Беспозвоночных животных нервную систему диффузного типа имеют

Рефераты и конспекты лекций по географии, физике, химии, истории, биологии. Универсальная подготовка к ЕГЭ, ГИА, ЗНО и ДПА!

Типы нервных систем беспозвоночных животных


Нервные клетки и нервная система, как таковая, впервые появляются у кишечнополостных.

Это связано с тем, что среди низших многоклеточных животных они уже достигли определенного уровня организации, а также с их способом добывания пищи. Кишечнополостные - хищники, а овладение добычей и проглатывания ее требует слаженной работы всех клеток тела, т.е. действия животных, как целого.

Наиболее примитивная нервная система кишечнополостных - диффузный - состоит из разбросанных по телу животного отдельных нервных клеток, которые контактируют между собой. Таким образом, все нервные клетки объединены в одно нервное сплетение, которое охватывает все тело животного. Такая нервная система довольно примитивна: в ней нет разделения на центральную и периферическую части, нет длинных проводящих путей, которые состоят только из одних отростков подобное. Такая сетка проводит раздражение по всем направлениям от нейрона к нейрону. Так как каждый из них связан и с двигательными клетками, то волна возбуждения из любой части тела распространяется дальше и сопровождается волной мышечных сокращений.

Тем не менее уже в типе кишечнополостных намечается тенденция к концентрации нервных клеток в области ротового диска, а в коралловых полипах еще в подошве. У медуз образуются нервные сгущения по краям зонтика, а в некоторых местах кольцевого сгущения - еще и скопления нервных клеток - ганглии.
Дальнейшим шагом концентрации нервных элементов и усложнения нервных систем у животных есть ОРТОГОН - прямоугольная решетка из продольных и кольцевых стволов у низших червей. Эволюция ортогона идет в сторону уменьшения количества стволов при смещении все большего количества нервных клеток в мозг. Этот процесс называют ганглионизациею. Он способствует интеграции организма в единое целое.
Наряду с этим постепенно формируется МОЗГ. В плоских червей он может образовываться двояко: либо за счет утолщения одного из первых колец ортогону, либо за счет скопления нервных клеток на переднем конце тела в толще паренхимы.

Такой же тип нервной системы характерен для целого ряда беспозвоночных животных, в частности для круглых червей. Видимо, ортогон следует считать также исходным типом нервной системы моллюсков и кольчатых червей, поскольку личинки последних имеют близкую к нему строение нервной системы.
В большинстве современных моллюсков нервная система упрощена и их мозг развит слабо (за исключением головоногих моллюсков - кальмаров, осьминогов). Все клетки их центрального нервного аппарата собираются в компактные, четкие ганглии (узлы), которые соединены нервами.
У кольчатых червей центральный нервный аппарат состоит из мозга, или надглоточного нервного узла, навкологлотковим нервов и пары нервных стволов, которые расположены под кишкой и соединены с помощью поперечными перетяжками. В большинстве кольчатых червей нервные стволы полностью ганглионизовани, причем в типичном случае в каждом сегменте тела образуется по одной паре ганглиев, которая при этом и иннервирует его.

В примитивных кольчецы брюшные стволы широко расставлены и соединены длинными поперечными отростками так, что образуется "лестничной НЕРВНАЯ СИСТЕМА". В большинстве же происходит укорочение отростков и сближения стволов, что ведет к слива. При этом ЦНС приобретает вид цепочки. Поэтому ее и называют брюшная нервная ЦЕПЬЮ.

Подобный тип нервной системы встречается и у членистоногих. Он лежит глубоко внутри тела и также состоит из мозга, навкологлотковим нервных стволов и брюшной нервной цепочки (рис. . ), но в них состав мозга включаются еще и пара брюшных ганглиев, которые образуют задний отдел мозга.
В отличие от кольчатых червей у членистоногих широкое распространение получает концентрация брюшной нервной цепочки за счет укорочения поперечных отростков и слияние ганглиев. В ряде случаев, например, у раков и насекомых, ганглии концентрируются только в голове и груди, а иннервация брюшка в них осуществляется за счет длинных периферических нервов (рис. . ).

