Теория организации нервной системы

Строение нервной системы

Нервная система в функциональном и структурном отношении делится напериферическую и центральную нервную систему (ЦНС).

Центральная нервная система состоит из головного и спинного мозга.

Головной мозг находится внутри мозгового отдела черепа, а спинной мозг - в позвоночном канале.
Периферическая часть нервная система состоит из нервов, т.е. пучков нервных волокон, которые выходят за пределы головного и спинного мозга и направляются к различным органам тела. К ней относят также нервные узлы, или ганглии - скопления нервных клеток вне спинного и головного мозга.
Нервная система функционирует как единое целое.


Функции нервной системы :
1) формирование возбуждения;
2) передача возбуждения;
3) торможение (прекращение возбуждения, уменьшение его интенсивности, угнетение, ограничение распространения возбуждения);
4) интеграция (объединения различных потоков возбуждения и изменения этих потоков);
5) восприятие раздражения из внешней и внутренней среды организма с помощью специальных нервных клеток - рецепторов;

6) кодирование, т.е. преобразование химического, физического раздражения в нервные импульсы;
7) трофическая, или питательная, функция - образование биологически активных веществ (БАВ).

Нейрон - основная структурная и функциональная единица нервной системы.

Нейрон


Определение понятия

Нейрон- это сложно устроеннаявозбудимаясекретирующаявысокодифференцированнаянервная клеткас отростками, которая воспринимает нервное возбуждение, перерабатывает его и передаёт другим клеткам. Кроме возбуждающего воздействия нейрон может оказывать на свои клетки-мишени также тормозное или модулирующее воздействие.

Нейроны входят в системубиорегуляцииихеморегуляции


Функционально нейрон можно рас­сматривать как один из уровней организации нервной системы, который связывает друг с другом сразу несколько других уровней: с одной стороны, молекулярный, синаптический и субклеточный уровни и, с другой стороны, надклеточные уровни: локальных нейронных сетей, нервных центров и крупных фун­кциональных систем мозга, организующих поведение.

Строение нейрона

Сложность функции нейрона обусловливает особенности его строения. В нём различают тело клетки (сома), один длинный, маловетвящийся отросток -аксон и несколько коротких ветвящихся отростков - дендритов.
Аксон отличается большой длиной: от нескольких сантиметров до 1-1,5 м. Конец аксона сильно ветвится, так что один аксон может образовывать контакты с многими сотнями клеток.
Дендриты - обычно короткие, сильно ветвящиеся отростки. От одной клетки может отходить от 1 до 1000 дендритов. По дендритам возбуждение распространяется от рецепторов или контактирующих с этими дендритами нейронов к телу клетки, а по аксону нервные импульсы передаются к другим нейронам или к эффекторным (рабочим)клеткам . На дендритах имеются микроскопических размеров выросты (шипики), которые значительно увеличивают поверхность соприкосновения с другими нейронами. Особого развития шипики достигают на клетках больших полушарий головного мозга. На каждом шипике может быть до 8 синапсов (межклеточных контактов).

Тело нейрона в различных отделах нервной системы имеет различную величину и форму. Тело покрыто мембраной и содержит, как и любая клетка, цитоплазму, ядро с одним или несколькими ядрышками, митохондрии, рибосомы, аппарат Гольджи, эндоплазматическую сеть. По отношению к отросткам тело клетки выполняют трофическую функцию, т.е. регулирует в них уровень обмена веществ. Вот почему отделение аксона от тела нервной клетки или гибель сомы приводят к гибели аксона. Но тело нейрона, лишённое аксона, может вырастить вместо него новый аксон. На рисунке слева вокруг крупного нейрона виды мелкие глиальные клетки (G). Это вспомогательные клетки нервной ткани.

Как работает нейрон и что он делает?

Возбуждение, возникшее в виде нервного импульса на каком-либо участке мембраны нейрона, пробегает по всей его мембране и по всем его отросткам: как по аксону, так и по дендритам. Но вот передаётся возбуждение от одной нервной клетки к другой обычно только в одном направлении - с аксонапередающего нейрона на воспринимающий нейрон через синапсы, находящиеся на его дендритах, теле или аксоне.

Обратите внимание на то, что одностороннюю передачу возбуждения обеспечивают синапсы (контакты нейронов). Нервное волокно (отросток нейрона) может передавать нервные импульсы в обоих направлениях, а односторонняя передача возбуждения появляется только в нервных цепях, состоящих из нескольких нейронов, соединённых синапсами. Именно синапсы обеспечивают одностороннюю передачу возбуждения.

