Участвует в проведении нервного импульса калий

Калий был открыт осенью 1807 года английским химиком Дэви при электролизе твёрдого едкого кали. Увлажнив едкий кали, ученый выделил металл, которому дал название потассий, намекая на производство поташа (необходимого ингредиента для изготовления моющих средств) из золы. Своё привычное название металл получил через два года, в 1809г, инициатором переименования вещества стал Л.В. Гильберт, предложивший название калий (от арабского аль-кали – поташ).


Калий (лат. Kalium) является мягким щелочным металлом, элементом главной подгруппы I группы, IV периода периодической системы химических элементов Д.И. Менделеева, имеет атомный номер 19 и обозначение – К.

Калий в свободном состоянии в природе не встречается, он входит в состав всех клеток. Достаточно распространённый металл, занимает 7-е место по содержанию в земной коре (calorizator). Основными поставщиками калия являются Канада, Белоруссия и Россия, имеющие крупные месторождения данного вещества.

Калий – легкоплавкий металл серебристо-белого цвета. Имеет свойство окрашивать открытый огонь в яркий фиолетово-розовый цвет.

Калий имеет высокую химическую активность, это сильный восстановитель. При реакции с водой происходит взрыв, при длительном нахождении на воздухе полностью разрушается. Поэтому калий требует определённых условий для хранения – его заливают слоем керосина, силикона или бензина, для исключения вредных для металла контактов с водой и атмосферой.

Основными пищевыми источниками калия являются сушёные абрикосы, дыня, бобы, киви, картофель, авокадо, бананы, брокколи, печень, молоко, ореховое масло, цитрусовые, виноград, все зелёные овощи с листьями, листья мяты, семечки подсолнуха. Калия достаточно много в рыбе и молочных продуктах. Вообще, калий входит в состав почти всех растений. Яблочный уксус и мёд – чемпионы по содержанию калия.


Суточная потребность организма человека в калии зависит от возраста, физического состояния и даже места проживания. Взрослым здоровым людям нужно 2,5г калия, беременным женщинам – 3,5г, спортсменам – до 5-ти грамм калия ежедневно. Количество необходимого калия для подростков рассчитывается по весу – 20 мг калия на 1 кг массы тела.

Калий вместе с натрием регулирует водный баланс в организме и нормализует ритм сердца, поддерживает концентрацию и физиологические функций магния.

Калий участвует в процессе проведения нервных импульсов и передачи их на иннервируемые органы. Способствует лучшей деятельности головного мозга, улучшая снабжение его кислородом. Оказывает положительное влияние при многих аллергических состояниях. Калий необходим для осуществления сокращений скелетных мышц. Калий регулирует содержание в организме солей, щелочей и кислот, чем способствует уменьшению отёков.

Калий содержится во всех внутриклеточных жидкостях, он необходим для нормальной жизнедеятельности мягких тканей (мышц, сосудов и капилляров, желез внутренней секреции и т.д.)

Калий всасывается в организм из кишечника, куда поступает с пищей, выводится с мочой обычно в таком же количестве. Излишний калий выводится из организма тем же путём, не задерживается и не накапливается. Препятствиями для нормального всасывания калия могут послужить чрезмерное употребление кофе, сахара, алкоголя.

Калий работает в тесном контакте с натрием и магнием, при росте концентрации калия из организма стремительно выводится натрий, а уменьшение количества магния может нарушить усвоение калия.


Нехватка калия в организме характеризуется мышечной слабостью, быстрой утомляемостью, снижением иммунитета, сбоями в работе миокарда, нарушениями показателей артериального давления, учащённым и затруднённым дыханием. Кожные покровы могут шелушиться, повреждения плохо заживают, волосы становятся очень сухими и ломкими. Происходят сбои в работе желудочно-кишечного тракта – тошнота, рвота, расстройства желудка вплоть до гастрита и язвы.

Переизбыток калия наступает при передозировке препаратов, содержащих калий и характеризуется нервно-мышечными расстройствами, повышенной потливостью, возбудимостью, раздражительностью и плаксивостью. Человек постоянно испытывает чувство жажды, которое приводит к частым мочеиспусканиям. Желудочно-кишечный тракт реагирует кишечными коликами, чередованием запоров и поносов.

