Симпатическая нервная система на тонус сосудов

Все гладкомышечные клетки сосудов получают влияния со стороны ЦНС.Современные данные свидетельствуют о том, что симпатические нервы для сосудов являются вазоконстрикторами (суживают сосуды). Сосудосуживающее влияние симпатических нервов не распространяется на сосуды головного мозга, легких, сердца и работающих мышц. При возбуждении симпатических нервов сосуды указанных органов и тканей наоборот расширяются. Симпатические преганглионарные нейроны, участвующие в регуляции тонуса сосудов, локализованы в грудном отделе спинного мозга(Т1 – Т12), и в поясничном отделе( L1 – L4).Скопление этих нейронов называется спинальным сосудодвигательным центром. В окончаниях постганглионарныхволокон продуцируется медиатор норадреналин, который взаимодействует с адренорецепторами гладких мышц сосудов и вызывает соответствующий сократительный эффект. Парасимпатические влияния ЦНС оказывает лишь на некоторые сосуды: парасимпатические волокна снабжают сосуды языка, слюнных желез, мягкой мозговой оболочки, наружных половых органов.

Сосудорасширяющие нервы (вазодилататоры) имеют несколько источников. Они входят в состав некоторых парасимпатических нервов. Также сосудорасширяющие нервные волокна обнаружены в составе симпатических нервов и задних корешков спинного мозга.

Сосудодвигательный центр. Находится в продолговатом мозге и находится в состоянии тонической активности, т. е. длительного постоянного возбуждения. Устранение его влияния вызывает расширение сосудов и падение артериального давления.

Помимо спинального сосудодвигательного центра в продолговатом мозгу и варолиевом мосту также имеются скопления нейронов, называемым сосудодвигательным или вазомоторным центром.

Сосудодвигательный центр продолговатого мозга расположен на дне IV желудочка и состоит из трех отделов —сенсорного.прессорногои депрессорного.Сенсорный отдел расположен в области нижней части варолиева моста и предназначен для восприятия информации от рецепторов сосудов сердца и других областей тела. Раздражение второгоотдела вызывает сужение артерий и подъем артериаль­ного давления, а раздражение третьего—расширение артерий и падение давления.Вазоконстрикторный отдел, или прессорный отдел представлен норадренергическими нейронами, аксоны которых идут в спинной мозг и при необходимости возбуждают нейроны спинального сосудодвигательного центра. Благодаря этому возникает повышение тонуса сосудов – наблюдается прессорная реакция.

Влияния, идущие от сосудосуживающего центра продолговатого мозга, приходят к нервным центрам симпатической части вегетативной нервной системы, расположенным в боковых рогах грудных сегментов спинного мозга, где образуются сосудосуживающие центры, регулирующие тонус сосудов отдельных участков тела.

Вазодилататорный отдел, или депрессорный отдел тоже представлен норадренергическими нейронами, аксоны которых идут к нейронам вазоконстрикторского отдела. Под влиянием нейронов депрессорного отдела активность прессорного отдела снижается и тем самым снижается активность сосудодвигательного спинального центра, происходит снижение тонуса гладких мышц сосудов, возникает вазодилатация.

В норме обычно в тоническом состоянии находится вазоконстрикторный отдел вазомоторного центра. Поэтому ко всем гладким мышцам непррывно идет поток импульсов(примерно 1 – 3 ипм.в сек.) Это приводит к тому, что в условиях покоя гладкие мышцы находятся в определенном тонусе. При необходимости этот тонус может быть снижен до некоторого уровня(базальный тонус), а с другой стороны - в определенных ситуациях он может быть повышен. Для точной ориентации используют такие понятия как тонус покоя(уровень тонического сокращения в условиях непрерывной импульсации при частоте 1-3 имп./с), базальный тонус(тонус гладких мышц в отсутствие влияния симпатических нервов) и повышенный тонус (уровень тонуса при частой симпатической импульсации).

Вазомоторный центр контролируется высшими мозговыми центрами , в том числе гипоталамусом и корой больших полушарий Часть нейронов гипоталамус повышает тонус прессорного отдела и тем самым тонус сосудов. Другая часть нейронов гипоталамуса, наоборот, повышает активность прессорногоотдела и тем самым снижает тонус сосдов. Премоторная и моторная зоны коры , поясная извилина, лобные доли коры - все эти структуры причастны к регуляции сосудистого тонуса. Благодаря этому ЦНС обеспечивает регионарную регуляцию кровообращения (гипоталамус), а также системную регуляцию (гипоталамус, кора), в том числе по принципу прогнозирования – досрочную регуляцию, основанную на выработке условных сосудодвигательных рефлексов.

Кроме сосудодвигательного центра продолговатого и спинного мозга, на состояние сосудов оказывают влияние нервные центры промежуточного мозга и больших полу­шарий.

Рефлекторная регуляция сосудистого тонуса. Тонус сосудодвигательного центра зависит от афферентных сигналов, приходя­щих от периферических рецепторов, расположенных в некоторых сосудистых областях и на поверхности тела, а также от влияния гуморальных раздражителей, действующих непосредственно на нервный центр. Следовательно, тонус сосудодвигательного центра имеет как рефлекторное, так и гуморальное происхождение.