Нервные клетки воспринимают и перерабатывают поступающую к ним информацию. Эта информация приходит к ним, как правило, вовсе не в виде прямых электрический воздействий, а в виде управляющих химических веществ: нейротрансмиттеров. Она может быть в виде возбуждающих илитормозных химических сигналов, а также в виде модулирующих сигналов, т.е. таких, которые изменяют состояние или работу нейрона, но не передают на него возбуждение.

Более подробно смотрите здесь: 3_1 Работа нервных клеток

Перейти в оглавление

Синапсы

Синапсы - там даётся определение синапса.
Аксоны (выносящие возбуждение отростки) у большинства нейронов подходя к другим нервным клеткам ветвятся и образуют многочисленные окончания на этих клетках и их отростках (дендритах и аксонах). Такие места контактов называют синапсами. Аксоны также образуют синаптические окончания и на мышечных волокнах, и на клетках желёз. А аксоны нейронов гипоталамуса могут образовывать контакты также на кровеносных капиллярах, для того чтобы выделять свои химические управляющие вещества (нейротрансмиттеры) в кровь.

Строение синапса



Синапс имеет сложное строение. Так как его образуют две разные клетки, то в его состав входят две мембраны - пресинаптическая (от передающего возбуждение нейрона) и постсинаптическая (от воспринимающего возбуждение нейрона). Между ними есть синаптическая щель с межклеточной жидкостью. Пресинаптическая часть синапса принадлежит аксону. Её можно отличить от постсинаптической части синапса по наличию пузырьков-везикул, заполненных нейротрансмиттером - химическим управляющим веществом, влияющим на постсинаптическое окончание. Постсинаптическая часть синапса отличается уплотнённой постсинаптической мембраной, которую иногда называют также "субсинаптической мембраной". На ней расположены молекулярные рецепторы, с которыми соединяется нейротрансмиттер, выделяющийся из пресинаптического окончания. Нервные окончания в ЦНС имеют вид пуговок или бляшек. Постсинаптическая мембрана находится на теле или дендритах нейрона, на который передаётся нервный импульс. Но существуют также и "аксо-аксональные синапсы", образованные двумя аксонами

Нейронная организация нервной системы

Нейрон является структурной единицей нервной системы. Он является клеткой подобно всем другим клеткам тела; однако определенные существенные отличия позволяют ему выполнять функции переработки информации и функции связи внутри мозга.

Как показано на рис. 1, нейрон состоит из трех частей: тела клетки, дендритов и аксона, каждая часть со своими, но взаимосвязанными функциями. Тело клетки управляет расходом энергии нейрона и регулирует множество других клеточных процессов.

Дендриты получают сигналы от других клеток через контакты, называемые синапсами. Отсюда сигналы проходят в тело клетки, где они суммируются с другими такими же сигналами. Если суммарный сигнал окажется большим порога, клетка возбуждается, дендриты и аксон передают импульсы на следующие клетки. Несмотря на очевидное упрощение, эта схема функционирования объясняет большинство известных процессов мозга.

Дендриты. Большинство входных сигналов от других нейронов попадают в клетку через дендриты, представляющие собой густо ветвящуюся структуру, исходящую от тела клетки. На дендритах располагаются шипиковые — синаптические соединения, которые получают сигналы от других аксонов.


Синаптические контакты представляют собой узкое пространство, называемое синаптической щелью, отделяющее дендрит от передающего аксона. Специальные химические вещества, называемые нейротранс-миттерами, улавливаются специальными рецепторами на дендрите и внедряются в тело клетки. Тело клетки суммирует сигналы, полученные от дендритов и, если их результирующий сигнал выше порогового значения, вырабатывается импульс, проходящий по дендритам и аксону к другим нейронам.

Синаптическая связь, завершающая ветвь аксона, представляет собой маленькие утолщения, содержащие сферические структуры, называемые синаптическими пузырьками, каждый из которых содержит большое количество нейротрансмиттерных молекул — химических веществ возбуждающих мембрану клетки. Когда нервный импульс приходит по аксону, в синапсе некоторые из пузырьков высвобождают свое содержимое — медиатор в синаптическую щель, тем самым инициализируя процесс взаимодействия нейронов.

