Специальные чувствительные нервные образования

(лат. receptor — принимающий, от recipio — принимаю, получаю)

специальные чувствительные образования, воспринимающие и преобразующие раздражения из внешней или внутренней среды организма и передающие информацию о действующем агенте в нервную систему (см. Анализаторы). Р. характеризуются многообразием в структурном и функциональном отношениях. Они могут быть представлены свободными окончаниями нервных волокон, окончаниями, покрытыми особой капсулой, а также специализированными клетками в сложно организованных образованиях, таких, как Сетчатка глаза, Кортиев орган и др., состоящих из множества Р.

Р. делят на внешние, или экстероцепторы, и внутренние, или Интерорецепторы. Экстероцепторы расположены на внешней поверхности тела животного или человека и воспринимают раздражения из внешнего мира (световые, звуковые, термические и др.). Интероцепторы находятся в различных тканях и внутренних органах (сердце, лимфатические и кровеносные сосуды, лёгкие и т.д.); воспринимают раздражители, сигнализирующие о состоянии внутренних органов (висцероцепторы), а также о положении тела или его частей в пространстве (вестибулоцепторы). Разновидность интероцепторов — Проприорецепторы, расположенные в мышцах, сухожилиях и связках и воспринимающие статическое состояние мышц и их динамику. В зависимости от природы воспринимаемого адекватного раздражителя различают Механорецепторы, Фоторецепторы, Хеморецепторы, Терморецепторы и др. У дельфинов, летучих мышей и ночных бабочек обнаружены Р., чувствительные к ультразвуку, у некоторых рыб — к электрическим полям. Менее изучен вопрос о существовании у некоторых птиц и рыб Р., чувствительных к магнитным полям (см. Магнитобиология). Мономодальные Р. воспринимают раздражения только одного рода (механическое, световое или химическое); среди них — Р., различные по уровню чувствительности и отношению к раздражающему стимулу. Так, фоторецепторы позвоночных подразделяются на более чувствительные палочковые клетки, функционирующие как Р. сумеречного зрения, и менее чувствительные колбочковые клетки, обеспечивающие у человека и ряда животных дневное светоощущение и Цветовое зрение; механорецепторы кожи — на более чувствительные фазные Р., реагирующие только на динамическую фазу деформации, и статические, реагирующие и на постоянную деформацию, и т.д. В результате такой специализации Р. выделяются наиболее значительные свойства стимула и осуществляется тонкий анализ воспринимаемых раздражений. Полимодальные Р. реагируют на раздражения разного качества, например химическое и механическое, механическое и температурное. При этом закодированная в молекулах специфическая информация передаётся в центральную нервную систему по одним и тем же нервным волокнам в виде нервных импульсов, подвергаясь на своём пути неоднократному энергетическому усилению. Исторически сохранилось деление Р. на дистантные (зрительные, слуховые, обонятельные), воспринимающие сигналы от источника раздражения, находящегося на некотором расстоянии от организма, и контактные — при непосредственном соприкосновении с источником раздражения. Различают также Р. первичные (первичночувствующие) и вторичные (вторичночувствующие). У первичных Р. субстрат, воспринимающий внешнее воздействие, заложен в самом сенсорном Нейроне, который непосредственно (первично) возбуждается раздражителем. У вторичных Р. между действующим агентом и сенсорным нейроном располагаются дополнительные, специализированные (рецептирующие) клетки, в которых преобразуется (трансформируется) в нервные импульсы энергия внешних раздражений.