Рефлекторные изменения тонуса артерий - сосудистые рефлексы - могут быть разделены на две группы: собственные и сопряжен­ные рефлексы. Собственные сосудистые рефлексы вызываются сигналами от рецепторов самих сосудов. Морфологическими исследованиями обнаружено большое число таких рецепторов. Особенно важное физиологическое значение имеют рецепторы, сосредото­ченные в дуге аорты и в области разветвления сонной артерии на внутреннюю и наруж­ную. Рецепторы сосудистых рефлексогенных зон возбуждаются при изменении давления крови в сосудах. Поэтому их называют прессорецепторами, или барорецепторами. Сосудистые рефлексы можно вызвать, раздражая рецепторы не только дуги аорты или каротидного синуса, но и сосудов некоторых других областей тела. Так, при повыше­нии давления в сосудах легкого, кишечника, селезенки наблюдаются рефлекторные изменения артериального давления и других сосудистых областях.

Рефлекторная регуляция давления крови осуществляется при помощи не только механорецепторов, но и хеморецепторов, чувствительных к изменениям химического состава крови. Такие хеморецепторы сосредоточены в аортальном и каротидном тельцах, т. е. в местах локализации прессорецепторов.

Хеморецепторы чувствительны к двуокиси кислорода и недостатку кислорода и крови; они раздражаются также окисью углерода, цианидами, никотином. От этих рецепторов возбуждение по центростремительным нервным волокнам передается к сосудодвигательному центру и вызывает повышение его тонуса. В результате сосуды суживаются и давление повышается. Одновременно происходит возбуждение дыхатель­ного центра.

Хеморецепторы обнаружены также в сосудах селезенки, надпочечников, почек, костного мозга. Они чувствительны к различным химическим соединениям, циркулирую­щим в крови, например, к ацетилхолину, адреналину и др.

Сопряженные сосудистые рефлексы, т. е. рефлексы, возникающие в других системах и органах, проявляются преимущественно повышением артериального давления. Их можно вызвать, например, раздражением поверхности тела. Так, при болевых раздражениях рефлекторно суживаются сосуды, особенно органов брюшной полости, и артери­альное давление повышается. Раздражение кожи холодом также вызывает рефлекторное сужение сосудов, главным образом кожных артериол.

Влияние коры головного мозга на сосудистый тонус. Влияние коры полушарий большого мозга на сосуды было впервые доказано путем раздражения определенных участков коры.

Кортикальные сосудистые реакции у человека изучены методом условных рефлек­сов. Если многократно сочетать какое-либо раздражение, например, согревание, охлаж­дение или болевое раздражение участка кожи с каким-нибудь индифферентным раздра­жителем (звуковым, световым и т. и.), то через некоторое число подобных сочетании один индифферентный раздражитель может вызвать такую же сосудистую реакцию, как и применяющееся одновременно с ним безусловное термическое или болевое раздраже­ние.

Сосудистая реакция на ранее индифферентный раздражитель осуществляется условнорефлекторным путем, т.е. при участии коры больших полушарий. У человека при этом возникают и соответствующие ощущения (холода, тепла или боли), хотя никакого раздражения кожи не было.

3.2. Гуморальная регуляция тонуса сосудов. Некоторые гуморальные агенты суживают, а другие расширяют просвет артериальных сосудов. К сосудосуживающим веществам относятся гормоны мозгового вещества надпочечников – адреналин и норадреналин, а также задней доли гипофиза – вазопрессин.

Адреналин и норадреналин суживают артерии и артериолы кожи, органов брюшной полости и легких, а вазопрессин действует преимущественно на артериолы и капилляры.

К числу гуморальных сосудосуживающих факторов относится серотонин, продуцируемый в слизистой оболочке кишечника и некоторых участках головного мозга. Серотонин образуется также при распаде кровяных пластинок. Физиологическое значение серотонина в данном случае состоит в том, что он суживает сосуды и препятствует кровотечению из пораженного участка.

К сосудосуживающим веществам относится ацетилхолин, который образуется в окончаниях парасимпатических нервов и симпатических вазодилятаторов. Он быстро разрушается в крови, поэтому его действие на сосуды в физиологических условиях чисто местное.

Сосудорасширяющим веществом является также гистамин – вещество, образующееся в стенке желудка и кишечника, а также во многих других органах, в частности, в коже при ее раздражении и в скелетной мускулатуре во время работы. Гистамин расширяет артериолы и увеличивает кровенаполнение капилляров.

Нейрогенное сужение сосудов осуществляется путем возбуждения адренергических волокон, которые действуют на гладкие мышцы сосудов путем высвобождения в области нервных окончаний медиатора адреналина. Торможение импульсов в симпатических нервных волокнах влияет на гладкие мышцы сосудов путем снижения их тонуса.

Парасимпатические вазодилататорные волокна холинергической природы доказаны для группы волокон сакрального отдела, идущих в составе п. pelvicus. В блуждающих нервах отсутствуют сосудорасширяющие волокна для органов брюшной полости.