Аксон. Аксон может быть как коротким (0,1 мм), так и превышать длину 1 м. На конце аксон имеет множество ветвей, каждая из которых завершается синапсом, откуда сигнал передается на другие нейроны или клетки тела. Таким образом, всего один нейрон может генерировать импульс, который возбуждает или затормаживает сотни или тысячи других нейронов, каждый из которых, в свою очередь, через свои дендриты может воздействовать на сотни или тысячи других нейронов. Такая высокая степень связанности обеспечивает нейронной сети вычислительную мощность.

Нервная ткань составляет основу нервной системы, которая объединяет организм в единое целое, выполняет в нем регуляторные и координационные функции, обеспечивает связь с внешней средой, позволяя адаптироваться к условиям существования, а также осуществляет высшую нервную деятельность.

Анатомически н.с. принято разделять на центральную и периферическую, а физиологически - на соматическую и вегетативную.

В основе представлений о том, как устроена нервная система, лежит нейронная теория. Коротко ее можно свести к 4 основным положениям:

Н.с. состоит из отдельных клеток - нейронов.

Нейроны соединены только специализированными контактами синапсами.

Как функциональная единица нейрон находится в состоянии либо возбуждения, либо покоя.

Есть 2 типа синапсов - возбуждающие и тормозные.

Таким образом, центральное место занимает нейрон, но все функции н.с. осуществляет благодаря взаимодействию между отдельными нейронами и их объединению в более или менее сложные нейронные системы (ансамбли). Поэтому нейроны обычно располагаются скоплениями. В ц.н.с. они называются ядра, а в периферической н.с. - узлы или ганглии.

Вопрос 2. Рефлекторная дуга.

Наиболее простая из нейронных систем-рефлекторная дуга, которая рассматривается как морфологическая основа нервной системы.

Рефлекторная дуга - это цепочка связанных синапсами нейронов, по которой импульс поступает от рецептора к исполнительному органу. Простейшая рефлекторная дуга - моносинаптическая - состоит всего из двух нейронов (чувствительного и двигательного) и она крайне редка. Обычно в нее включены еще и вставочные ассоциативные нейроны. Компоненты рефлекторной дуги вам известны: рецептор чувствительный нейрон ассоциативные нейроны - двигательный нейрон — рабочий орган.

В составе периферической н.с. чувствительные нейроны образуют чувствительные ганглии - спинальные и ганглии черепно-мозговых нервов. Имеют сходное строение. Спинномозговой узел снаружи покрыт с.-т. капсулой, по его периферии - скопления чувствительных нейронов, а в центре проходят нервные волокна. Нейроны псевдоуниполярные, тело каждого окружено слоем мантийных глиоцитов, а поверх еще тонкой с.-т. оболочкой. Дендриты заканчиваются рецепторным окончанием, а аксоны

идут в спинной мозг и переключаются на ассоциативные или двигательные нейроны. В составе узла различают крупные светлые клетки и темные мелкие. Предполагают, что первые обслуживают соматическую, а вторые -вегетативную н.с. Набор нейромедиаторов очень разнообразен, в том числе вещество Р, которое передает болевую чувствительность.

В разных отделах нервной системы рефлекторные дуги имеют свои особенности.

Соматическая рефлекторная дуга, иннервирующая скелетные мышцы. Чувствительный нейрон спинального ганглия передает раздражения от кожи или мышечных веретен в спинной мозг. Аксоны входят через задние корешки и прямо тянутся в передние рога, либо заканчиваются в задних рогах на ассоциативных нейронах, которые далее передадут его в передние рога. Двигательные мотонейроны образуют ядра в передних рогах. Это крупные мультиполярные клетки. Их аксоны выходят через передние корешки и в составе смешанного нерва достигают мышцы и образуют на ее волокнах моторные бляшки.

Вегетативная н.с. иннервирует все органы и отвечает за все жизненно

важные функции. Состоит из центрального и периферического отделов.

Центральные отделы - это различные вегетативные центры коры больших

полушарий, подкорковые ядра и ядра ствола мозга, а кроме того вегетативные ядра боковых рогов спинного мозга. Периферическая часть состоит из нервов и вегетативных ганглиев.

Функционально вегетативная система разделяется на симпатическую и парасимпатическую. Грудные и поясничные отделы спинного мозга несут ядра симпатической нервной системы, а крестцовый отдел, а также средний

и продолговатый мозг - ядра парасимпатической н.с.

