нейронный тип строения, т.е. состоит из нервных клеток - нейронов, которые развиваются из нейробластов. Нейрон является основной структурной и функциональной единицей нервной ткани. Он имеет тело и большое количество отростков, среди которых различают аксон и дендриты. Аксон, или нейрит, - это длинный отросток, который проводит нервный импульс в направлении от тела клетки и заканчивается терминальным разветвлением. Он всегда в клетке только один. Дендриты - это большое количество коротких древовидных разветвленных отростков. Они передают нервный импульс по направлению к телу клетки. Тело нейрона состоит из цитоплазмы и ядра с одним или несколькими ядрышками. Специальными компонентами нервных клеток является хроматофильная субстанция и нейрофибриллы. Хроматофильная субстанция имеет вид различных по размерам кусков и зерен, содержится в теле и дендритах нейронов и никогда не оказывается в аксонах и начальных сегментах последних. Она является показателем функционального состояния нейрона: исчезает в случае истощения нервной клетки и восстанавливается в период покоя. Нейрофибриллы имеют вид тонких нитей, которые размещаются в теле клетки и ее отростках. Цитоплазма нервной клетки содержит также пластинчатый комплекс (сетчатый аппарат Гольджи), митохондрии и другие органоиды. Скопления тел нервных клеток формируют нервные центры, или так называемое серое вещество.

Нервные волокна - это отростки нейронов. В пределах центральной нервной системы они образуют белое вещество мозга. Нервные волокна состоят из осевого цилиндра, который является отростком нейрона, и оболочки, образованной клетками олигодендроглии (нейролемоцитами, шванновскими клетками). В зависимости от строения оболочки, нервные волокна делятся на миелиновые и безмиелиновые. Миелиновые нервные волокна есть в составе головного и спинного мозга, а также периферических нервов. Они состоят из осевого цилиндра, миелиновой оболочки, нейролемы (шванновской оболочки) и базальной мембраны. Мембрана аксона служит для проведения электрического импульса и в области аксональных окончаний выделяет медиатор, а мембрана дендритов реагирует на медиатор. Кроме того, она обеспечивает узнавание других клеток в процессе эмбрионального развития. Поэтому каждая клетка отыскивает определенное ей место в сети нейронов. Миелиновые нервные волокна имеют участки сужений - узлы (узловые перехваты Ранвье).

Безмиелиновые нервные волокна являются типичными для автономной (вегетативной) нервной системы. Они имеют значительно более простое строение: состоят из осевого цилиндра, нейролемы и базальной мембраны. Скорость передачи нервного импульса миелиновыми нервными волокнами значительно выше (до 40-60 м/с), чем безмиелиновыми (1-2 м/с).

Основными функциями нейрона является восприятие и переработка информации, проведение ее к другим клеткам. Нейроны выполняют также трофическую функцию, влияя на обмен веществ в аксонах и дендритах. Различают следующие виды нейронов: афферентные, или чувствительные, воспринимающие раздражение и трансформирующие его в нервный импульс; ассоциативные, промежуточные, или интернейроны, передающие нервный импульс между нейронами; эфферентные, или моторные, обеспечивающие передачу нервного импульса на рабочий орган. Эта классификация нейронов основывается на положении нервной клетки в составе рефлекторной дуги. Нервное возбуждение по ней передается только в одном направлении. Это правило получило название физиологической, или динамической, поляризации нейронов. Что касается изолированного нейрона, то он способен проводить импульс в любом направлении. Нейроны коры большого мозга по морфологическим признакам делят на пирамидные и непирамидные. Нервные клетки контактируют между собой через синапсы, специализированные структуры, где нервный импульс переходит с нейрона на нейрон. В основном синапсы образуются между аксонами одной клетки и дендритами другой. Различают также другие типы синаптических контактов: аксосоматические, аксо-аксональные, дендро-дентритические. Следовательно, любая часть нейрона может образовывать синапс с различными частями другого нейрона. Типичный нейрон может иметь от 1000 до 10 000 синапсов и получать информацию от 1000 других нейронов. В составе синапса различают две части: пресинаптическую и постсинаптическую, между которыми находится синаптическая щель. Пресинаптическая часть образована терминальной веточкой аксона той нервной клетки, которая передает импульс. В основном она имеет вид небольшой пуговицы и покрыта пресинаптической мембраной. В пресинаптических окончаниях находятся везикулы, или пузырьки, которые содержат так называемые медиаторы. Медиаторами, или нейротрансмиттерами являются различные биологически активные вещества. В частности, медиатором холинергических синапсов является ацетилхолин, адренергических - норадреналин и адреналин. Постсинаптическая мембрана содержит особый белок - рецептор медиатора. На высвобождение нейромедиатора влияют механизмы нейромодуляции. Эту функцию выполняют нейропептиды и нейрогормоны. Синапс обеспечивает односторонность проведения нервного импульса. По функциональным особенностям различают два вида синапсов: возбуждающие, способствующие генерации импульсов, и тормозные, которые способны аннулировать действие сигналов. Нервным клеткам присущ низкий уровень возбуждения.