В скелетных мышцах доказано наличие симпатических вазодилататорных нервных волокон, которые являются холинергическими. Внутрицен-тральный путь этих волокон начинается в моторной зоне коры мозга. Тот факт, что эти волокна могут возбуждаться при стимуляции двигательной области коры мозга, позволяет предположить, что они вовлекаются в системную реакцию, способствующую увеличению кровотока в скелетных мышцах в начале их работы. Гипоталамическое представительство этой системы волокон указывает на их участие в эмоциональных реакциях организма.


Адренергические волокна при электрической стимуляции могут передавать импульсацию с частотой 80—100 в 1 с. Однако в физиологическом покое частота импульсов в них составляет 1—3 в 1 с и может увеличиваться при прессорном рефлексе только до 12—15 имп/с. Из сказанного ясно, что практически весь диапазон величин сосудистых реакций, которые можно получить при электрической стимуляции нервов, соответствует увеличению частоты импульсов всего лишь на 1—12 в 1 мин, что вегетативная нервная система в норме функционирует при частоте разрядов значительно меньшей 10 имп/с.

Электрическая стимуляция соответствующих симпатических волокон приводит к достаточно сильному повышению сопротивления сосудов скелетных мышц, кишечника, селезенки, кожи, печени, почки, жира; эффект выражен слабее в сосудах мозга, сердца. В сердце и почке этой вазоконстрикции противостоят местные вазодилататорные влияния, опосредованные активацией функций основных или специальных клеток ткани, одновременно запускаемые нейрогенным адренергическим механизмом. В результате такой суперпозиции двух механизмов выявление адренергической нейрогенной вазоконстрикции в сердце и почке составляет более сложную, чем для других органов, задачу. Общая закономерность все же состоит в том, что во всех органах стимуляция симпатических волокон вызывает активацию гладких мышц сосудов, иногда маскируемую одновременными или вторичными тормозными эффектами.

При рефлекторном возбуждении симпатических нервных волокон, как правило, имеет место повышение сопротивления сосудов всех изученных областей (рис. 9.22). При торможении симпатической нервной системы (рефлексы с полостей сердца, депрессорный синокаротидный рефлекс) наблюдается обратный эффект. Различия между рефлекторными вазомоторными реакциями органов в основном количественные, качественные — обнаруживаются значительно реже. Одновременная параллельная регистрация сопротивления в различных сосудистых областях свидетельствует о качественно однозначном характере активных реакций сосудов при нервных влияниях.

Учитывая небольшую величину рефлекторных констрикторных реакций сосудов сердца и мозга, можно полагать, что в естественных условиях кровоснабжения этих органов симпатические вазоконстрикторные влияния наних нивелируются метаболическими и общими гемодинамическими факторами, в результате чего конечным эффектом может быть расширение сосудов сердца и мозга. Этот суммарный дилататорный эффект обусловлен сложным комплексом влияний на указанные сосуды, а не только нейро-генных. Кроме того, эти отделы сосудистой системы обеспечивают обмен веществ в жизненно важных органах, поэтому слабость вазоконстриктор-ных рефлексов в этих органах обычно интерпретируют тем, что выраженные симпатические констрикторные влияния на сосуды мозга и сердца биологически нецелесообразно, так как это значительно уменьшало бы их кровоснабжение.

Теория по нормальной физиологии: Регуляция тонуса кровеносных сосудов. Рассматриваются механизмы, влияющие на тонус сосудов.

При создании данной страницы использовалась лекция по соответствующей теме, составленная Кафедрой Нормальной физиологии БашГМУ

Все сосуды, за исключением капилляров, имеют гладкомышечные клетки (ГМК), благодаря которым меняется просвет сосуда, следовательно сопротивление кровотоку и интенсивность кровотока меняется в данном регионе.

Местные механизмы регуляции:

  • всем сосудам, имеющим ГМК, свойственен исходный — базальный тонус, создаваемый автоматией гладких мышц;
  • под влиянием различных факторов базальный тонус может усиливаться, при этом сосуды суживаются и в регион поступает меньше крови;
  • когда тонус сосудов уменьшается, они расширяются и кровоток в регион возрастает.

Уменьшение тонуса приводит к расширению сосудов, повышение — у сужению сосудов.

Тонус сосудов

Тонус — напряжение, создаваемое асинхронным сокращением ГМК среднего слоя стенки сосудов, обладающих автоматией.

Компоненты тонуса:

  • базальный тонус,
  • гуморальный,
  • центральный (нейрогенный).

Механизмы регуляции тонуса сосудов:

  1. Местные механизмы, обеспечивающие кровоток через отдельные органы и ткани, то есть контролирующие величину кровотока в отдельных регионах.
  2. Центральные механизмы, регулирующие системное кровообращение, — это постоянство АД, МОК, ОЦК и др.

Принцип местной регуляции — обеспечение независимости кровотока в органах от изменений системной гемодинамики, то есть обеспечение кровью данного региона в его интересах.

К местным механизмам регуляции тонуса кровеносных сосудов относятся:

  • миогенный,
  • метаболический.