К симпатической н. с. относятся наравертебральные ганглии, которые образуют цепочки по обе стороны позвоночника и превертебральные ганглии. Это нервные сплетения в области шеи, грудной, брюшной и тазовой областях. Парасимпатические ганглии располагаются рядом с иннервируемым органом или внутри него (интрамуральные ганглии).

Вегетативная рефлекторная дуга устроена своеобразно. Рецепторное звено такое же, как и в соматической. Это чувствительные нейроны спинального ганглия, чьи аксоны заходят по задним корешкам и переключаются на вставочные (преганглионарные) нейроны боковых рогов. Аксоны последних выходят по передним корешкам и называются преганглионарные волокна. Они следуют в вегетативные узлы, где оканчиваются на эффекторных нейронах, чьи аксоны образуют постганглионарные волокна и оканчиваются двигательными окончаниями на гладких мышцах или железах. В симпатической н.с. более длинными являются постгаглионарные волокна, их нейроны являются 'адренэргическими (рабочие органы должны иметь -адренорецепторы) а в парасимпатической н.с. постганглионарные нейроны холинэргические (рабочие органы используют М-холинорецепторы), а их волокна короткие. Поскольку в каждом звене вегетативных дуг используются свои нейромедиаторы и свои рецепторы на воспринимающих структурах, то в современной лечебной практике широко используются лекарственные препараты, которые блокируют определенные рецепторы и сл-но передачу возбуждения, либо, напротив, стимулируют выброс медиатора.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

ВЛАДИВОСТОКСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ЭКОНОМИКИ И СЕРВИСА

ИНСТИТУТ ЗАОЧНОГО И ДИСТАНЦИОННОГО ОБУЧЕНИЯ

по дисциплине Физиология ЦНС

1. Основные положения нейронной теории

2. Структурные элементы нервной клетки

3. Обмен веществ в нейроне

4. Кровоснабжение нервных клеток

6. Основные функции нервных клеток

6.1 Воспринимающая функция нейрона

6.2 Интегративная функция нейрона

6.3 Эффекторная функция нейрона

Список использованных источников

Наше тело – один большой механизм. Он состоит из огромнейшего количества мельчайших частиц, которые расположены в строгом порядке и каждая из них выполняет определённые функции, и имеет свои неповторимые свойства. Этот механизм – тело, состоит из клеток, соединяющих их тканей и систем: Всё это в целом представляет собой единую цепочку, сверхсистему организма. Величайшее множество клеточных элементов не могли бы работать как единое целое, если бы в организме не существовал утончённый механизм регуляции. Особую роль в регуляции играет нервная система. Вся сложная работа нервной системы - регулирование работы внутренних органов, управление движениями, будь то простые и неосознаваемые движения (например, дыхание) или сложные, движения рук человека – всё это, в сущности, основано на взаимодействии клеток между собой, на передаче сигнала от одной клетки к другой. Причем каждая клетка выполняет свою работу, а иногда имеет несколько функций.

Основным структурным элементом нервной системы является нервная клетка или нейрон. Функция нейронов заключается в восприятии сигналов от рецепторов или других нервных клеток, хранении и переработке информации и передаче нервных импульсов к другим клеткам – нервным, мышечным или секреторным. Нейронная теория была разработана в деталях великим испанским нейрогистологом Рамон-и-Кахалем. Именно он, а также итальянский гистолог Камилло Гольджи открыли специфические методы исследования, которые позволили анализировать гистологическую структуру нервной системы, за что оба были удостоены Нобелевской премии в 1906 году. В то время существовало две гипотезы о строении нервной системы – теория сети и нейронная теория. Первую в начале века выдвинул Герлах и поддержал Гельд, Мейнерт и Гольджи, а в последующем активно пропагандировал профессор университета в Страсбурге Альфред Бете и немецкий гистолог Штер, вторую предложили в те же годы Гис и Форель.