Калий в виде основных соединений находит широкое применение в медицине, сельском хозяйстве и промышленности. Калийные удобрения необходимы для нормального роста и вызревания растений, а всем известная марганцовка, это не что иное, как перманганат калия, испытанный временем антисептик.

Комплексное исследование, позволяющее оценить содержание витаминов и микроэлементов, влияющих на состояние и функционирование сердечно-сосудистой системы человека.

Витамины; микроэлементы; сердечно-сосудистая система.

Синонимы английские

Vitamins; minerals; cardiovascular system.

Высокоэффективная жидкостная хроматография.

Какой биоматериал можно использовать для исследования?

Как правильно подготовиться к исследованию?

  • Не принимать пищу в течение 8 часов до исследования, можно пить чистую негазированную воду.
  • Не курить в течение 30 минут до исследования.

Общая информация об исследовании

Нормальное состояние и функционирование сердечно-сосудистой системы зависит от множества причин. Большую роль в нормальной работе системы играют микроэлементы и витамины. Они обеспечивают постоянство клеточного состава, работу кардиомиоцитов, процессов сокращения сердечной мышечной ткани, проведении нервного импульса, состояние сосудистой стенки. К наиболее значимым микроэлементам, влияющим на функционирование сердечно-сосудистой системы, относятся калий (K), натрий (Na), кальций (Сa), магний (Mg), фосфор (P), железо (Fe), цинк (Zn), марганец (Mn), медь (Cu).

Калий является основным внутриклеточным катионом, участвующим в водно-электролитном обмене, поддержании кислотно-основного равновесия. Он взаимодействует с другими электролитами (натрием, хлором, бикарбонатом) и участвует в поддержании заряда мембран клеток, механизмах возбуждения мышечных и нервных волокон. Натрий представляет собой катион, который присутствует во всех жидкостях и тканях организма человека. В наибольшей концентрации, около 96 %, он содержится во внеклеточной жидкости и крови. Изменение уровня калия в сыворотке крови имеет важное клиническое значение, требует своевременных мер диагностики и лечения. Гипокалиемия и гиперкалиемия характеризуются изменениями со стороны работы сердечно-сосудистой системы и имеют специфические проявления при электрокардиографическом исследовании. Повышение уровня калия может приводить к серьезным нарушениям ритма, вплоть до прогрессирующей фибрилляции желудочков сердца.

Кальций к числу важнейших минералов организма человека. Около 99 % ионизированного кальция сосредоточено в костях и лишь менее 1 % циркулирует в крови. Концентрация кальция в цитоплазме значительно превышает его количество во внеклеточной жидкости. Он необходим для нормального сокращения сердечной мышцы, поперечно-полосатых мышц, для передачи нервного импульса, является компонентом свертывающей системы крови, каркаса костной ткани и зубов. Нарушение регуляции метаболизма кальция могут приводить к отклонениям в проводимости нервного импульса, мышечной возбудимости, сократительной способности миокарда и гладких мышц сосудистой стенки. Магний также является компонентом костной ткани, участвует в механизмах мышечных сокращений и проведении нервного импульса. По ряду эффектов является антагонистом кальция. При гипомагниемии возможно появление нарушений сердечного ритма в виде желудочковой экстрасистолии. При гипермагниемии – возникновение брадикардии, атриовентрикулярных блокад. Фосфор в составе органических и неорганических соединений участвует в метаболизме костной ткани, осуществлении нервно-мышечных сокращений, поддержании кислотно-щелочного баланса, в энергетическом обмене. Около 70-80 % фосфора в организме связано с кальцием, формируя каркас костей и зубов, 10 % находится в мышцах и около 1 % в нервной ткани. Клиническая симптоматика при гиперфосфатемии, как правило, обусловлена одновременно развивающейся гипокальциемией.