  • миогенная ауторегуляция характерна для сосудов мозга, почек, сердца, печени, чревной области, то есть регионов, где необходимо поддержание постоянного кровотока;
  • адекватным раздражителем ГМК является их растяжение;
  • при увеличении артериального давления (АД) -> растяжение стенок сосудов -> сокращение ГМК сосудов -> увеличение тонуса сосудов и сохранение прежнего просвета -> кровоток в сосудах при этом не меняется;
  • уменьшение АД вызывает снижение тонуса сосудов вследствие расслабления ГМК:
    • при этом, несмотря на уменьшение АД, сохраняется поступление в сосуды того же объема крови,
    • таким образом, на величину базального тонуса влияет уровень АД.
  • продукты метаболизма, расширяя сосуды, усиливают кровоток в работающих органах;
  • в результате недостаточного снабжения региона кислородом и питательными веществами, в тканях накапливаются метаболиты и кровоток усиливается вследствие расширения прекапилляров.

Тонус сосудов уменьшается при снижении давления кислорода и углекислого газа, увеличении ионов H, C3H6O3 и температуры — вследствие этого увеличивается кровоток в работающих органах пропорционально их активности.

  • нервные (рефлекторные),
  • гуморальные.

Вазомоторные — сосудодвигательные нервы:

  • вазоконстрикторы — сосудосуживающие нервы,
  • вазодилататоры — сосудорасширяющие нервы.

Вазоконстрикторы

  1. Все вазоконстрикторы — это нервы симпатические адренергические.
  2. Сосудосуживающий эффект наступает при воздействии норадреналина (НА) на α-адренорецепторы.
  3. Импульсы по симпатическим вазоконстрикторам постоянно поступают к сосудам от нейронов боковых рогов тораколюмбальных сегментов СМ с частотой 1-3 имп/с, поддерживая тонус покоя.
  4. При частоте больше 3 имп/с (от 3 до 15) — повышенный тонус.

Вазодилататоры

  1. Парасимпатические холинэргические нервы:
    • chorda tympani — барабанная струна — расширяет сосуды подчелюстной слюнной железы;
    • n. lingualis — язычный нерв — расширяет сосуды языка;
    • n. glossopharingeus — языкоглоточный — расширяет сосуды миндалин, задней трети языка, околоушной слюнной железы;
    • n. pelvicus — тазовый — расширяет сосуды одноименной области.
  2. Симпатические нервы:
    • холинэргические, иннервирующие сосуды скелетных мышц;
    • адренергические — сосудосуживающий эффект наступает при воздействии НА на β-адренорецепторы сосудов сердца, мозга и легких.
  3. Заднекорешковые чувствительные нервы — расширяют сосуды кожи по механизму аксон-рефлекса (медиатор — АХ).

  • расширение сосудов кожи наблюдается при укусе насекомых, под действием горчичников, потирании, почесывании кожи;
  • кровеносные сосуды, которые не имеют специальных вазодилататоров, расширяются за счет снижении тонуса вазоконстрикторов (напр.: в органах брюшной полости).

Импульсы по вазомоторным нервам к сосудам постоянно идут от сосудодвигательного центра (СДЦ).

Основная локализация сосудодвигательного центра — в продолговатом мозге (Овсянников, 1871).

Сосудодвигательный центр (СДЦ)

Центры СМ (боковые рога серого вещества) -> бульбарные центры: сосудосуживающий, сосудорасширяющие -> центры гипоталамуса (передний (депрессорная зона) и задний (прессорная зона) отделы гипоталамуса) -> корковое представительство СДЦ.

После перерезки ствола мозга выше четверохолмия АД не снижается, а при перерезке мозга между продолговатым и спинным оно падает со 120 мм рт. ст. до 70-80.

СДЦ состоит из 2-х отделов:

  • прессорный отдел,
  • депрессорный отдел.

Оба эти отдела не имеют четких границ. Они располагаются на дне 4-го желудочка среди нейронных структур ретикулярной формации и взаимно перекрывают друг друга.

Прессорные и депрессорные нейроны СДЦ находятся в реципрокных отношениях.

Прессорных нейронов больше, чем депрессорных. О состоянии СДЦ судят по прессорным нейронам.

К СДЦ относят также и другие отделы ЦНС.

В покое гипоталамус не принимает активного участия в регуляции АД.

Влияние коры на регуляцию АД — условнорефлекторное — повышение АД перед стартом, при волнении.

Вывод: многоэтажная система регуляции функций сердечно-сосудистой системы обеспечивает адекватное приспособление к условиям внешней и внутренней среды.

Тонус СДЦ зависит от нервных импульсов, постоянно идущих к нему от рецепторов различных рефлексогенных зон.

Сосудистые рефлексы

Сосудистые рефлексы подразделяются на:

  • собственные и
  • сопряженные.

Осуществляются с механорецепторов, расположенных в сердце и в кровеносных сосудах ( барорецепторов ).

Данные рецепторы стабилизируют АД.

Различают собственные рефлексы:

  • прессорные — повышающие пониженное АД,
  • депрессорные — понижающие повышенное АД.

Рефлексогенные зоны (зоны максимального скопления рецепторов):

  • дуга аорты,
  • каротидный синус (бифуркация общей сонной артерии на наружную и внутреннюю).

Депрессорный рефлекс: при увеличении АД -> раздражаются барорецепторы дуги аорты и каротидного синуса -> возбуждение по чувствительным нервам — аортальный (депрессорный) и синусный (нерв Геринга) -> продолговатый мозг -> возбуждается центр вагуса и тормозится сосудодвигательный центр -> ЧСС уменьшается -> сосуды расширяются -> АД снижается (нормализуется).