1. Основные положения нейронной теории

Вся нервная система построена из нервной ткани. Нервная ткань состоит из нейронов и нейроглии. Нейроглия обеспечивает существование и специфические функции нейронов, выполняет опорную, трофическую, разграничительную и защитную функции. По численности их в 10 тысяч раз больше чем нейронов, и они занимают половину объёма Центральной Нервной Системы. Глиальные клетки окружают нервные клетки и играют вспомогательную роль. Нейрон получает, обрабатывает и передаёт информацию, закодированную в виде электрических и химических сигналов. В коре головного мозга человека их насчитывают, по крайней мере, 14 миллиардов. Каждый нейрон является клеточной единицей, самостоятельной в гистогенетическом, анатомическом и функциональном отношении. Помимо нейронов, каких-либо других элементов, которым можно было бы приписать нервные функции, не существует. Нейроны подразделяют на три группы: афферентные, эфферентные и промежуточные нейроны. Афферентные нейроны (чувствительные) передают информацию от рецепторов в центральную нервную систему. Тела этих Неронов расположены вне центральной нервной системы – в спинномозговых ганглиях и в ганглиях черепно-мозговых нервов. Афферентный нейрон имеет ложноуниполярную форму, т.е. оба его отростка отходят из одного полюса клетки. Далее нейрон разделяется на длинный дендрит, образующий на переифирии воспринимающее образование – рецептор и аксон, входящий через задние рога в спинной мозг. К афферентным нейронам относят также нервные клетки, аксоны которых составляют восходящие пути спинного и головного мозга. Эфферентные нейроны (центробежные) связаны с передачей нисходящих влияний от вышележащих этажей нервной системы к рабочим органам (например, в передних рогах спинного мозга расположены тела двигательных нейронов, или мотонейронов, от которых идут волокна к скелетным мышцам; в боковых рогах спинного мозга находятся клетки вегетативной нервной системы, от которых идут пути к внутренним органам). Для эфферентных нейронов характерны разветвлённая сеть дендритов и один длинный отросток – аксон. Промежуточные нейроны (интернейроны или вставочные) – это, как правило, более мелкие клетки, осуществляющие связь между различными (в частности, афферентными и эфферентными) нейронами. Они передают нервные влияния в горизонтальном направлении (например, в пределах одного сегмента спинного мозга) и в вертикальном (например, из одного сегмента спинного мозга в другие – выше или нижележащие сегменты). Благодаря многочисленным разветвлениям аксона промежуточные нейроны могут одновременно возбуждать большое число других нейронов.

2. Структурные элементы нервной клетки

Различные структурные элементы нейрона имеют свои функциональные особенности и разное физиологическое значение. Нервная клетка состоит из тела, или сомы, и различных отростков. Многочисленные древовидно разветвлённые отростки дендриты служат входами нейрона, через которые сигналы поступают в нервную клетку. Выходом нейрона является отходящий от тела клетки отросток аксон, который передаёт нервные импульсы дальше – другой нервной клетке или рабочему органу (мышце, железе). Форма нервной клетки, длина и расположение отростков чрезвычайно разнообразны и зависят от функционального назначения нейрона.

Среди нейронов встречаются самые крупные клеточные элементы организма. Размеры их поперечника колеблются от 6-7 мк (мелкие зернистые клетки мозжечка) до 70 мк (моторные нейроны головного и спинного мозга).

Внутренняя часть клетки заполнена цитоплазмой, в которой расположены ядро и различные органоиды. Цитоплазма очень богата ферментными системами и белком. Её пронизывает сеть трубочек и пузырьков – эндоплазматический ретикулюм. В цитоплазме также имеются отдельные зёрнышки – рибосомы и скопления этих зёрнышек – тельца Ниссля, представляющие собой белковые образования, содержащие до 50% РНК. Это белковые депо нейронов, где также происходит синтез белков и РНК. При чрезмерно длительном возбуждении нервной клетки, вирусных поражениях ЦНС и других неблагоприятных воздействиях величина этих рибосомных зёрнышек резко уменьшается.

В специальных аппаратах нервных клеток – митохондриях совершаются окислительные процессы с образованием богатых энергией соединений. Это энергетические станции нейрона. В них происходит трансформация энергии химических связей в такую форму, которая может быть использована нервной клеткой. Митохондрии концентрируются в наиболее активных частях клетки. Их дыхательная функция усиливается при мышечной тренировке. Интенсивность окислительных процессов нарастает в нейронах более высоких отделов ЦНС, особенно в коре больших полушарий. Резкие изменения митохондрий вплоть до разрушения, а, следовательно, и угнетение деятельности нейронов отмечаются при различных неблагоприятных воздействиях (длительном торможении в ЦНС, при интенсивном рентгеновском облучении, кислородном голодании и гипотермии).

Психика человека – социально обусловленный феномен, а не естественный продукт мозга. Однако реализуется она естественным, физиологическим субстратом – мозгом.