Кроме нейронов, образующих паренхиму нервной клетки, важным классом клеток центральной нервной системы являются глиальные клетки (астроциты, олигодендроциты и микроглиоциты), количество которых в 10-15 раз превышает количество нейронов и которые формируют нейроглию. Ее функции: опорная, разграничительная, трофическая, секреторная, защитная. Глиальные клетки участвуют в высшей нервной (психической) деятельности. При их участии осуществляется синтез медиаторов ЦНС. Нейроглия играет важную роль и в синаптической передаче. Она обеспечивает структурную и метаболическую опору для сети нейронов. Следовательно, между нейронами и глиальными клетками существуют различные морфофункциональные связи.

С тех пор как эволюция подарила появившейся жизни на Земле нервную систему диффузного типа, прошло еще много этапов развития, ставших поворотными пунктами в деятельности живых организмов. Эти этапы друг от друга отличаются по видам и количеству нейрональных образований, по синапсам, по признакам функциональной специализации, по группировкам нейронов, по общности их функций. Основных этапов четыре - так образовывались нервная система диффузного типа, стволового, узлового и трубчатого.


Характеристика

Из наиболее древних - нервная система диффузного типа. Она имеется у таких живых организмов, как гидра (кишечнополостные - медузы, например). Характеризовать такой тип нервной системы можно множественностью связей в соседних элементах, и это позволяет любому возбуждению довольно свободно распространяться во все стороны по нервной сети. Нервная система диффузного типа к тому же обеспечивает взаимозаменяемость, что дает значительно большую надежность функциям, но все эти реакции бывают неточного, расплывчатого характера.

Нервная система узловая типична для ракообразных, моллюсков, червей. Такой тип характерен тем, что возбуждение может проходить только четко и жестко определенными путями, поскольку у них иначе организованы связи нервных клеток. Это гораздо более ранимая нервная система. Если повреждается один узел, нарушаются функции организма полностью. Однако узловой тип нервной системы точнее и быстрее по своим качествам. Если диффузный тип нервной системы характерен для кишечнополостных, то трубчатой нервной системой обладают хордовые, где включены черты и узлового, и диффузного типа. Высшие животные взяли от эволюции все самое лучшее - и надежность, и точность, и локальность, и быстроту реакций.

Как это было

Диффузный тип нервной системы характерен для начальных этапов развития нашего мира, когда взаимодействие живых существ - простейших организмов - осуществлялось в водной среде первобытного океана. Простейшие выделяли некоторые химические вещества, которые растворялись в воде, и таким образом первые представители жизни на планете получали продукты обмена веществ вместе с жидкостью.

Древнейшая форма такого взаимодействия происходила между отдельными клетками многоклеточных организмов посредством химических реакций. Это продукты обмена веществ - метаболиты, они появляются, когда распадаются белки, углекислота и тому подобное, и являются гуморальной передачей влияний, гуморальным механизмом корреляции, то есть связями между разными органами. Характеристикой диффузного типа нервной системы отчасти может служить и гуморальная связь.


Особенности

Диффузный тип нервной системы характерен для организмов, у которых уже известно, куда именно направлено то или иное химическое вещество, поступившее из жидкости. Ранее распространялось оно медленно, действало в малых количествах и либо быстро разрушалось, либо еще быстрее выводилось из организма. Здесь нужно отметить, что гуморальные связи были одни и те же и для растений, и для животных. Когда у многоклеточных появилась нервная система диффузного типа (кишечнополостных, например) на определенной стадии развития живого мира, это уже была новая форма регуляций и связей, качественно отличающая мир растений от мира животных.