Железо является микроэлементом, входящим в состав гемоглобина, миоглобина, некоторых ферментов и других белков, которые участвуют в обеспечении тканей кислородом. В плазме крови ионы железа связаны с транспортным белком трансферрином. При дефиците железа развивается такое состояние, как анемия. Она характеризуется слабостью, головокружением, головными болями, одышкой. При повышении концентрации железа наряду с общими симптомами могут отмечаться нарушения сердечного ритма. Цинк – это микроэлемент, необходимый для нормального роста и дифференцировки клеток. Он является кофактором множества ферментов, входит в состав некоторых транскрипционных факторов и стабилизирует клеточные мембраны. При увеличении концентрации цинка отмечаются слабость, лихорадка, симптомы общей интоксикации организма, миалгии, нарушение сердечной деятельности. Марганец – это микроэлемент, необходимый для нормального формирования костной ткани, синтеза белков и регуляции клеточного метаболизма. При его повышении в крови могут отмечаться симптомы общей интоксикации, поражается множество систем и органов, в том числе печень, нервная и сердечно-сосудистая система. Отмечаются нарушения нервно-мышечной проводимости, характеризующиеся различными нарушениями ритма. Медь входит в состав многих ферментов, которые принимают участие в метаболизме железа, формировании соединительной ткани, выработке энергии на клеточном уровне, в нормальном функционировании нервной системы. При избытке меди отмечаются симптомы интоксикации. Недостаток меди может привести к развитию тяжелой анемии, характеризующейся наличием дефектных эритроцитов.

Витамины – это органические низкомолекулярные биологические вещества, которые не синтезируются в организме человека и поэтому должны поступать с пищей. Они обеспечивают нормальные метаболические процессы в организме и играют большую роль в профилактике и лечении многих заболеваний. По биохимическим свойствам все витамины делятся на две группы: жирорастворимые и водорастворимые. Жирорастворимые витамины способны всасываться в кишечнике только при наличии липидов и желчных кислот. Водорастворимые витамины не накапливаются в тканях, и их избыток удаляется из организма с мочой.

Витамин В1 (тиамин-пирофосфат) относится к водорастворимым витамином, является кофактором в реакциях декарбоксилирования аминокислот, превращения пирувата в ацетилкоэнзим А; играет роль в углеводном обмене; принимает участие в передаче нервного импульса. Нарушения в сердечно-сосудистой системе проявляются одышкой, тахикардией, повышением артериального давления, отеками.

Витамин В5 (пантотеновая кислота) является водорастворимым, входит в состав коэнзима А, необходимого для обмена жиров, углеводов, синтеза холестерола, стероидных гормонов, гемоглобина. При недостатке этого витамина поражаются практически все системы и органы организма человека, развивается слабость, потеря веса, анемии, появляются симптомы поражения нервной и костно-мышечной систем.

Витамин В9 (фолиевая кислота) – водорастворимый витамин, необходимый для синтеза нуклеиновых кислот, некоторых аминокислот, белков, фосфолипидов, повышает всасывание витамина В12. При нехватке фолиевой кислоты могут отмечаться нарушения в виде мегалобластной анемии, глоссита, эзофагита, атрофического гастрита, энтерита. Отмечается слабость сосудистой стенки, проявляющаяся кровоточивостью слизистых оболочек.

Витамин В12 (цианокобаламин) относится к группе водорастворимых витаминов. Он необходим для синтеза нуклеиновых кислот, образования эритроцитов, клеточного и тканевого обменов, участвует в поддержании нормального функционирования нервной системы. Недостаточность витамина приводит к развитию злокачественной (пернициозной) макроцитарной анемии.

Витамин Е (токоферол) представляет собой группу из нескольких соединений, относится к группе жирорастворимых витаминов и содержится в растительных маслах, зернах злаковых растений, орехах, зеленых овощах. Данный витамин входит в состав всех органов и тканей организма человека, больше всего его в жировой ткани, печени, мышцах и нервной системе. Витамин Е обладает антиоксидантной функцией, предохраняет от окисления ненасыщенные жирные кислоты, защищая от повреждения липидные структуры клеточных мембран и субклеточные структуры. Участвует в образовании гемоглобина, снижает риск развития атеросклероза и тромбозов. При дефиците данного витамина, в первую очередь, страдают ткани с высокой пролиферативной активностью и высокой интенсивностью процессов окисления: нервная ткань, мышечная ткань, эпителий половых желез, эндометрий, структуры печени, почек. Витамин Е необходим для профилактики и лечения злокачественных опухолей, сердечно-сосудистых заболеваний, атеросклероза. При гипервитаминозе отмечаются нарушения в свертывающей системе крови, тромбоцитопатии.