Функционирование организма как единого целостного образования обеспечивается нервной системой – совокупностью нервных образований.

Вся нервная система делится нацентральную, периферическую и вегетативную. К центральной нервной системе относятсяголовной и спинной мозг. От них по всему телу расходятся нервные волокна – периферическая нервная система. Она соединяет мозг с органами чувств и исполнительными органами – мышцами. Вегетативная нервная система обслуживает внутренние органы и железы.

Все живые организмы обладают способностью реагировать на физические и химические изменения в окружающей среде. Воздействия среды, которые вызывают ответные реакции организма, называютсяраздражителями, илистимулами.

Раздражители среды (свет, звук, запах, прикосновение и т. п.) преобразуются органами чувств, специальными чувствительными клетками-рецепторами внервные импульсы – серию электрических и химических изменений в нервном волокне. Нервные импульсы поприносящим (афферентным) нервным волокнам передаются в спинной и головной мозг. Здесь вырабатываются соответствующие командные импульсы, которые передаются повыносящим (эфферентным) нервным волокнам к исполнительным органам (мышцам, железам) (рис. 1).

Рис. 1. Последствия укуса комара.

Сигнал от рецептора (1) отправляется к спинному мозгу (2), и включившаяся рефлекторная дуга может вызвать отдергивание руки (3). Но сигнал тем временем идет дальше к головному мозгу (4), направляясь по прямому пути в таламус и кору (5) и к ретикулярной формации (6). Последняя активирует кору (7) и побуждает ее обратить внимание на сигнал, о наличии которого она только что узнала. Внимание к сигналу проявляется в движениях головы и глаз (8), что ведет к опознанию раздражителя (9), а затем к программированию реакции другой руки с целью прогнать нежданного гостя (10).

Нервная система обеспечивает интеграцию внешнего воздействия с соответствующей реакцией организма.

Структурной единицей нервной системы является нервная клетка- нейрон. Он состоит из пяти частей:тела клетки, ядра,разветвленных отростков –дендритов (по ним нервные импульсы идут к телу клетки) и одного длинного отростка –аксона (по нему нервный импульс переходит от тела клетки к другим клеткам или эффекторам – мышцам или железам). Аксон имеет множество отростков. Они соединены с дендритами соседних нейронов особыми образованиями –синапсами, которые играют существенную роль в фильтрации нервных импульсов: пропускают одни импульсы и задерживают другие (рис. 2).

Рис. 2. Схема нейрона.

Возбуждение рецептора и других нейронов изменяет мембранный потенциал дендритов (1) и тела клетки (2). Эффекты этих изменений сходятся на аксонном холмике (3). В результате этого нервный импульс начинает распространяться по аксону (4) и его концевым разветвлениям. Это активизирует синаптические концевые луковички – синапсы (5), которые в свою очередь изменяют мембранный потенциал других нейронов или мышечных волокон.

Рис. 3. Три типа нейронов, составляющих нервную систему:

а – двигательные, б – чувствительные, в – центральные, 1 – дендриты, 2 – тело клетки, 3 – аксон.

Действия нейронов взаимосвязаны. Различаются три вида нервных клеток: чувствительные, двигательные, центральные (интернейроны) (рис. 3).

Центральные нейроны осуществляют информационные связи между чувствительными и двигательными нейронами. Они образуют основную массу человеческого мозга. В мозге человека около 20 млрд. нервных клеток, соединенных множеством синапсов.

Информация в нервной системе кодируется в виде биоэлектрохимических импульсов. Поступая от рецепторов или других нейронов, эти импульсы проходят через тело нейрона и, попадая на синаптическую бляшку аксона, открывают проходы через синаптическую щель (промежуток между аксоном одного нейрона и дендритом другого) для нейрогормонов (нейромедиаторов). В. зависимости от соответствия возбужденных нейрогормонов одного нейрона нейрогормонам другого биоэлектрический потенциал переходит или не переходит от аксона на дендрит другой клетки. Таким образом, нейрогормоны позволяют возбуждать постсинаптический нейрон или блокируют передачу импульса, уменьшая возбудимость постсинаптического нейрона. Закодированная в нервном импульсе информация избирательно направляется в определенные нервные ансамбли – функциональные системы.