И далее во времени - чем выше становилось развитие организма животного, тем более взаимодействовали органы (рефлекторное взаимодействие). Сначала живые организмы имеют нервную систему диффузного типа, а затем в процессе эволюции уже обладают регулирующей гуморальные связи нервной системой. Нервная связь, в отличие от гуморальной, всегда точно направлена не только к нужному органу, но и к определенной группе клеток, связи происходят во многие сотни раз быстрее, чем первые живые организмы распространяли химические вещества. Гуморальная связь с переходом к нервной не исчезла, она подчинилась, и потому возникли нервно-гуморальные связи.


Следующий этап

От диффузного типа нервной системы (существует у кишечнополостных) живые существа ушли, получив специальные железы, органы, вырабатывающие гормоны, которые образуются из пищевых веществ, поступающих в организм. Основными функциями нервной системы являются и регуляция деятельности всех органов друг с другом, и взаимодействие всего организма в целом с внешней средой.

Любое внешнее воздействие окружающая среда оказывает в первую очередь на органы чувств (рецепторы), осуществляясь посредством изменений, которые происходят и во внешней среде, и в нервной системе.

Время шло, нервная система развивалась, и с течением времени сформировался высший ее отдел - головной мозг, большие полушария. Они и стали распоряжаться и распределять всю деятельность организма.

Плоские черви

Нервную систему образует нервная ткань, состоящая из невероятного количества нейронов. Это такие клетки с отростками, считывающие и химическую, и электрическую информацию, то есть сигналы. Например, нервная система плоских червей диффузному типу уже не принадлежит, это тип нервной системы узловой и стволовый.

Скопления нервных клеток у них составляют парные головные узлы со стволами и многочисленными ответвлениями, которые тянутся во все органы и системы. Значит, не диффузного типа нервная система - у планарии (это и есть плоский червь, хищник, который поедает маленьких рачков, улиток). У низших форм плоских червей еще встречается нервная система сетевидная, однако в целом к диффузному типу они уже не относятся.


Кольчатые черви

Также не диффузного типа нервную систему имеют кольчатые черви, она у них гораздо лучше организована: нервного сплетения, которое можно наблюдать у моллюсков, у них нет. Они обладают центральным нервным аппаратом, в составе которого мозг (надглоточный ганглий), окологлоточные коннективы и пара нервных стволов, которые расположились под кишкой и соединились поперечными комиссурами.

У большей части кольчатых червей полностью ганглионизированы нервные стволы, когда в каждом сегменте есть пара ганглиев, иннервирующая собственный сегмент тела. Примитивные кольчатые черви живут с широко расставленными в подбрюшии нервными стволами, соединенными длинными комиссурами. Можно назвать такое строение нервной системы лестничной. Высокоорганизованные представители имеют укорочение комиссур и сближение стволов практически до слияния. Это еще называют брюшной нервной цепью. Нервную систему диффузного типа имеют гораздо более простые живые организмы.

Книдарии

Самая простая диффузная нервная система у стрекающих (книдарий) - плексус, в виде сетки, которая состоит из мультиполярных или биполярных нейронов. Гидроидные имеют ее поверх мезоглеи, в эктодерме, а коралловые полипы и сцифоидные медузы - в энтодерме.

Особенностью такой системы является то, что активность может распространяться в абсолютно любом направлении и из абсолютно любой стимулированной точки. Такой тип нервной системы считается примитивным, однако питается, плавает да и в остальном действует такой организм не очень-то и просто. Стоит посмотреть, как перемещаются актинии на раковины моллюсков.


Медузы, актинии и другие

Помимо нервной сети медузы и актинии имеют систему биполярных длинных нейронов, которые образуют цепочки, поэтому обладают способностью быстрее передавать импульсы без затухания на большие расстояния. Именно это и позволяет им осуществлять хорошую общую реакцию на всевозможные стимулы. Другие группы беспозвоночных могут иметь и нервные сети, и нервные стволы, отмеченные на самых разных участках тела: под кожей, в кишечнике, в глотке, у моллюсков - в ноге, у иглокожих - в лучах.

Однако уже у стрекающих существует тенденция, при которой нейроны концентрируются у ротового диска или в подошве, как у полипов. По краю зонтика у медуз образованы нервные окончания, а в некоторых местах - сгущения на кольце - нервные клетки в больших скоплениях (ганглии). Краевые ганглии на зонтиках медуз - первый шаг к появлению центрального отдела нервной системы.