Для определения количественного состава микроэлементов и витаминов в сыворотке крови используется метод высокоэффективной жидкостной хроматографии. Он относится к современным хроматографическим методам анализа. Хроматография – это метод разделения и определения веществ, основанный на распределении компонентов между двумя фазами – подвижной и неподвижной. Жидкостная хроматография – метод разделения и анализа сложных смесей веществ, в котором подвижной фазой является жидкость. Он позволяет разделить и выявить количественно более широкий круг веществ с различной молекулярной массой и размерами.

Для чего используется исследование?

  • Для диагностики концентрации микроэлементов и витаминов, влияющих на состояние и функционирование сердечно-сосудистой системы человека;
  • для диагностики недостатка или избытка исследуемых микроэлементов/витаминов.

Когда назначается исследование?

  • При симптомах недостатка микроэлементов и/или витаминов, характеризующихся нарушением деятельности сердечно-сосудистой системы;
  • при симптомах токсического действия витаминов и микроэлементов при их избыточном содержании;
  • при клинических признаках моно- или поливитаминной недостаточности, недостаточности микроэлементов в результате нарушения питания, нарушения всасывания, гипотрофиях, при парентеральном питании.

Что означают результаты?

Селен в сыворотке: 23 - 190 мкг/л

Кобальт в сыворотке: 0,1 - 0,4 мкг/л

Хром в сыворотке: 0,05 - 2,1 мкг/л

Цинк в сыворотке: 650 - 2910 мкг/л

Никель в сыворотке: 0,6 - 7,5 мкг/л

Марганец в сыворотке: 0 - 2 мкг/л

Железо в сыворотке: 270 - 2930 мкг/л

Витамин В12 (цианокобаламин): 189 - 833 пг/мл

Витамин B9 (фолиевая кислота): 2,5 - 15 нг/мл

Витамин А (ретинол): 0,3 - 0,8 мкг/мл

Витамин С (аскорбиновая кислота): 4 - 20 мкг/мл

Фосфор: 22 - 517,1 мг/л

  • нарушение метаболизма микроэлементов и витаминов;
  • избыточное поступление микроэлементов;
  • нарушение баланса микроэлементов;
  • пероральное или парентеральное введение препаратов витаминов.

  • недостаточное поступление микроэлементов в организм человека;
  • недостаточное поступление и всасывание витаминов в организме;
  • повышенное использование микроэлементов, нарушение их баланса в организме;
  • повышенное использование витаминов в метаболизме.

Что может влиять на результат?

  • Прием некоторых лекарственных препаратов может влиять на содержание электролитов в исследуемом биоматериале;
  • прием витаминов и витаминсодержащих лекарственных препаратов влияет на истинный результат исследования.


Кто назначает исследование?

Терапевт, врач общей практики, кардиолог, гематолог, невролог, дерматолог.

Литература

  1. Taguchi K, Fukusaki E, Bamba T Simultaneous analysis for water- and fat-soluble vitamins by a novel single chromatography technique unifying supercritical fluid chromatography and liquid chromatography. / J Chromatogr A. 2014 Oct 3;1362:270-7.
  2. Долгов В.В., Меньшиков В.В. Клиническая лабораторная диагностика: национальное руководство. – Т. I. – М. : ГЭОТАР-Медиа, 2012. – 928 с.
  3. Камышников В.С. и др. Методы клинических лабораторных исследований / под ред. В.С. Камышникова.- 3-е изд., перераб. и доп. – М.: МеУДпресс-информ, 2009. – 752 с.: ил.
  4. Fauci, Braunwald, Kasper, Hauser, Longo, Jameson, Loscalzo Harrison’s principles of internal medicine, 17th edition, 2009.

Минеральный обмен – совокупность процессов всасывания, распределения, усвоения и выделения минеральных веществ, находящихся в организма преимущественно в виде неорганических соединений.

Всего в организме обнаруживается свыше 70 элементов таблицы Д.И. Менделеева, 47 из них присутствуют постоянно и называются биогенными. Минеральные вещества играют важную роль в поддержании кислотно-основного равновесия, осмотического давления, системе свертывания крови, регуляции многочисленных ферментных систем и пр., т.е. имеют решающее значение в создании и поддержании гомеостаза.