Сигналы внешней среды анализируются и синтезируются в многочисленных нейронных сетях. В коре мозга имеются связанные между собойсенсорные (чувствительные) иэффекторные (двигательные) зоны. Мозг человека – грандиозная система взаимосвязанных нейронов, материальный субстрат психики: приемник, преобразователь и передатчик закодированной информации.

Строение мозга. Простейшие автоматизированные реакции, связанные с самосохранением, регулируютсяспинным мозгом, находящимся в позвоночном столбе (рис. 4).

Рис. 4. Головной и спинной мозг.

Спинной мозг переходит впродолговатый мозг головного мозга, регулирующий различные процессы жизнеобеспечения в организме – дыхание и др. (рис. 5).

Следующее образование –средний мозг, через который проходят все нервные пути от органов чувств к большим полушариям. Средний мозг регулирует работу органов чувств. Проявление врожденных ориентировочных рефлексов (прислушивание, всматривание) – результат деятельности среднего мозга. В среднем мозге находится сетевидное образование –ретикулярная информация. Импульсы от органов чувств как бы заряжают эту формацию, и она оказывает активизирующее (тонизирующее) влияние на всю кору головного мозга.

Рис. 5. Функционально-системная организация головного мозга.

Белым шнуром расположился в канале позвоночного столба спинной мозг. Его длина около полуметра. Справа и слева от него отходят 32 пары нервов. Они идут в глубь тела, образуя крупные сплетения, от них отходят новые ветви нервов, расходясь по всему телу тонкими нитями. В верхней своей части спинной мозг переходит в продолговатую часть головного мозга. Спинной мозг – отдел центральной нервной системы, центр многих безусловно-рефлекторных реакций: мышечно-двигательных, сосудодвигательных и др.

Над средним мозгом расположенпромежуточный мозг. Он включает в себя таламус, гипоталамус, лимбическую систему и контролирует сложные врожденные реакции: питание, защита, размножение (рис. 5).

Нервная система. Вопросы по нервной системе. Экспресс контроль лекции по теме: Введение в неврологию.. Строение ЦНС, ПНС, нейроны, синапсы…

1. Функции нервной системы

1) Регуляции всех функций организма, а также обеспечивает целостность организма, интеграцию организма (взаимосвязь всех органов и систем).

2) Координация, согласует функции всех органов и систем, связь организма с внешней средой. В процессе эволюции нервная система в первую очередь возникла для связи с внешней средой.

3) Кора головного мозга является основой мышления. У животных образное мышление, у человека мысли в речевой оболочке.

4) Память – хранение информации.

2. Основные этапы эволюции нервной системы

Сначала — гуморальная регуляция — это способность некоторых клеток воспринимать раздражение и проводить импульсы. Затем:

• Сетевидная (диффузная) нервная система (гидра).

• Узловая нервная система. Нервные клетки стали концентрироваться и специализироваться, следовательно, начинается образование нервных узлов и нервов.

• Трубчатая нервная система (хордовые).

• Цефализация – появление головного мозга. Впервые — у низших рыб.

• Кортикализация – на поверхности полушарий большого мозга образуется кора.

Отличие человеческого мозга — речевые центры (сенсорный и моторный), развитие логического мышления. Лобные доли отвечают за развитие интеллекта.

3. Какие факторы обусловили формирование трубчатой нервной системы, цефализацию и кортикализацию?

• Трубчатая нервная система (хордовые). Возникла из-за усложнения двигательной активности.

• Цефализация – появление головного мозга. Впервые — у низших рыб (из-за формирования лидирующего переднего конца, там — органы чувств, это привело к усиленному развитию и появлению головного мозга).

• Кортикализация – на поверхности полушарий большого мозга образуется кора из-за изменения среды обитания (земноводные). У птиц меньше в сравнении с рептилиями.

4. По каким причинам и как осуществляется классификация нервной системы.

По топографии:

• ЦНС – находятся нервные центры.

• ПНС – 31 пара спинномозговых нервов + 12 пар черепных нервов (связь ЦНС с организмом).

По функции:

• соматическая (сознательная) — регуляция функций скелетной мускулатуры

• вегетативная (бессознательная) — регуляция функций внутренних органов, желез, ССС.

СНС и ВНС имеют:
— центры в головном мозге
— нервы в составе черепных нервов
— нервы в составе спинномозговых нервов.

5. Что такое нейрон? Его строение.

Нервная система состоит из нервной ткани. Ткань образуется нервными клетками – нейроны и нейроглии.