При падении АД — все наоборот, то есть осуществляется прессорный рефлекс .

  • осуществляются также с хеморецепторов, находящихся в аортальном и каротидном тельцах;
  • они возбуждаются при увеличении в крови CO2, ионов H и при уменьшении O2;
  • импульсы, поступающие от хеморецепторов в продолговатый мозг, увеличивают тонус СДЦ, что приводит к увеличению давления.

Хеморецепторы находятся не в стенке сосуда, а в аортальном и каротидном тельцах или клубочках под адвентицией сосуда и пронизан сетью капилляров.

От хеморецепторов -> СДЦ продолговатого мозга -> СДЦ возбуждается -> сужение сосудов -> увеличение АД -> быстрое обновление крови.

Осуществляются с рецепторов, расположенных вне сердца и сосудов :

  • они нарушают стабильность АД, вызывая прессорные реакции;
  • различают сопряженные рефлексы:
    • экстероцептивные — с рецепторов кожи,
    • интероцептивные — с внутренних органов.

Гуморальная регуляция

  1. Гормоны, образованные в железах внутренней секреции: адреналин, норадреналин, вазопрессин и др. — суживают сосуды .
  2. Вазоактивные агенты (местные гормоны), образующиеся в тканях, — ацетилхолин, брадикинин, гистамин, простагландины и др. — расширяют сосуды .
  3. Вещества двоякого действия — катехоламины:
    • альфа — сужение
    • бетта — расширение.

Гормоны адреналин, норадреналин суживают артерии и артериолы кожи, скелетных мышц, органов брюшной полости. Коронарные сосуды, сосуды мозга, легких при этом расширяются , так как все это зависит от того, какие адренорецепторы воспринимают гормон. При взаимодействии НА с α-адренорецепторами сосуды суживаются , при взаимодействии с β-адренорецепторами — расширяются . В сосудах сердца, легких, мозга преобладают β-адренорецепторы.

Вазопрессин суживает в основном артериолы и вены.

Ангиотензин II образуется из α-глобулинов плазмы под действием ренина (клетки ЮГА коркового слоя почек) и также суживают сосуды.

Тонус сосудов:

  • базальный тонус — тонус ГМК и влияние симпатических вазоконстрикторов;
  • тонус покоя — тонус ГМК и влияние симпатических нервов с частотой 1-3 имп/с;
  • повышенный тонус — импульсы по симпатическим вазоконстрикторам с частотой 3-15 имп/с.

Сужение артерий и артериол, снабженных преимущественно сим­патическими нервами (вазоконстрикция), было впервые обнаружено Вальтером (1842) в опытах на лягушках, а затем Бернаром (1852) в экспериментах на ухе кролика.

Главными сосудосуживающими нервами органов брюшной поло­сти являются симпатические волокна, проходящие в составе внут­ренностного нерва.

Симпатические сосудосуживающие нервы к конечностям идут в составе спинномозговых смешанных нервов, а также по стенкам артерий (в их адвентициальной оболочке). Поскольку перерезка симпатических нервов вызывает расширение сосудов той области, которая иннервируется этими нервами, считают, что артерии и артериолы находятся под непрерывным сосудосуживающим влияни­ем симпатических нервов.

Сосудорасширяющие эффекты (вазодилатация) впервые обна­ружили при раздражении нескольких нервных веточек, относящихся к парасимпатическому отделу нервной системы. Например, раздра­жение барабанной струны (chorda timpani) вызывает расширение сосудов подчелюстной железы и языка, п. cavernosi penis — расши­рение сосудов пещеристых тел полового члена.

В некоторых органах, например в скелетной мускулатуре, рас­ширение артерий и артериол происходит при раздражении симпа­тических нервов, в составе которых имеются, кроме вазоконстрик-торов, и вазодилататоры. При этом активация «-адренорецепторов приводит к сжатию (констрикции) сосудов. Активация р -адреноре­цепторов, наоборот, вызывает вазодилатацию. Следует заметить, что /3-адренорецепторы обнаружены не во всех органах.

Расширение сосудов (главным образом кожи) можно вызвать также раздражением периферических отрезков задних корешков спинного мозга, в составе которых проходят афферентные (чувст­вительные) волокна.

Эти факты, обнаруженные в 70-х годах прошлого столетия, вызвали среди физиологов много споров. Согласно теории Бейлиса и Л. А. Орбели, одни и те же заднекорешковые волокна передают импульсы в обоих направлениях: одна веточка каждого волокна идет к рецептору, а другая — к кровеносному сосуду. Рецепторные нейроны, тела которых находятся в спинномозговых узлах, обладают двоякой функцией: передают афферентные импульсы в спинной мозг и эфферентные импульсы к сосудам. Передача импульсов в двух направлениях возможна потому, что афферентные волокна, как и все остальные нервные волокна, обладают двусторонней про­водимостью.

Согласно другой точке зрения, расширение сосудов кожи при раз­дражении задних корешков происходит вследствие того, чо в рецеп-торных нервных окончаниях образуются ацетилхолин и гистамин, ко­торые диффундируют по тканям и расширяют близлежащие сосуды.