По количественному содержанию в организме они делятся на макроэлементы, если их больше чем 0,01 % от массы тела (К, Са, М g , Na , P , Cl ) и микроэлементы ( Mn , Zn , Cr , Cu , Fe , Co , Al , Se ). Основную часть минеральных веществ организма составляют хлористые, фосфорнокислые и углекислые соли натрия, кальция, калия, магния. Соли в жидкостях организма находятся в частично или полностью диссоциированном виде, поэтому минеральные вещества присутствуют в виде ионов – катионов и анионов.

Функции минеральных веществ:

1) пластическая (кальций, фосфор, магний);

2) поддержание осмотического давления (калий, натрий, хлор);

3) поддержание буферности биологических жидкостей (фосфор, калий, натрий);

4) поддержание коллоидных свойств тканей (все элементы);

5) детоксикационная (железо в составе цитохрома Р-450, сера в составе глутатиона);

6) проведение нервного импульса (натрий, калий);

7) участие в ферментативном катализе в качестве кофактора или ингибитора;

8) участие в гормональной регуляции (йод, цинк и кобальт входят в состав гормонов).

Промежуточный и конечный обмен минеральных веществ

Поступают минеральные вещества в организм в свободном или связанном виде. Ионы всасываются уже в желудке, основная часть минеральных веществ – в кишечнике путем активного транспорта при участии белков – переносчиков. Из желудочно-кишечного тракта поступают в кровь и лимфу, где связываются со специфическими транспортными белками. Выделяются минеральные вещества главным образом в виде солей и ионов.

С мочой: натрий, калий, кальций, магний, хлор, кобальт, йод, бром, фтор.

С калом: железо, кальций, медь, цинк, марганец, молибден, и тяжелые металлы.

Характеристика отдельных элементов

Натрий – основной катион внеклеточного отдела. Составляет 0.08 % от массы тела. Играет главную роль в поддержании осмотического давления. При отсутствии или ограничении в поступлении натрия в организм его выделение с мочой почти полностью прекращается. Всасывается в верхнем отделе тонкого кишечника при участии белков-переносчиков и требует затраты АТФ. Суточная потребность варьирует в зависимости от водно-солевого обеспечения организма. Депонируется в коже и мышцах. Кишечная потеря натрия происходит при диареях.

1) участвует в возникновении и поддержании электрохимического потенциала на плазматических мембранах клеток;

2) регулирует состояние водно-солевого обмена;

3) участвует в регуляции работы ферментов;

4) компонент K + - Na + насоса.

Хлор – важнейший анион внеклеточного пространства. Составляет 0,06% от массы тела. Большая часть его содержится в желудочном соке. Участвует в поддержании осмотического равновесия. Активирует амилазу и пептидазы. Всасывается в верхних отделах кишечника, выделяется в основном с мочой. Концентрация хлора и натрия обычно изменяются параллельно.

Калий – составляет 0,25% от массы тела. Во внеклеточном пространстве содержится только 2% от общего количества, а остальное - в клетках, где связан с углеводными соединениями. Всасывается на протяжении всего желудочно-кишечного тракта. Часть калия откладывается в печени и коже, а остальная поступает в общий кровоток. Обмен очень быстро протекает в мышцах, кишечнике, почках и печени. В эритроцитах и нервных клетках более медленный обмен калия. Играет ведущую роль в возникновении и проведении нервного импульса. Необходим для синтеза белков (на 1г белка – 20 мг ионов калия), АТФ, гликогена, принимает участие в формировании потенциала покоя. Выделяется в основном с мочой и меньше с калом.

Кальций – внеклеточный катион. Составляет 1,9 % от массы тела. Содержание повышается в период роста или беременности. Функционирует как составная часть опорных тканей или мембран, участвует в проведении нервного импульса и инициации мышечного сокращения, является одним из факторов гемокоагуляции. Обеспечивает целостность мембран (влияет на проницаемость), т. к. способствует плотной упаковке мембранных белков. Кальций ограничено участвует в поддержании осмотического равновесия. Вместе с инсулином активирует проникновение глюкозы в клетки. Всасывается в верхнем отделе кишечника. Степень его усвоения зависит от рН среды (соли кальция в кислой среде нерастворимы). Жиры и фосфаты препятствуют всасыванию кальция. Для полного усвоения из кишечника необходимо наличие активной формы витамина Д3

Большая часть кальция содержится в костной ткани (99%) в составе микрокристаллов карбонатапатита 3Са2(РО4)2 · СаСО3 и гидроксилапатита 3Са2(РО4)2 · СаОН. Общий кальций крови включает три фракции: белоксвязанный, ионизированный и неионозированный (который находится в составе цитрата, фосфата и сульфата).