Все Р. характеризуются рядом общих свойств. Они специализированы для рецепции (См. Рецепция) определённых, свойственных им раздражений, называемыми адекватными. При действии раздражений в Р. возникает изменение разности биоэлектрических потенциалов (См. Биоэлектрические потенциалы) на клеточной мембране, так называемый рецепторный потенциал, который либо непосредственно генерирует ритмические импульсы в рецепторной клетке, либо приводит к их возникновению в другом нейроне, связанном с Р. посредством синапса (См. Синапсы). Частота импульсов возрастает с увеличением интенсивности раздражения. При продолжительном действии раздражителя снижается частота импульсов в волокне, отходящем от Р.; подобное явление уменьшения активности Р. называется адаптацией физиологической (См. Адаптация физиологическая). Для различных Р. время такой адаптации неодинаково. Р. отличаются высокой чувствительностью к адекватным раздражителям, которая измеряется величиной абсолютного порога, или минимальной интенсивностью раздражения, способного привести Р. в состояние возбуждения. Так, например, 5—7 квантов света, падающего на Р. глаза, вызывают световое ощущение, а для возбуждения отдельного фоторецептора достаточно 1 кванта. Р. можно возбудить и неадекватным раздражителем. Воздействуя, например, на глаз или ухо электрическим током, можно вызвать ощущение света или звука. Ощущения связаны со специфической чувствительностью Р., возникшей в ходе эволюции органической природы. Образное восприятие мира связано преимущественно с информацией, идущей с экстероцепторов. Информация с интероцепторов не приводит к возникновению чётких ощущений (см. Мышечное чувство). Функции различных Р. взаимосвязаны. Взаимодействие вестибулярных Р., а также Р. кожи и проприоцепторов со зрительными осуществляется центральной нервной системой и лежит в основе восприятия величины и формы предметов, их положения в пространстве. Р. могут взаимодействовать между собой и без участия центральной нервной системы, т. е. вследствие непосредственной связи друг с другом. Такое взаимодействие, установленное на зрительных, тактильных и других Р., имеет важное значение для механизма пространственно-временного контраста. Деятельность Р. регулируется центральной нервной системой, осуществляющей их настройку в зависимости от потребностей организма. Эти влияния, механизм которых изучен недостаточно, осуществляются посредством специальных эфферентных волокон, подходящих к некоторым рецепторным структурам.

Функции Р. исследуют методом регистрации биоэлектрических потенциалов непосредственно от Р. или связанных с ним нервных волокон, а также методом регистрации рефлекторных реакций, возникающих при раздражении Р. См. также Вкус, Зрение, Обоняние, Осязание, Слух, Чувств органы.

Лит.: Гранит Р., Электрофизиологическое исследование рецепции, пер. с англ., М., 1957; Проссер Л., Браун Ф., Сравнительная физиология животных, пер. с англ., М., 1967; Винников Я. А., Цитологические и молекулярные основы рецепции. Эволюция органов чувств, Л., 1971; Физиология человека, под ред. Е. Б. Бабского, М., 1972, с. 436—98; Физиология сенсорных систем, ч. 1—2, Л., 1971—72 (Руководство по физиологии); Handbook of sensory physiology, v. 1, pt 1. v. 4, pt 1—2, В. — HdIb. — N. Y., 1971—72; Melzack R., The puzzle of pain, Harmondswarth, 1973. см. также лит. при ст. Интерорецепция.

Рецепторы фармакологические (РФ), рецепторы клеточные, рецепторы тканевые, расположены на мембране эффекторной клетки; воспринимают регуляторные и пусковые сигналы нервной и эндокринной систем, действие многих фармакологических препаратов, избирательно влияющих на эту клетку, и трансформируют указанные воздействия в её специфическую биохимическую или физиологическую реакцию. Наиболее исследованы РФ, посредством которых осуществляется действие нервной системы. Влияние парасимпатического и двигательного отделов нервной системы (медиатор ацетилхолин) передают два типа РФ: Н-холиноцепторы передают нервные импульсы на скелетные мышцы и в нервных ганглиях с нейрона на нейрон; М-холино-цепторы участвуют в регуляции работы сердца и тонуса гладких мышц. Влияние симпатической нервной системы (медиатор норадреналин) и гормона мозгового вещества надпочечника (адреналина) передаётся альфа- и бета-адреноцепторами. Возбуждение альфа-адреноцепторов вызывает сужение сосудов, подъём артериального давления, расширение зрачка, сокращение ряда гладких мышц и т.д.; возбуждение бета-адреноцепторов — увеличение сахара в крови, активацию ферментов, расширение сосудов, расслабление гладких мышц, усиление частоты и силы сердечных сокращений и т.д. Т. о., функциональное влияние осуществляется через оба типа адреноцепторов, а метаболическое — преимущественно через бета-адреноцепторы. Обнаружены также РФ, чувствительные к дофамину, серотонину, гистамину, полипептидам и другим эндогенным биологически активным веществам и к фармакологическим антагонистам некоторых из этих веществ. Терапевтический эффект ряда фармакологических препаратов обусловлен их специфическим действием на специфические Р.

Лит.: Турпаев Т. М., Медиаторная функция ацетилхолина и природа холинорецептора, М., 1962; Манухин Б. Н., Физиология адренорецепторов, М., 1968; Михельсон М. Я., Зеймаль Э. В., Ацетилхолин, Л., 1970.


Нервная система

Раздражимость или чувствительность – характерная черта всех живых организмов, означающая их способность реагировать на сигналы или раздражители.

Сигнал воспринимается рецептором и передается с помощью нервов и (или) гормонов к эффектору, который осуществляет специфическую реакцию или ответ.