В. Ф. Овсянниковым (1871) было установлено, что нервный центр, обеспечивающий определенную степень сужения артериального русла — сосудодвигательный центр — находится в продолго­ватом мозге. Локализация этого центра определена путем перерезки ствола мозга на разных уровнях. Если перерезка произведена у собаки или кошки выше четверохолмия, то АД не изменяется. Если перере­зать мозг между продолговатым и спинным мозгом, то максимальное давление крови в сонной артерии понижается до 60—70 мм рт. ст. От­сюда следует, что сосудодвигательный центр локализован в продолго­ватом мозге и находится в состоянии тонической активности, т. е. дли­тельного постоянного возбуждения. Устранение его влияния вызывает расширение сосудов и падение АД.

Более детальный анализ показал, что сосудодвигательный центр продолговатого мозга расположен на дне IV желудочка и состоит из двух отделов — прессорного и депрессорного. Раздражение прессорно­го отдела сосудодвигательного центра вызывает сужение артерий и подъем, а раздражение второго — расширение артерий и падение АД.

Влияния, идущие от сосудосуживающего центра продолговатого мозга, приходят к нервным центрам симпатической части вегета­тивной нервной системы, расположенным в боковых рогах грудных сегментов спинного мозга, регулирующих тонус сосудов отдельных участков тела. Спинномозговые центры способны через некоторое время после выключения сосудосуживающего центра продолговатого мозга немного повысить давление крови, снизившееся вследствие расширения артерий и артериол.

Кроме сосудодвигательных центров продолговатого и спинного мозга, на состояние сосудов оказывают влияние нервные центры промежуточного мозга и больших полушарий.

95.Классификация рецепторов.Механизмы преобразования энергии действующего раздражителя в рецепторный и генераторный потенциал. Адаптация рецепторов.

1. Механорецепторы приспособлены к восприятию механической энергии раздражающего стимула. Механорецепторы представляют перифе­рические отделы соматической, скелетно-мышечной, слуховой и вес­тибулярной оенсорных систем, а также боковой линии.

2. Терморецепторы воспринимают температурные раздражения. Они объединяют рецепторы кожи и внутренних органов, а также центральные термочувствительные нейроны.

3. Хеморецепторы чувствительны к действию химических агентов. У наземных животных они образуют периферические отделы обоня­тельной и вкусовой сенсорных систем, тогда как для водных животных эти понятия теряют смысл, что заставляет использовать термин хемо-рецепция или химическая чувствительность. 4. 4. Фоторецепторы воспринимают световую энергию. Они пред­ставлены цилиарными рецепторами, т. е. производными клетки со жгутиком, и рабдомерными, у которых жгутик отсутствует, а собственно фоторецепторная часть клетки образована совокупно­стью микровилл.

5. Электрорецепторы чувствительны к действию электромаг­нитных колебаний. Они обнаружены в составе боковой линии у круглоротых, пластиножаберных, многих костистых рыб и некоторых хвостатых амфибий.

6. Болевые (ноцицептивные) рецепторы воспринимают болевые раздражения.

К первичным относят такие рецепторные аппараты, у которых действие адекватного стимула осуществляется непосредственно пе­риферическим отростком сенсорного нейрона, который, таким об­разом, первично встречается с раздражителем. Этот сенсорный нейрон находится на периферии, а не в центральной нервной системе, и представляет собой биполярный нейрон, на одном полюсе которого расположен дендрит с ресничкой или дендритными отростками, а на другом — центральный отросток — аксон, по которому возбуждение передаете в соответствующий центр.

К вторичным рецепторам относят такие рецепторы, у котор между окончаниями сенсорного нейрона и точкой приложения стимула располагается дополнительная специализированная (рецептирующая) клетка ненервного происхождения. Возбуждение,вознкающее в рецептирующей клетке, передается через синапс на с сорный нейрон.

Адаптация рецепторов. При длительном раздражении возбуждение влабеет в большей или меньшей степени. Она проявляется по отношению к воздействию постоянного раздражителя.

Мех-мы преобр энергии

1.Через вспомогательные структуры внешний стимул доходит до ре-цептирующего субстрата, определяющего модальность рецептора, и взаимодействует с ним. Этот первый этап специфического взаимодействия между стимулом и специальными рецепторами на моле­кулярном уровне еще недостаточно изучен: рецепторные участки очень малы, часто труднодоступны для исследования, а сами про­цессы взаимодействия протекают очень быстро. Однако каковы бы ни были эти механизмы, следствием их является изменение про­ницаемости плазматической мембраны рецептора.