Рефлекс

Основная форма нервной деятельности - рефлекс, реакция организма на сигнал об изменении внешней или внутренней среды, которая осуществляется с участием нервной системы, отвечая на раздражение рецепторов. Любое раздражение с возбуждением рецепторов пробегает по центростремительным волокнам к центральной нервной системе, далее посредством вставочного нейрона - обратно на периферию уже по центробежным волокнам, точно попадая к тому или иному органу, деятельность которого изменена.

Такой путь - через центр к рабочему органу - называют рефлекторной дугой, и образован он тремя нейронами. Сначала срабатывает чувствительный, затем - вставочный, а напоследок - двигательный. Рефлекс - довольно сложный акт, осуществить его без участия большого числа нейронов не получится. Но в результате такого взаимодействия может осуществиться ответная реакция, организм ответит на раздражение. Медуза, например, обожжет, иногда угостит смертельным ядом.


Первый этап развития нервной системы

У простейших нервная система отсутствует, однако даже некоторые инфузории имеют фибриллярный внутриклеточный возбудимый аппарат. В процессе развития многоклеточные сформировали специальную ткань, которая была способна воспроизводить активные реакции, то есть возбуждаться. Сетевидная система (диффузная) первыми своими подопечными выбрала гидроидные полипы. Именно они вооружились отростками нейронов, диффузно (сетевидно) расположив их по всему телу.

Такая нервная система очень быстро проводит сигнал возбуждения из той точки, где получено раздражение, и этот сигнал несется во всех направлениях. Это придает нервной системе интегративные (свойственные всему организму, объединяющие) качества, хотя ни один фрагмент тела, взятый отдельно, такой особенностью не обладает.

Централизация

Централизация в незначительной степени отмечается уже в диффузной нервной системе. Гидры приобретают нервные уплотнения в областях орального полюса и подошвы, например. Это усложнение происходило параллельно развитию органов движения, а выражалось в обособлении нейронов, когда они из диффузной сети уходили в глубину тела и образовывали там скопления.

Например, у кишечнополостных, свободно живущих (медуз) нейроны скапливаются в ганглии, таким образом формируя нервную систему диффузно-узлового типа. Такой тип возник в первую очередь за счет того, что развивались специальные рецепторы прямо на поверхности тела, которые были способны реагировать избирательно на световые, химические или механические воздействия.


Нейроглия

Живые организмы вместе с вышеперечисленным в процессе эволюции увеличивают и число нейронов, и разнообразие их. Таким образом сформировалась нейроглия. Появились нейроны и двухполюсные, имеющие аксоны и дендриты. Постепенно организмы получают возможность проводить возбуждение направленно. Нервные структуры тоже дифференцируются, передаются сигналы клеткам, которые управляют ответными реакциями.

Так целенаправленно шло развитие нервной системы: одни клетки специализировались на рецепции, другие - на проведении сигнала, а третьи - на ответном сокращении. Дальше последовало эволюционное усложнение, централизация, выработка узловой системы. Появляются кольчатые черви, членистоногие, моллюски. Теперь нейроны сконцентрированы в ганглиях (нервные узлы), которые нервными волокнами крепко связаны между собой с рецепторами и органами исполнения (железами, мышцами).

Дифференциация

Далее происходит разделение деятельности организма на составляющие: пищеварительная, половая, кровеносная и остальные системы обособились, но взаимодействие между ними необходимо, и эту функцию взяла на себя нервная система. Центральные нервные образования значительно усложнились, возникло множество новых, теперь уже в полной зависимости друг от друга.

Околощитовые нервы и ганглии, которые контролируют питание и движение, развились в рецепторы у филогенически высших форм, и они теперь стали воспринимать запах, звук, свет, появились органы чувств. Поскольку главные рецепторы расположились в головном конце, ганглии в этой части туловища развились сильнее, подчинив, наконец, деятельность всех остальных. Именно тогда образовалсчя головной мозг. Например, у кольчатых червей и членистоногих нервная цепочка развита уже очень хорошо.


  • Тип нервной системы и его взаимосвязь с темпераментом;
  • Почему тип нервной системы влияет на характер и способности человека;
  • Как определить свой тип нервной системы самостоятельно.