Животные имеют две взаимосвязанные системы координации функций – нервную и гуморальную (см. таблицу).

Нервная регуляция

Гуморальная регуляция

Электрическое и химическое проведение (нервные импульсы и нейромедиаторы в синапсах)

Химическое проведение (гормоны) по КС

Быстрое проведение и ответ

Более медленное проведение и отстроченный ответ (исключение - адреналин)

В основном кратковременные изменения

В основном долговременные изменения

Специфический путь распространения сигнала

Неспецифический путь сигнала (с кровью по всему телу)к специфической мишени

Ответ часто узко локализован (например, один мускул)

Ответ может быть крайне генерализованным (например, рост)

Нервная система состоит из высокоспециализированных клеток со следующими функциями:

- восприятие сигналов – рецепторы;

- преобразование сигналов в электрические импульсы (трансдукция);

- проведение импульсов к другим специализированным клеткам – эффекторам, которые получив сигнал, дают ответ;

Связь между рецепторами и эффекторами осуществляют нейроны .

Нейрон – это структурно – функциональная единица НС.


Нейрон — электрически возбудимая клетка, которая обрабатывает, хранит и передает информацию с помощью электрических и химических сигналов. Нейрон имеет сложное строение и узкую специализацию. Нервная клетка содержит ядро, тело клетки и отростки (аксоны и дендриты).

В головном мозге человека насчитывается около 90—95 миллиардов нейронов. Нейроны могут соединяться друг с другом, образуя биологические нейронные сети.

Нейроны разделяют на рецепторные, эффекторные и вставочные.

Тело нейрона: ядро (с большим количеством ядерных пор) и органеллы (ЭПС, рибосомы, аппарат Гольджи, микротрубочки), а также из отростков (дендриты и аксоны).

Нейроглия – совокупность вспомогательных клеток НС; составляет 40% общего объема ЦНС.

  • Аксон – длинный отросток нейрона; проводит импульс от тела клетки; покрыт миелиновой оболочкой (образует белое вещество мозга)
  • Дендриты - короткие и сильно разветвлённые отростки нейрона; проводит импульс к телу клетки; не имеют оболочки


Важно! Нейрон может иметь несколько дендритов и обычно только один аксон.

Важно! Один нейрон может иметь связи со многими (до 20 тысяч) другими нейронами.

  • чувствительные – передают возбуждение от органов чувств в спинной и головной мозг
  • двигательные – передают возбуждение от головного и спинного мозга к мышцам и внутренним органам
  • вставочные – осуществляют связь между чувствительными и двигательным нейронами, в спинном и головном мозге

Нервные отростки образуют нервные волокна.

Пучки нервных волокон образуют нервы.

Нервы – чувствительные (образованы дендритами), двигательные (образованы аксонами), смешанные (большинство нервов).

Синапс – это специализированный функциональный контакт между двумя возбудимыми клетками, служащий для передачи возбуждения


У нейронов синапс находится между аксоном одной клетки и дендритом другой; при этом физического контакта не происходит – они разделены пространством - синаптической щель.

Нервная система:

  • периферическая (нервы и нервные узлы) – соматическая и автономная
  • центральная (головной и спинной мозг)

В зависимости от характера иннервации НС:

  • Соматическая – управляет деятельностью скелетной мускулатуры, подчиняется воле человека
  • Вегетативная (автономная) – управляет деятельностью внутренних органов, желез, гладкой мускулатуры, не подчиняется воле человека

Соматическая нервная система часть нервной системы человека, представляющая собой совокупность чувствительных и двигательных нервных волокон, иннервирующих мышцы (у позвоночных — скелетные), кожу, суставы.

Она представляет часть периферической нервной системы, которая занимается доставкой моторной (двигательной) и сенсорной (чувственной) информации до центральной нервной системы и обратно. Эта система состоит из нервов, прикрепленных к коже, органам чувств и всем мышцам скелета.

  • спинномозговые нервы – 31 пара; связаны со спинным мозгом; содержат как двигательные, так и сенсорные нейроны, поэтому смешанные;
  • черепномозговые нервы – 12 пар; отходят от головного мозга, иннервируют рецепторы головы (за исключением блуждающего нерва – иннервирует сердце, дыхание, пищеварительный тракт); бывают сенсорными, моторными (двигательными) и смешанными

Рефлекс – это быстрый автоматический ответ на раздражитель, осуществляемый без осознанного контроля головного мозга.

Рефлекторная дуга – путь, проходимый нервными импульсами от рецептора до рабочего органа.