Магний – составляет 0.05% от массы тела. В клетках его содержится в 10 раз больше, чем во внеклеточной жидкости. Многого магния в мышечной и костной ткани, также в нервной и печеночной. Образует комплексы с АТФ, цитратом, рядом белков.

1) входит в состав почти 300 ферментов;

2) комплексы магния с фосфолипидами снижают текучесть клеточных мембран;

3) участвует в поддержании нормальной температуры тела;

4) участвует в работе нервно-мышечного аппарата.

Неорганический фосфор - содержится преимущественно в костной ткани. Составляет 1% от массы тела. В плазме крови при физиологических рН фосфор на 80 % представлен двухвалентным и на 20 % одновалентным анионом фосфорной кислоты. Фосфор входит в состав коферментов, нуклеиновых кислот, фосфопротеинов, фосфолипидов. Вместе с кальцием фосфор образует апатиты – основу костной ткани.

Медь входит в состав многих ферментов и биологически активных металлопротеинов. Участвует в синтезе коллагена и эластина. Является компонентом цитохрома с электронтранспортной цепи.

Сера – составляет 0.08%. Поступает в организм в связанном виде в составе АК и сульфат-ионов. Входит в состав желчных кислот и гормонов. В составе глутатиона участвует в биотрансформации ядов.

Железо входит в состав железосодержащих белков и гема гемоглобина, цитохромов, пероксидаз.

Цинк – является кофактором ряда ферментов.

Обмен воды и электролитов

Водно-электролитный обмен это совокупность процессов поступления, всасывания, распределения и выделения из организма воды и электролитов. Он обеспечивает постоянство ионного состава, кислотно-основного равновесия и объема жидкостей внутренней среды организма. Ведущую роль в нем играет вода.

1) внутренняя среда организма;

3) всасывание и транспорт веществ;

4) участие в биохимических реакциях (гидролиз, диссоциация, гидратация, дегидратация);

5) конечный продукт обмена;

6) выделение при участии почек конечных продуктов обмена.

Содержание воды в организме варьирует в зависимости от органов и тканей. Мозг – 70-84%, почки – 82%, сердце и легкие – 79%, мышцы – 76%, кожа – 72%, печень – 70%, костная ткань – 10%.

Вода, которая поступает алиментарным (с пищей) путем называется экзогенной, а образовавшаяся в качестве продукта биохимических превращений – эндогенной.

ЛИТЕРАТУРА К ГЛАВЕ IV .13.

1. Бышевский А. Ш., Терсенов О. А. Биохимия для врача // Екатеринбург: Уральский рабочий, 1994, 384 с.;

2. Ленинджер А. Биохимия. Молекулярные основы структуры и функций клетки // М.: Мир, 1974, 956 с.;

3. Пустовалова Л.М. Практикум по биохимии // Ростов-на Дону: Феникс, 1999, 540 с.;

4. Хмельницкий Р. А. Физическая и коллоидная химия // М.: Высш. шк., 1988, 400 с.

[an error occurred while processing this directive]


Кандидат биологических наук Л. Чайлахян, научный сотрудник Института биофизики АН СССР

Мозг человека, без сомнения, высшее достижение природы.

Велика и заманчива цель, но неимоверно сложен объект исследования. Шутка сказать, этот килограмм ткани представляет собой сложнейшую систему связи десятков миллиардов нервных клеток.

Однако первый существенный шаг к познанию работы мозга уже сделан. Может быть, он один из самых легких, но он чрезвычайно важен для всего дальнейшего.

Я имею в виду исследование механизма передачи нервных импульсов — сигналов, бегущих по нервам, как по проводам. Именно эти сигналы являются той азбукой мозга, с помощью которой органы чувств посылают в центральную нервную систему сведения-депеши о событиях во внешнем мире. Нервными импульсами зашифровывает мозг свои приказы мышцам и различным внутренним органам. Наконец, на языке этих сигналов говорят между собой отдельные нервные клетки и нервные центры.

В проблеме изучения механизма нервного импульса и его распространения можно выделить два основных вопроса: природа проведения нервного импульса или возбуждения в пределах одной клетки — по волокну и механизм передачи нервного импульса от клетки к клетке — через синапсы.