2. изменение мембранной проницаемости. Вследствие этого про­исходит возникновение ионного тока через мембрану (в основном для ионов Nа , а также и для других ионов), создающего на ней локальный электрический потенциал. Это изменение мембранного потенциала рецепторной клетки, возникающее под воздействием раздражителя, называется рецепторным потенциалом (РП). В случае деполяризации мембраны рецептора происходит уве­личение проницаемости каналов мембраны для ионов, тогда как при гиперполяризации — закрытие этих каналов. Важно подчерк­нуть, что проницаемость мембраны изменяется лишь в той ее точке, где произошло взаимодействие стимула с рецептирующим субстра­том. Именно здесь и развивается РП.Во время возникновения РП внутрь рецепторной клетки входит положительный ток, создаваемый ионами Nа или Са + . Для того чтобы цепь была замкнута, ток должен выходить через мембрану наружу. Однако, так как выход его через тот же участок, где находится вход, невозможен, ток пассивно распространяется вдоль волокна и выходит из последнего в области наименьшего сопротивления. Расстояние, на которое распространяется этот ток по волокну рецептора, определяют три фактора: сопротивление цитоплазмы, сопротивление клеточной мембраны и диаметр дендрита. Чем меньше сопротивления цитоплаз­мы и чем больше диаметр дендрита, тем легче и дальше ток распрост­раняется через внутреннюю среду рецепторной клетки.

Распространение электрического тока, зависящее от постоянного сопротивления и емкости мембраны, называется электротоном. Поэ­тому пассивное распространение РП вдоль нервного волокна называют электротоническим.

3. Электротоническое распространение РП через дендриты и тело клетки к аксону.

4. перекодировании переданного электрического ответа рецептора в импульсный разряд, или потенциалы действия (ПД), в афферен­тном нервном волокне, который несет в себе информацию для остальных отделов нервной системы.

98.Зрительный анализатор представляет собой совокупность воспринимающих, проводящих и анализирующих структур, осуществляющих функцию зрения. Сетчатка глаза чувствительна к световому излучению (электромагнитным волнам с длиной волны 390 – 760 нм) Считается что с помощью зрительного анализатора человек получает до 80—90 % всей информации об окружающем мире.

Рецепторный отдел включает сетчатую оболочку глаза, проводниковый отдел представлен зрительным нервов (II пара), центральный отдел расположен на разных уровнях головного мозга (латеральное коленчатое тело таламуса, корковый отдел в затылочной области, 17,18 и 19 поля по Бродману).

Орган зрения глаз, состоит из глазного яблока, защитных приспособлений (наружные оболочки склера и роговица, слезный аппарат, веки, ресницы, брови) и моторного (двигательного) аппарата.

Преломляющая система глаза (роговица, стекловидное тело и хрусталик) построена в согласии с законами оптики. Основной линзой оптической системы глаза служит хрусталик, двояковыпуклая линза с переменным фокусным расстоянием (60±14 диоптрий). Процесс изменения кривизны хрусталика называется аккомодацией и осуществляется непроизвольно.Аккомодацию осуществляет автономная нервная система, волокна которой иннервируют ресничную мышцу.

Хрусталик из-за эластичных свойств способен самопроизвольно становиться более выпуклым, уплощение его зависит от тяги, создаваемой ресничной мышцей, соединенной с боковой поверхностью хрусталика цинновой связкой. Иннервация цилиарной мышцы осуществляется симпатическими и парасимпатическими нервами. Импульсация, поступающая по парасимпатическим волокнам глазодвигательного нерва, вызывает сокращение мышцы (рассматривание далеких предметов). Симпатические волокна, отходящие от краниального шейного ганглия, вызывают ее расслабление (для зрения вблизи). Контроль активности вегетативных нервов осуществляется корой больших полушарий мозга.

При нормальной рефракции глаза лучи от далеко расположенных предметов после прохождения через светопреломляющую систему глаза собираются в фокусе на сетчатке в центральной ямке.

Автономная нервная система участвует и в оптимизации освещенности сетчатки, что достигается изменением просвета зрачка. Размер зрачка определяется активностью мышц радужной оболочки. Сокращение кольцевой мышцы зрачок суживает, сокращение радиальной, или дилататора – расширяет. Кольцевая иннервируется парасимпатическими двигательными волокнами ядра Эдингера-Вестфаля и цилиарного ганглия. Расширение зрачка (сокращение радиальной мышцы) осуществляется симпатическими влияниями, происходящими из нижних шейных и верхних грудных сегментов спинного мозга (преганглионары) и краниального шейного ганглия (ганглионарные нейроны). Просвет зрачка увеличивается при эмоциональном напряжении (влияние гормонального пула катехоламинов).

Строение сетчатки.

Пигментный слой. Этот слой образован одним рядом эпителиальных клеток, содержащих большое количество различ­ных внутриклеточных органелл, включая меланосомы, придающие этому слою черный цвет. Этот пигмент, называемый также экра­нирующим пигментом, поглощает доходящий до него свет, пре­пятствуя тем самым его отражению и рассеиванию, что способ­ствует четкости зрительного восприятия. Клетки пигментного эпи­телия имеют многочисленные отростки, которые плотно окружают светочувствительные наружные сегменты палочек и колбочек, Пигментный эпителий играет решающую роль в целом ряде функ­ций, в том числе в ресинтезе (регенерации) зрительного пигмента после его обесцвечивания, в фагоцитозе и переваривании обломков наружных сегментов палочек и колбочек, иными словами, в меха­низме постоянного обновления наружных сегментов зрительных клеток, в защите зрительных клеток от опасности светового по­вреждения, а также в переносе к фоторецепторам кислорода и других необходимых им веществ. Следует отметить, что контакт между клетками пигментного эпителия и фоторецепторами доста­точно слабый.