  • в ЦНС – по чувствительному пути;
  • от ЦНС – к рабочему органу – по двигательному пути

- рецептор (окончание дендрита чувствительного нейрона) – воспринимает раздражение

- чувствительное (центростремительное) нервное волокно – передает возбуждение от рецептора к ЦНС

- нервный центр – группа вставочных нейронов, расположены на разных уровнях ЦНС; передает нервные импульсы с чувствительных нейронов на двигательные

- двигательное (центробежное) нервное волокно – передает возбуждение от ЦНС к исполнительному органу


Простая рефлекторная дуга: два нейрона – чувствительный и двигательный (пример – коленный рефлекс)

Сложная рефлекторная дуга: три нейрона – чувствительный, вставочный, двигательный (благодаря вставочным нейронам происходит обратная связь между рабочим органом и ЦНС, что позволяет вносить изменения в работу исполнительных органов)

Вегетативная (автономная) нервная система – управляет деятельностью внутренних органов, желез, гладкой мускулатуры, не подчиняется воле человека.

Делится на симпатическую и парасимпатическую.


Обе состоят из вегетативных ядер (скопления нейронов, лежащих в спинном и головном мозге), вегетативных узлов (скопления нейронов, нейронов, за пределами НС), нервных окончаний (в стенках рабочих органов)

Путь от центра до иннервируемого органа состоит из двух нейронов (в соматической - один).

Место выхода из ЦНС

От спинного мозга – в шейный, поясничный, грудной отделы

От ствола головного мозга и ствола крестцового отдела спинного мозга

Местоположение нервного узла (ганглия)

По обе стороны спинного мозга, за исключением нервных сплетений (непосредственно в этих сплетениях)

В иннервируемых органах или вблизи них

Медиаторы рефлекторной дуги

В предузловом волокне –

в послеузловом - норадреналин

В обоих волокнах - ацетилхолин

Названия основных узлов или нервов

Солнечное, легочное, сердечное сплетения, брыжеечный узел

Общие эффекты симпатической и парасимпатической НС на органы:

  • Симпатическая НС – расширяет зрачки, угнетает слюноотделение, повышает частоту сокращений, расширяет сосуды сердца, расширяет бронхи, усиливает вентиляцию легких, угнетает перистальтику кишечника, угнетает секрецию пищеварительных соков усиливает потоотделение, удаляет с мочой лишний сахар; общий эффект – возбуждающий, повышает интенсивность обмена, снижает порог чувствительности; активизирует во время опасности, стресса, контролирует реакции на стресс
  • Парасимпатическая НС – сужает зрачки, стимулирует слезотечение, уменьшает частоту сердечных сокращений, поддерживает тонус артериол кишечника, скелетных мышц, снижает кровяное давление, уменьшает вентиляцию легких, усиливает перистальтику кишечника, расширяет артериолы в коже лица, увеличивает выделение с мочой хлоридов; общий эффект – тормозящий, снижает или не влияет на интенсивность обмена, восстанавливает порог чувствительности; доминирует в состоянии покоя, контролирует функции в повседневных условиях

Центральная нервная система (ЦНС) – обеспечивает взаимосвязь всех частей НС и их координированную работу

У позвоночных ЦНС развивается из эктодермы (наружного зародышевого листка)

ЦНС – 3 оболочки:

- твердая мозговая (dura mater) - снаружи;

- мягкая мозговая оболочка (pia mater) – прилегает непосредственно к мозгу.

Головной мозг расположен в мозговом отделе черепа; содержит

- белое вещество - проводящие пути между головным мозгом и спинным, между отделами головного мозга

- серое вещество - в виде ядер внутри белого вещества; кора покрывающая большие полушария и мозжечок

Масса головного мозга – 1400-1600 грамм.


5 отделов:

  • продолговатый мозг– продолжение спинного мозга; центры пищеварения, дыхания, сердечной деятельности, рвота, кашель, чихание, глотание, слюноотделение, проводящая функция
  • задний мозг – состоит из варолиевого моста и мозжечка; варолиев мост связывает мозжечок и продолговатый мозг с большими полушариями; мозжечок регулирует двигательные акты (равновесие, координация движений, поддержание позы)
  • промежуточный мозг– регуляция сложных двигательных рефлексов; координация работы внутренних органов; осуществление гуморальной регуляции;
  • средний мозг – поддержание тонуса мыщц, ориентировочные, сторожевые, оборонительные рефлексы на зрительные и звуковые раздражители;
  • передний мозг (большие полушария) – осуществление психической деятельности (память, речь, мышление).