Человек управляет эмоциями, или эмоции управляют человеком? Конкретного ответа на этот вопрос не может дать даже современная наука. Ближе всего к разгадке этой тайны подобрались ученые-нейрофизиологи, которые связали типы нервной системы человека с чертами характера личности. Сегодня рассмотрим разновидности нервных систем, а также то, как они влияют на нашу жизнь и характер в целом.

Тип нервной системы и его взаимосвязь с темпераментом

Как и большинство научных открытий в области нейрофизиологии, учение о типах нервной системы основал И.П. Павлов еще в 1927 году. Сегодня под этим понятием подразумевают совокупность всех врожденных и приобретенных в течение жизни уникальных свойств нервной системы человека, которые являются основной причиной различия в поведенческих реакциях при влиянии одних и тех же раздражителей окружающего мира.

Абсолютно все процессы нашей нервной системы заключаются в двух механизмах: возбуждение и торможение. Они в свою очередь имеют свои свойства, которые и определяют тип нервной системы:

  • Сила.
  • Уравновешенность.
  • Подвижность.

На основе этих показателей и уровня их проявления у конкретного человека, выделили четыре типа нервной системы, каждому с которых соответствует определенный тип темперамента.

Первый из них – неуравновешенный сильный тип, ему соответствует холерический тип темперамента. У людей с данным типом наблюдается быстрое реагирование возбуждающих условных рефлексов, тогда как тормозные механизмы формируются с трудом, нередко со значительным подключением волевого компонента. При нарушении нормального функционирования вегетативных функций, их восстановление происходит довольно долго и часто парциально.


Следующая разновидность – сильный уравновешенный инертный тип, которому соответствует флегматичный тип темперамента. Обычно, положительные тормозные условные рефлексы у таких людей формируются в течение длительного периода, но после завершения этого процесса, они становятся устойчивыми и почти неизменными. Процессы восстановления и приспособления вегетативных функций протекают так же медленно.

Третий тип – сильный подвижный уравновешенный, соответствует сангвиническому типу темперамента. Особыми отличиями нервной системы таких людей является способность быстро подстраивать положительные и отрицательные условные рефлексы к разновидности внешнего раздражителя. Кроме того, им свойственно быстрое полное восстановление вегетативных функций сразу после устранения действия раздражителя.

И наконец последний – слабый тип, которому соответствует меланхолический тип темперамента. У людей с этим видом нервной системы, наблюдаются слабые возбуждающие и тормозные механизмы. С большим трудом образуются условные рефлексы и даже имеющиеся могут тормозиться. Вегетативные процессы после нарушения полностью не восстанавливаются, протекают вяло и легко травмируются.

Почему тип нервной системы влияет на характер и способности человека

В классическом понимании характер, как компонент психики человека, – это совокупность специфичных индивидуальных особенностей нервной системы, соотношение деятельности первой и второй сигнальной системы, а также особенностей окружающей среды, в которой формируется личность. Поэтому тип нервной системы является своеобразным базисом для дальнейшего формирования характерологических черт индивидуума. Иногда человек физиологически запрограммирован медленнее мыслить или быть вспыльчивым. Но важно понимать, что любым характеристикам можно найти применение, или пустить их в более мирное русло.


Как ни странно, тип нервной системы влияет не только на характер, но и на склонность к определенным способностям личности. В основе этого явления лежит взаимодействие и соотношение деятельности первой и второй сигнальной системы, формируя три основных типа:

  • Художественный тип. Благодаря преобладанию деятельности первой сигнальной системы, у людей такого типа хорошо развито эмоционально-образное мышление, что способствует развитию художественных способностей и творческого потенциала.
  • Мыслительный тип, при котором вторая сигнальная система преобладает над первой и характеризуется доминантой абстрактного мышления. Владельцы такого типа обычно имеют развитые математические способности.
  • Смешанный тип – это когда у человека нет яркого доминирования какой-либо из сигнальных систем.

Вот почему важно развивать те способности, которые заложены природой. Не может человек с художественным типом стать математиком, а если и получится это сделать, то вряд ли это принесет ему чувство удовлетворенности жизнью.