Фоторецепторы. К пигментному слою изнутри примы­кает слой фоторецепторов: палочек и колбочек 1 . В сетчатке каж­дого глаза человека находится 6—7 млн колбочек и НО—123 млн палочек. Они распределены в сетчатке неравномерно. Центральная ямка сетчатки (fovea centralis) содержит только колбочки (до 140 тыс. на 1 мм 2 ). По направлению к периферии сетчатки их число уменьшается, а число палочек возрастает, так что на даль­ней периферии имеются только палочки. Колбочки функциони­руют в условиях больших освещенностей, они обеспечивают днев­ное . и цветовое зрение; намного более светочувствительные па­лочки ответственны за сумеречное зрение.

Нарушение функции палочек, возникающее при недостатке в пище витамина А, вызывает расстройство сумеречного зрения — так называемую куриную слепоту: человек совершенно слепнет в сумерках, но днем зрение остается нормальным. Наоборот, при поражении* колбочек возникает светобоязнь: человек видит при слабом" свете, но слепнет при ярком освещении. В этом случае может развиться и полная цветовая слепота — ахромазия.

Строение фоторецепторной клетки. ганглион клетка., амакриновая клетка, горизон клетка, биполярн клетка , родопсин.

Нервные механизмы зрения

Нейроны сетчатки. Фоторецепторы сетчатки синапти-чески связаны с биполярными нейронами (см. рис. 14.6, Б). При действии света уменьшается выделение медиатора (глутамата) из фоторецептора, что приводит к гиперполяризации мембраны бипо­лярного нейрона. От него нервный сигнал передается на ганглиоз-ные клетки, аксоны которых являются волокнами зрительного нерва. Передача сигнала как с фоторецептора на биполярный ней­рон, так и от него на ганглиозную клетку происходит безымпульс­ным путем. Биполярный нейрон не генерирует импульсов ввиду предельно малого расстояния, на которое он передает сигнал.

На 130 млн фоторецепторных клеток приходится только 1 млн 250 тыс. ганглиозных клеток, аксоны которых образуют зритель­ный нерв. Это значит, что импульсы от многих фоторецепторов сходятся (конвергируют) через биполярные нейроны к одной ганг-лиозной клетке. Фоторецепторы, соединенные с одной ганглиозной клеткой, образуют рецептивное поле ганглиозной клетки. Рецеп­тивные поля различных ганглиозных клеток частично перекрывают друг друга. Таким образом, каждая ганглиозная клетка суммирует возбуждение, возникающее в большом числе фоторецепторов. Это повышает световую чувствительность, но ухудшает пространствен­ное разрешение. Лишь в центре сетчатки, в районе центральной ямки, каждая колбочка соединена с одной так называемой карли­ковой биполярной клеткой, с которой соединена также всего одна ганглиозная клетка. Это обеспечивает здесь высокое пространст­венное разрешение, но резко уменьшает световую чувствитель­ность.

Взаимодействие соседних нейронов сетчатки обеспечивается горизонтальными и амакриновыми клетками, через отростки ко­торых распространяются сигналы, меняющие синаптическую пе­редачу между фоторецепторами и биполярными клетками (гори­зонтальные клетки) и между биполярными и ганглиозными клет­ками (амакриновые клетки). Амакриновые клетки осуществляют боковое торможение между соседними ганглиозными клетками.

Кроме афферентных волокон, в зрительном нерве есть и цент­робежные, или эфферентные, нервные волокна, приносящие к сет­чатке сигналы из мозга. Полагают, что эти импульсы действуют на синапсы между биполярными и ганлиозными клетками сетчат­ки, регулируя проведение возбуждения между ними.

Нервные пути и связи в зрительной системе. Из сетчатки зри­тельная информация по волокнам зрительного нерва (II пара черепных нервов) устремляется в мозг. Зрительные нервы от каж­дого глаза встречаются у основания мозга, где формируется их частичный перекрест (хиазма). Здесь часть волокон каждого зри­тельного нерва переходит на противоположную от своего глаза сторону. Частичный перекрест волокон обеспечивает каждое по­лушарие большого мозга информацией от обоих глаз. Проекции эти организованы так, что в затылочную долю правого полушария поступают сигналы от правых половин каждой сетчатки, а в левое полушарие — от левых половин сетчаток.

После зрительного перекреста зрительные нервы называют зрительными трактами. Они проецируются в ряд мозговых струк­тур, но основное число волокон приходит в таламический подкор­ковый зрительный центр — латеральное, или наружное, коленчатое тело (НКТ). Отсюда сигналы поступают в первичную проекцион­ную область зрительной зоны коры (стриарная кора, или поле 17 по Бродману). Вся зрительная зона коры включает несколько полей, каждое из которых обеспечивает свои, специфические функции, но получает сигналы от всей сетчатки и в общем сохра­няет ее топологию, или ретинотопию (сигналы от соседних участ­ков сетчатки попадают в соседние участки коры).

Последнее изменение этой страницы: 2016-08-06; Нарушение авторского права страницы

Читайте также:

Пожалуйста, не занимайтесь самолечением!
При симпотмах заболевания - обратитесь к врачу.