Промежуточный мозг включает таламус, гипоталамус, эпиталамус

Таламус – подкорковый центр всех видов чувствительности (кроме обонятельного), регулирует внешнее проявление эмоций (мимика, жесты, изменение пульса, дыхания)

Гипоталамус – центры вегетативной НС, обеспечивают постоянство внутренней среды, регулируют обмен веществ, температуру тела, чувство жажды, голода, насыщения, сна, бодрствования; гипоталамус контролирует работу гипофиза

Эпиталамус – участие в работе обонятельного анализатора

Передний мозг имеет два больших полушария: левое и правое

  • Серое вещество (кора) находится сверху полушарий, белое – внутри
  • Белое вещество – это проводящие пути полушарий; среди него – ядра серого вещества (подкорковые структуры)

Кора больших полушарий – слой серого вещества, 2-4 мм в толщину; имеет многочисленные складки, извилины

Каждое полушарие разделено бороздами на доли:

- лобная – вкусовая, обонятельная, двигательная, кожно- мускульная зоны;

- теменная – двигательная, кожно- мускульная зоны;

- височная – слуховая зона;

- затылочная – зрительная зона.

Важно! Каждое полушарие отвечает за противоположную сторону тела.

  • Левое полушарие – аналитическое; отвечает за абстрактное мышление, письменную и устную речь;
  • Правое полушарие – синтетическое; отвечает за образное мышление.

Спинной мозг расположен в костном позвоночном канале; имеет вид белого шнура, длина 1м; на передней и задней сторонах есть глубокие продольные борозды

В самом центре спинного мозга – центральный канал, заполненный спинномозговой жидкостью.

Канал окружен серым веществом (имеет вид бабочки), который окружен белым веществом.

  • В белом веществе – восходящие (аксоны нейронов спинного мозга) и нисходящие пути (аксоны нейронов головного мозга)
  • Серое вещество напоминает контур бабочки, имеет три вида рогов.

- передние рога – в них расположены двигательные нейроны (мотонейроны) – их аксоны иннервируют скелетные мышцы

- задние рога – содержат вставочные нейроны – связывают чувствительные и двигательные нейроны

- боковые рога – содержат вегетативные нейроны – их аксоны идут на периферию к вегетативным узлам

Спинной мозг – 31 сегмент; от каждого сегмента отходит 1 пара смешанных спинномозговых нервов, имеющих по паре корешков:

- передний (аксоны двигательных нейронов);

- задний (аксоны чувствительных нейронов.

Функции спинного мозга:

- рефлекторная – осуществление простых рефлексов (сосудодвигательных, дыхательных, дефекации, мочеиспускания, половых);

- проводниковая – проводит нервные импульсы от и к головному мозгу.


Повреждение спинного мозга приводит к нарушению проводниковых функций, вследствие чего – паралич.


Что такое сверхчувствительность и кто такие сверхчувствительные люди в предыдущих материалах:

Моя история

Сначала я действовала вслепую, пытаясь разобраться с каждым конкретным симптомом в отдельности. А последние шесть месяцев, докопавшись-таки до причин происходящего, начала целенаправленно решать вопрос обостренной чувствительности нервной системы.

Я не буду опять рассказывать о том, как безрезультатно ходила по многочисленным специалистам, как случайно наткнулась на ответ и как начала разматывать этот клубок. Все это подробно изложено в предыдущих материалах. Сейчас я хочу объединить принципы и конкретные меры, которые помогли мне вернуть психику в то состояние, которое я знаю как свою норму, — да, высокочувствительную и достаточно эмоциональную, но способную держать удар будничных стрессов и оставаться в равновесии большую часть времени. Как дня, так и месяца.

Принципы восстановления

Из еды и напитков, помимо кофеина и алкоголя, это вся острая пища, особенно с красным перцем. Пережаренная, пересоленная, чрезмерно сладкая — и тем более фастфуд. Притом сам сладкий вкус в умеренных количествах имеет успокаивающее действие, и полный отказ от сладкого в непростой жизненный период будет скорее ошибкой.

Существуют отдельные асаны и подходы, которые работают именно на стабилизацию нижних центров и выравнивание психического состояния. Но вы должны иметь дело с крайне опытным преподавателем, чтобы пройти по этому тонкому льду. О том, какие меры по восстановлению своего состояния принимала я и, в частности, о моих практиках я расскажу в следующем материале.

Этот механизм мне объяснила мой инструктор по йоге Алена Дудко. Попробую передать принцип его действия — в той мере, в какой его понимаю я.