Нейрон структурно-функциональная единица нервной системы.

Составляет основу строения нервной системы и обеспечивает возбуждение и проведение.

Нейрон имеет:

• тело (нейролемма, нейроплазма, специфические органоиды). Содержит темный пигмент – меланин (нейроплазма) серого цвета.

а) Дендриты – древовидно ветвящиеся. Их может быть много. Импульс проводит к телу (центростремительно).

б) Аксон – осевой отросток. Есть только конечное ответвление. Импульс проводит от тела. (центробежно).

Отростки заключены в миелиновую оболочку белого цвета (продукт нейроглий).

6. Классификация нейронов по строению.

1) Одноотросчатые (униполярные) – от тела один отросток: палочки и колбочки сетчатки.

2) Двуотросчатые (биполярные) – в сетчатке.

3) Ложные одноотросчатые (псевдоуниполярные) – один отросток делится на дендрит и аксон. Чувствительные узлы спинномозговых и черепных нервов.

4) Многоотросчатые (мультиполярные).

5) Безотросчатые – стволовые нервные клетки эмбриона.

7. Классификация нейронов по функциям.

1) Чувствительные нейроны (афферентные).

  • псевдоуниполярные,
  • тела — в чувствительных узлах спинномозговых и черепных нервов,
  • дендриты на периферии — заканчиваются рецепторами (восприятие раздражения и преобразование в импульс),
  • дендриты проводят импульс центростремительно.

2) Двигательные нейроны (эфферентные).

  • мультиполярные,
  • тела — в двигательных ядрах спинномозговых и черепных нервов,
  • аксоны заканчиваются в мышцах,
  • аксон проводит импульс, происходит сокращение мышцы.

3) Вставочные нейроны (ассоциативные).

  • мультиполярные,
  • тела — в ядрах спинного мозга, ствола конечного мозга, коре,
  • обеспечение связи двух нейронов, тела вставочных нейронов
  • образуют нервные центры (кроме двигательных ядер)

4) Нейросекреторные нейроны – выработка гормонов и регуляция всех функций организма.

8. Узлы, ядра, кора: их сходство и отличия.

Скопление тел имеет три разновидности: узлы, ядра, кора.

Они отличаются по локализации:

  • Узлы – скопление тел на периферии в составе ПНС (за пределами ЦНС).
  • Ядра – скопление тел внутри головного и спинного мозга.
  • Кора – скопление тел на поверхности полушарий.

  • чувствительные,
  • вегетативные.

  • чувствительные,
  • вегетативные,
  • двигательные.

  • чувствительные зоны,
  • двигательные зоны,
  • ассоциативные поля.

9. Что такое нервное волокно. Как образуются нервы и проводящие пути, их назначение.

Скопление отростков образует белое вещество. Существует в виде проводящих путей и нервов.

Проводящие пути – скопление отростков внутри спинного и головного мозга. Связывают различные нервные центры друг с другом. Бывают чувствительными и двигательными.

Нервы – скопление отростков на периферии вне спинного и головного мозга.

Связывают нервные центры со всем организмом. По составу волокон нервы: двигательные, чувствительные, смешанные.

Нервные волокна — это скопление отростков нервных клеток, которые окружены оболочкой из олигодендроцитов (клетки Шванна).

10. На какие делятся по составу волокон нервы и проводящие пути.

• Нисходящие – двигательные нервы:

11. Что такое синапс? Его разновидности.

Синапсы — места контактов нейронов.

Виды (морфологические + функциональные контакты):

  • Аксосоматические,
  • Аксодендритические,
  • Аксоаксиальные,
  • Дендродендритические.

12. Что такое рефлекс? Что является его морфологическим субстратом?

Основа деятельности нервной системы — рефлекс. Это ответная реакция организма на раздражение.

Виды ответной реакции:

Морфологический субстрат рефлексов — рефлекторная дуга. Это цепь нейронов, контактирующих друг с другом в области синапсов.

По количеству нейронов дуги:

• Простые – два или три нейрона,

• Сложные – из большого количества.

13. Начертите схему 3-х нейронной рефлекторной дуги. Чем отличается от рефлекторной дуги рефлекторное кольцо?


В любой рефлекторной дуге есть обратная связь – образуется рефлекторное кольцо, это обеспечивает анализ полученных данных.

Читайте также:

Пожалуйста, не занимайтесь самолечением!
При симпотмах заболевания - обратитесь к врачу.