Как определить свой тип нервной системы самостоятельно

Для определения типа нервной системы существует множество онлайн-тестов и опросников, но не все они одинаково точны. Я проверила на себе некоторые из них и как результат – вот моя личная тройка лидеров:

1. Опросник Стреляу – точный онлайн-тест, который позволяет определить уровень процессов возбуждения и торможения, а также общий уровень уравновешенности. Единственным его недостатком является довольно большое количество вопросов, поэтому прохождение может занять у вас некоторое время.

2. Теппинг-тест – позволяет определить свойства нервной системы через проверку психомоторных навыков. Обычно, для проведения этого теста нужна помощь еще одного человека, но есть и онлайн-версии.

3. Тест на определение типа темперамента. Так как существует прямая взаимосвязь типа темперамента и типа нервной системы, можно воспользоваться любыми тестами на определение темперамента .

Вы можете найти и другие способы, но определить тип нервной системы абсолютно точно и наиболее развернуто может только квалифицированный специалист.

Важно понимать, что от типа нервной системы зависит большинство наших поведенческих реакций, поэтому постарайтесь принимать себя и окружающих такими, какими их создала природа.

Существует несколько типов организации нервной системы, представленные у различных систематических групп животных.

Нервная система различных животных.

Царство животных разделяют на два подцарства : одноклеточные и многоклеточные, каждое из которых включает в себя по несколько типов.

Круглые черви (лат. Nemathelminthes) имеют нервную систему ортогонального типа. Нематоды составляют основной класс, в который входит большинство видов типа круглые черви. Нервная система у них состоит из центрального и периферического отделов. К центральному относится нервное кольцо, окружающее глотку, и отходящие от него нервные стволы. Периферический отдел представляет собой отходящие от центров нервные ветви и сплетения отростков нервных клеток. От окологлоточного кольца вперед отходят шесть коротких веточек, а назад шесть длинных, которые связаны между собой кольцевыми нервами. Наиболее хорошо развиты два ствола, проходящие в спинном и брюшном валиках гиподермы, первый иннервирует обе спинные мышечные ленты, а второй – обе брюшные. Для нематод характерно постоянное количество клеток в нервной системе.

Схема нервной системы аскариды с брюшной стороны (по Брауну):

1 - ротовые сосочки с осязательными окончаниями и иннервирующими их нервами,

2 - окологлоточное нервное кольцо,

3 - боковые головные ганглии,

4 - брюшной нервный ствол,

5 - боковые нервные стволы,

6 - кольцевые нервы,

7 - задний ганглий,

8 - чувствительные сосочки с соответствующими нервами,

9 - анальное отверстие,

10 - спинной нервный ствол

У членистоногих (лат. Arthropoda) нервная система организована по типу брюшной нервной цепочки, то есть как у кольчатых червей. При этом усиливается роль надглоточных ганглиев, которые сообща образуют головной мозг, состоящий из трех отделов: переднего – протоцеребрума, среднего – дейтоцеребрума и заднего – тритоцеребрума. Отмечается тенденция к олигомеризации ганглиев брюшной нервной цепочки, что выражается в уменьшении количества узлов за счет их слияния. Обычно очень хорошо развиты многочисленные органы чувств, обеспечивающие животному восприятие основных внешних раздражителей.

2 - нейросекреторные клетки,

3 - оптическая область мозга,

5 - антеннальный нерв,

7 - кардиальные тела,

8 - прилежащие тела,

9 - окологлоточные коннективы,

10 - подглоточный ганглий

, 11 - нервы, идущие к ротовым конечностям,

12 - ганглии грудных сегментов,

13 - ганглии брюшных сегментов,

14 - непарный нерв симпатической системы

Нервная система паукообразных отличается разнообразием строения. Общий план ее организации соответствует брюшной нервной цепочки, однако имеется ряд особенностей. В головном мозге отсутствует дейтоцеребрум, что связано с редукцией придатков акрона – антеннул, которые иннервируются этим отделом мозга у ракообразных, многоножек и насекомых. Сохраняются передний и задний отделы головного мозга. Ганглии брюшной нервной цепочки часто концентрируются, образуя более или менее выраженную ганглиозную массу. У сенокосцев и клещей все ганглии сливаются, образуя кольцо вокруг пищевода, однако у скорпионов сохраняется выраженная брюшная цепочка ганглиев.

Читайте также:

Пожалуйста, не занимайтесь самолечением!
При симпотмах заболевания - обратитесь к врачу.