Как известно, наша вегетативная нервная система состоит из двух отделов: симпатического и парасимпатического, отвечающих соответственно за активность и покой, возбуждение и торможение. Здоровье — это равновесие в работе обеих систем. Чрезмерное торможение, то есть чрезмерное расслабление, так же пагубно, как и слишком длительное перевозбуждение. Необходимо именно равновесие — и хорошая новость в том, что наш организм сам к этому равновесию активно стремится. Это данность.

Если вдруг происходит сбой — возбуждения или торможения становится слишком много, — то наша система сама (!) стремится вернуться в норму.

Правильным решением будет не мешать организму в его работе. То есть перестать не только чрезмерно стимулировать нервную систему, но и бесконечно тормозить ее искусственными методами. Идея обложиться успокоительными, даже мягкими, даже на травах, даже с iherb, чтобы вернуть себе равновесие, — не так гениальна, как кажется на первый взгляд. Изредка, по конкретному случаю — да, это может быть уместно. Но если мы говорим о восстановлении своего состояния, а не о разовой необходимости успокоиться, то постоянно жать на тормоз даже мягким усилием, — такая же пагубная затея, как и намертво прилипнуть к педали газа.

Чрезмерное торможение — сильная расслабленность, пассивность и следующая за ней апатия — такая же крайность для нервной системы, как и постоянное перевозбуждение. И то, и другое не является равновесием и не дает нам полностью восстановиться и прийти в норму, при которой обе системы достаточно активны и успешно дополняют друг друга в разных ситуациях.

Забавно, что этот совет долетел до меня аккурат в те дни, когда ко мне прибыли успокоительные на травах, — и, по сути, меня от них уберег. Все три коробки так и стоят до сих пор не открытыми. И сегодня, полностью вернувшись к норме, я очень рада, что занималась не раскачиванием маятника своей нервной системы (сильное перевозбуждение — выпила успокоительное — сильное торможение), а возвратом ее к естественному балансу и полноценному равновесию, при котором она сама успешно переключается между разными режимами.

Это мое личное ноу-хау, которое я обнаружила методом тыка. Чтобы хорошо понять идею дозирования, нужно видеть и выделять различные состояния своей психики.

Первое состояние — это сверхчувствительность нервной системы*, которая в большинстве случаев является генетической данностью. С такой особенностью работы нервной системы рождаются 15–20 % людей в мире. Так что этот вопрос касается не всех, но все же эта история достаточно распространена.

Сверхчувствительность в равновесии — это вполне ресурсное состояние, которое имеет ряд особенностей, в том числе очень хороших. Если это касается вас, имеет смысл разобраться со всеми нюансами, лучше понять самого себя, наладить быт соответствующим образом и извлекать из подобной работы психики только выгоду. То есть саму по себе сверхчувствительность не надо бояться и тем более не надо лечить. С ней нужно наладить контакт и поставить служить себе на благо.

*Более подробно о сверхчувствительных людях в первой и во второй частях этой истории.

Суть в том, чтобы чередовать периоды стимуляции и отдыха. Не терпеть (!) и не избегать (!), а именно дозировать — для того, чтобы дать нервной системе адаптироваться. На практике это выглядит так: неделя под нагрузкой — пара дней отдыха от того, что сильно заводит. Затем цикл повторяется несколько раз. Количество дней нагрузки и отдыха может варьироваться.

Люди со сверхчувствительной нервной системой могут сталкиваться с пиками перестимуляции в ответственные, значимые для них моменты. Переезд, смена работы, новый партнер, рождение ребенка — все это вызывает чрезмерные, иногда предельные уровни сенсорной и информационной нагрузки.

И тогда на помощь приходит принцип дозирования – адаптация к увеличению нагрузки, чтобы нервная система могла привыкнуть к новым условиям. Схожий принцип использует и атлет, когда перед ним стоит задача повышать рабочий вес в силовых тренировках.

Передаю вам то, что в свое время сказали мне: потребуется от нескольких месяцев до нескольких лет постоянных и планомерных мер по возврату нервной системы в норму. После того как я начала действовать целенаправленно, отчетливо понимая, что именно со мной происходит и какова цель, — мне, с моими вводными, потребовалось полгода. В следующем материале я покажу 7 конкретных мер, которые я применяла за это время и которые помогли мне вернуться в полноценное равновесие.

Чувствительность - это часть широкого понятия рецепции; к чувствительности относят только ту часть рецепции, которая воспринимается рецепторами и осознается корой.

Все нервные элементы, которые обеспечивают восприятие, проведение и переработку информации, принадлежат к сенсор­ным системам (от лат. sensus — ощущение) или к системе ана­лизаторов по И.П. Павлову. Они воспринимают и обрабатывают раздражители разной модальности.