Какова природа сигналов, передающихся от клетки к клетка по нервным волокнам?

Этой проблемой человек интересовался уже давно, Декарт предполагал, что распространение сигнала связано с переливанием жидкости по нервам, как по трубкам. Ньютон думал, что это чисто механический процесс. Когда появилась электромагнитная теория, ученые решили, что нервный импульс аналогичен движению тока по проводнику со скоростью, близкой к скорости распространения электромагнитных колебаний. Наконец, с развитием биохимии появилась точка зрения, что движение нервного импульса — это распространение вдоль по нервному волокну особой биохимической реакции.

И всё же ни одно из этих представлений не оправдалось.

В настоящее время природа нервного импульса раскрыта: это удивительно тонкий электрохимический процесс, в основе которого лежит перемещение ионов через оболочку клетки.

Большой вклад в раскрытие этой природы внесли работы трех ученых: Алана Ходжкина, профессора биофизики Кембриджского университета; Эндрью Хаксли, профессора физиологии Лондонского университета, и Джона Экклса, профессора физиологии австралийского университета в Канберре. Им присуждена Нобелевская премия в области медицины за 1963 год,

Впервые предположение об электрохимической природе нервного импульса высказал известный немецкий физиолог Бернштейн в начале нашего столетия.

К началу двадцатого века было довольно многое известно о нервном возбуждении. Ученые уже знали, что нервное волокно можно возбудить электрическим током, причем возбуждение всегда возникает под катодом — под минусом. Было известно, что возбужденная область нерва заряжается отрицательно по отношению к невозбужденному участку. Было установлено, что нервный импульс в каждой точке длится всего 0,001—0,002 секунды, что величина возбуждения не зависит от силы раздражения, как громкость звонка в нашей квартире не зависит от того, как сильно мы нажимаем на кнопку. Наконец, ученые установили, что носителями электрического тока в живых тканях являются ионы; причем внутри клетки основной электролит — соли калия, а в тканевой жидкости — соли натрия. Внутри большинства клеток концентрация ионов калия в 30—50 раз больше, чем в крови и в межклеточной жидкости, омывающей клетки.

И вот на основании всех этих данных Бернштейн предположил, что оболочка нервных и мышечных клеток представляет собой особую полупроницаемую мембрану. Она проницаема только для ионов К + ; для всех остальных ионов, в том числе и для находящихся внутри клетки отрицательно заряженных анионов, путь закрыт. Ясно, что калий по законам диффузии будет стремиться выйти из клетки, в клетке возникает избыток анионов, и по обе стороны мембраны появится разность потенциалов: снаружи — плюс (избыток катионов), внутри — минус (избыток анионов). Эта разность потенциалов получила название потенциала покоя. Таким образом, в покое, в невозбужденном состоянии внутренняя часть клетки всегда заряжена отрицательно по сравнению с наружным раствором.

Бернштейн предположил, что в момент возбуждения нервного волокна происходят структурные изменения поверхностной мембраны, ее поры как бы увеличиваются, и она становится проницаемой для всех ионов. При этом, естественно, разность потенциалов исчезает. Это и вызывает нервный сигнал.

Мембранная теория Бернштейма быстро завоевала признание и просуществовала свыше 40 лет, вплоть до середины нашего столетия.

Но уже в конце 30-х годов теория Бернштейна встретилась с непреодолимыми противоречиями. Сильный удар ей был нанесен в 1939 году тонкими экспериментами Ходжкина и Хаксли. Эти ученые впервые измерили абсолютные величины мембранного потенциала нервного волокна в покое и при возбуждении. Оказалось, что при возбуждении мембранный потенциал не просто уменьшался до нуля, а переходил через ноль на несколько десятков милливольт. То есть внутренняя часть волокна из отрицательной становилась положительной.

Но мало ниспровергнуть теорию, надо заменить ее другой: наука не терпит вакуума. И Ходжкин, Хаксли, Катц в 1949—1953 годах предлагают новую теорию. Она получает название натриевой.

Здесь читатель вправе удивиться: до сих пор о натрии не было речи. В этом все и дело. Ученые установили с помощью меченых атомов, что в передаче нервного импульса замешаны не только ионы калия и анионы, но и ионы натрия и хлора.