Анализатор - это функциональная система, в состав которой входят рецепторы, афферентные пути и соответствующая зона коры большого мозга.

Корковый конец анализатора - это первичные проекционные зоны коры, для которых характерный соматотопический прин­цип строения. Анализатор обеспечивает восприятие, проведение и переработку однотипных нервных импульсов.

Анализаторы подразделяют на две подгруппы: внешние, или экстероцептивные, и внутренние, или интероцептивные.

Внешние анализаторы осуществляют анализ информации о состоянии и из­менениях, которые возникают в окружающей среде. К ним относятся зри­тельный, слуховой, обонятельный, вкусовой и анализатор поверхностных видов чувствительности. Внутренние анализаторы перерабатывают инфор­мацию об изменениях внутренней среды организма, например, состоянии сердечно-сосудистой системы, пищеварительного канала и других органов. К внутренним анализаторам принадлежит двигательный анализатор, благо­даря которому головной мозг постоянно воспринимает сигналы о состоянии мышечно-суставного аппарата. Он играет важную роль в механизмах регуляции движений.

Рецепторы - это специализированные периферические чувствительные образования, способные воспринимать любые изменения внутри организма, а также на внешней поверхности тела и передавать эти раздражения в виде нервных импульсов. Иначе говоря, рецепторы способны превращать одну форму энергии в другую, не перекручивая при этом содержания информа­ции. Раздражители окружающей или внутренней среды, трансформируясь в нервный процесс, поступают в мозг в виде нервных импульсов.

По месту расположения, а также в зависимости от функциональных особенностей рецепторы подразделяют на экстеро-, проприо- и интерорецепторы.

Экстерорецепторы разделяют на контакт-рецепторы, которые воспринимают раздражения во время непосредственного контакта с ним (болевые, температурные, тактильные и т. п.), и дистантрецепторы, кото­рые воспринимают раздражения от источников, находящихся на расстоя­нии (звук, свет).

Интерорецепторы воспринимают разнообразные раздражения от вну­тренних органов и сосудов. Основная их роль состоит в обеспечении по­ступления в центральную нервную систему информации об изменениях внутреннего состояния организма. Большинство интерорецепторов явля­ется полимодальными. Они реагируют на химические (хеморецепторы) и механические раздражения (барорецепторы), изменение температуры (тер­морецепторы), боль (ноцирецепторы) и имеют отношение к автономной (вегетативной) нервной системе.

Каждый вид рецепторов реагирует только на специфический для него тип раздражения. Благодаря такой специализации рецепторов осуществля­ется первичный анализ внешних раздражителей на уровне периферических окончаний афферентных нервных волокон.

Наибольшее количество рецепторов локализуется в коже. Различают механорецепторы (реагируют на прикосновение, давление), термо­рецепторы (воспринимают холод, тепло) и ноцирецепторы (вос­принимают боль).

К кожным рецепторам принадлежат свободные нервные окончания чув­ствительных нервов и инкапсулированные конечные образования. Самые простые по строению свободные нервные окончания дендритов чувстви­тельных нейронов. Они размещены между эпидермальными клетками и воспринимают болевые раздражения. Тактильные тельца Меркеля и Мейсснера реагируют на прикосновение. Давление и вибрацию воспринимают пластинчатые тельца Фатера-Пачини. Колбы Краузе являются Холодовы­ми рецепторами, а тельца Руффини - тепловыми.

Рецепторы размещены также в более глубоких тканях: мышцах, сухожи­лиях, суставах. Самым важным из мышечных рецепторов являются нервно-мышечные веретена. Они реагируют на пассивное растяжение мышц и отве­чают за осуществление рефлекса растяжение, или миотатического рефлекса. В сухожилиях находятся рецепторы Гольджи, которые также реагируют на растягивание, однако их порог чувствительности высший. Специальные рецепторы в организме, которые воспринимают удовольствие, - бенерецепторы.

Самое сложное строение имеют рецепторы зрительного и слухового анализаторов, которые сконцентрированы в сетчатке глаза и во внутреннем ухе. Сложное морфологическое строение этих рецепторов сказывается на их функции: например, ганглиозные клетки сетчатки реагируют на электромаг­нитное излучение определенного спектра частоты, слуховые - на механиче­ские колебания воздушной среды. Тем не менее эта специфичность является относительной. Ощущение света возникает не только во время попадания в глаз кванта электромагнитного излучения, но и в случае механического раздражения глаза.

Таким образом, на уровне рецептора осуществляется первичная обра­ботка информации, которая состоит в распознавании модальности раздра­жителя. Эта обработка завершается формированием нервных импульсов, которые с определенной частотой поступают в высшие отделы центральной нервной системы.

Импульсы, которые возникают в рецепторных аппаратах, проводятся к нервным центрам чувствительными волокнами с разной скоростью. Немец­кий анатом Гассер (J. Gasseri, XVIII в.) разделял чувствительные волокна в зависимости от структурных и функциональных особенностей на три груп­пы: покрытые толстым слоем миелина, тонким и безмиелиновые. Скорость проведения нервного импульса этими тремя группами волокон неодинако­вая. Волокна с толстой миелиновой оболочкой, или волокна группы А, про­водят импульс со скоростью 40-60 м за 1 с; волокна с тонкой миелиновой оболочкой, или волокна группы В, - со скоростью 10-15 м за 1 с; безмиелиновые, или С-волокна, - со скоростью 0,5-1,5 м за 1 с.

Волокна группы А с высокой скоростью проведения импульса являются проводниками тактильной и глубокой чувствительности.

Волокна группы В со средней скоростью проведения импульса являются проводниками локализованной болевой и тактильной чувствительности.

Волокна группы С, которые медленно проводят импульсы, являются про­водниками болевой чувствительности, преимущественно диффузной, нелокализованной.

Классификация чувствительности. Различают чувствительность об­щую (простую) и сложную. Общую чувствительность с учетом локализации рецепторов подразделяют на экстероцептивную, или поверхностную (кожа и слизистые оболочки), проприоцептивную, или глубокую (мышцы, связи, суставы), и интероцептивную (внутренние органы).

К экстероцептивной, или поверхностной, чувствительности относят болевую, температурную (тепловую и холодовую) и тактильную. Проприоцептивная чувствительность включает ощущение пассивных и активных движений (мышечно-суставное чувство), вибрационное ощущение, чувство давления и массы, кинестетическое чувство - определение направления движения кожной складки. Общая, или простая, чувствительность связана непосредственно с функцией отдельных рецепторов, анализаторов.

Сложные виды чувствительности обусловлены объединенной деятель­ностью разных типов рецепторов и корковых отделов анализаторов: чувство локализации укола, с помощью которого определяется место нанесенного раздражения; стереогноз - способность распознавать предметы путем их ощупывания; двухмерно-пространственное ощущение - больной узнает при условии закрытых глаз, какая фигура, цифра или буква написаны на коже; дискриминации - способность воспринимать отдельно два одновременно наносимых раздражения на близком расстоянии. Сложные виды чувстви­тельности не имеют отдельных анализаторов, они осуществляются общими видами чувствительности.

Интероцептивной называют чувствительность, которая возникает в слу­чае раздражения внутренних органов, стенок кровеносных сосудов. Как уже отмечалось, в нормальных условиях импульсы от внутренних органов прак­тически не осознаются. Во время ирритации интерорецепторов возникают боль разной интенсивности, ощущение дискомфорта.

Сенсорные системы в процессе эволюции испытывают усовершенство­вание, которое предопределяет возникновение специального ощущения: зрение, слух, обоняние, вкус, прикосновение.

В клинике распространение приобрела другая классификация, которая основывается на биогенетических данных. В соответствии с этими представ­лениям и, различают протопатическую и эпикритическую чувствительность.

Протопатическая чувствительность в филогенетическом отношении более древняя. Она служит для восприятия и проведения сильных ноцицептивных раздражений, которые могут обусловить деструкцию тканей или угрожать жизни организма. Эти раздражения большей частью нелокализованные и вызывают общую генерализованную реакцию. Центром протопатической чувствительности является таламус. Поэтому эта система еще имеет название витального, ноцицептивного, таламического, ничем не смяг­ченного чувства.

Эпикритическая чувствительность - это филогенетически новый ее вид. Она обеспечивает тонкую количественную и качественную дифферен­циацию раздражений, их локализацию, которая позволяет организму точно ориентироваться в окружающей среде, адекватно реагировать на раздраже­ние. Эпикритическая чувствительность обусловлена ощущениями, которые возникают в коре большого мозга. Именно в ней формируются субъективные ощущения боли. Поэтому эта система чувствительности называется эпикритической, корковой, гностической, она способна смягчать ощущение боли.

- Виды нарушения

- Типы нарушения

- Синдромы нарушения

Читайте также:

Пожалуйста, не занимайтесь самолечением!
При симпотмах заболевания - обратитесь к врачу.