В организме достаточно ионов натрия и хлора, все знают, что кровь соленая на вкус. Причем натрия в межклеточной жидкости в 5—10 раз больше, чем внутри нервного волокна.

Что же это может означать? Ученые предположили, что при возбуждении в первый момент резко увеличивается проницаемость мембраны только для натрия. Проницаемость становится в десятки раз больше, чем для ионов калия. А так как натрия снаружи в 5—10 рез больше, чем внутри, то он будет стремиться войти в нервное волокно. И тогда внутренняя часть волокна станет положительной.

А через какое-то время — после возбуждения — равновесие восстанавливается: мембрана начинает пропускать и ионы калия. И они выходят наружу. Тем самым они компенсируют тот положительный заряд, который был внесен внутрь волокна ионами натрия.

Совсем нелегко было прийти к таким представлениям. И вот почему: диаметр иона натрия в растворе раза в полтора больше диаметра ионов калия и хлора. И совершенно непонятно, каким образом больший по размеру ион проходит там, где не может пройти меньший.

Нужно было решительно изменить взгляд на механизм перехода ионов через мембраны. Ясно, что только рассуждениями о порах в мембране здесь не обойтись. И тогда была высказана идея, что ионы могут пересекать мембрану совершенно другим способом, с помощью тайных до поры до времени союзников — особых органических молекул-переносчиков, спрятанных в самой мембране. С помощью такой молекулы ионы могут пересекать мембрану в любом месте, а не только через поры. Причем эти молекулы-такси хорошо различают своих пассажиров, они не путают ионы натрия с ионами калия.

Интересно, что нервные волокна тратят на свою основную работу — проведение нервных импульсов — всего около 15 минут в сутки. Однако готовы к этому волокна в любую секунду: все элементы нервного волокна работают без перерыва — 24 часа в сутки. Нервные волокна в этом смысле подобны самолетам-перехватчикам, у которых непрерывно работают моторы для мгновенного вылета, однако сам вылет может состояться лишь раз в несколько месяцев.

Мы познакомились сейчас с первой половиной таинственного акта прохождения нервного импульса — вдоль одного волокна. А как же передается возбуждение от клетки к клетке, через места стыков — синапсы. Этот вопрос был исследован в блестящих опытах третьего нобелевского лауреата, Джона Экклса.

Возбуждение не может непосредственно перейти с нервных окончаний одной клетки на тело или дендриты другой клетки. Практически весь ток вытекает через синаптическую щель в наружную жидкость, и в соседнюю клетку через синапс попадает ничтожная его доля, неспособная вызвать возбуждение. Таким образом, в области синапсов электрическая непрерывность в распространении нервного импульса нарушается. Здесь, на стыке двух клеток, в силу вступает совершенно другой механизм.

Когда возбуждение подходит к окончанию клетки, к месту синапса, в межклеточную жидкость выделяются физиологически активные вещества — медиаторы, или посредники. Они становятся связующим звеном в передаче информации от клетки к клетке. Медиатор химически взаимодействует со второй нервной клеткой, изменяет ионную проницаемость ее мембраны — как бы пробивает брешь, в которую устремляются многие ионы, в том числе и ионы натрия.

Итак, благодаря работам Ходжкина, Хаксли и Экклса важнейшие состояния нервной клетки — возбуждение и торможение — можно описать в терминах ионных процессов, в терминах структурно-химических перестроек поверхностных мембран. На основании этих работ уже можно делать предположения о возможных механизмах кратковременной и долговременной памяти, о пластических свойствах нервной ткани. Однако это разговор о механизмах в пределах одной или нескольких клеток. Это лишь, азбука мозга. По-видимому, следующий этап, возможно, гораздо более трудный, — вскрытие законов, по которым строится координирующая деятельность тысяч нервных клеток, распознание языка, на котором говорят между собой нервные центры.

Мы сейчас в познании работы мозга находимся на уровне ребенка, который узнал буквы алфавита, но не умеет связывать их в слова. Однако недалеко время, когда ученые с помощью кода — элементарных биохимических актов, происходящих в нервной клетке, прочтут увлекательнейший диалог между нервными центрами мозга.

Детальное описание иллюстраций

Читайте также:

Пожалуйста, не занимайтесь самолечением!
При симпотмах заболевания - обратитесь к врачу.