У насекомых особой сложности достигает мозг (надглоточного ганглий). Он состоит из трех ганглиев, которые слились. Первый из них (ПРОТОЦЕРЕБРУМ) является наиболее развитым. В нем есть несколько центров, из которых наибольшее развитие получила пара стволовых, или грибовидных тел. Их считают высоким ассоциативным и координирующим центром нервной системы насекомых. С этим отделом связана и пара очень больших и сложных зрительных долей, которые иннервируют сложные фасеточные глаза. Вторая часть (ДЕЙТЕРОЦЕРЕБРУМ) иннервирует усики, а третья (ТРИТОЦЕРЕБРУМ) - верхнюю губу.
Подглоточный же нервный узел иннервирует ротовые органы и передний отдел кишечника. Он также представляет собой результат слияния трех ганглиев.
Такая концентрация нервной системы высших групп насекомых улучшает нервную управления организмом в целом и способствует общему повышению их организации, а следовательно - лучшему приспособлению их к условиям окружающей среды.

3. РАЗВИТИЕ НЕРВНОЙ СИСТЕМЫ В ФИЛОГЕНЕЗЕ

Для беспозвоночных животных характерно наличие нескольких источников происхождения нервных клеток. У одного и того же типа животных нервные клетки могут одновременно и независимо происходить из трех разных зародышевых листков. Полигенез нервных клеток беспозвоночных является основой разнообразия медиаторных механизмов их нервной системы.

Нервная система впервые появляется у кишечнополостных животных. Кишечнополостные — это двухслойные животные. Их тело представляет собой полый мешок, внутренняя полость которого является пищеварительной полостью. Нервная система кишечнополостных принадлежит к диффузному типу. Каждая нервная клетка в ней длинными отростками соединена с несколькими соседними, образуя нервную сеть. Нервные клетки кишечнополостных не имеют специализированных поляризованных отростков. Их отростки проводят возбуждение в любую сторону и не образуют длинных проводящих путей. Контакты между нервными клетками диффузной нервной системы бывают нескольких типов. Существуют плазматические контакты, обеспечивающие непрерывность сети (анастомозы). Появляются и щелевидные контакты между отростками нервных клеток, подобные синапсам. Причем среди них существуют контакты, в которых синаптические пузырьки располагаются по обе стороны контакта — так называемые симметричные синапсы, а есть и несимметричные синапсы: в них везикулы располагаются только с одной стороны щели.

Нервные клетки типичного кишечнополостного животного гидры равномерно распределены по поверхности тела, образуя некоторые скопления в районе ротового отверстия и подошвы (рис. 8). Диффузная нервная сеть проводит возбуждение во всех направлениях. При этом волну распространяющегося возбуждения сопровождает волна мышечного сокращения.

Рис. 8. Схема строения диффузной нервной системы кишечнополостного животного:

1 — ротовое отверстие; 2 — щупальце; 3 — подошва


Рис. 9. Схема строения диффузностволовой нервной системы турбеллярии:

1 — нервный узел; 2 — глотка; 3 — брюшной продольный ствол; 4 — боковой нервный ствол


Следующим этапом развития беспозвоночных является появление трехслойных животных — плоских червей. Подобно кишечнополостным они имеют кишечную полость, сообщающуюся с внешней средой ротовым отверстием. Однако у них появляется третий зародышевый слой — мезодерма и двусторонний тип симметрии. Нервная система низших плоских червей принадлежит диффузному типу. Однако из диффузной сети уже обособляются несколько нервных стволов (рис. 9, 3, 4).

У свободно живущих плоских червей нервный аппарат приобретает черты централизации. Нервные элементы собираются в несколько продольных стволов (рис. 10, 4, 5) (для самых высокоорганизованных животных характерно наличие двух стволов), которые соединяются между собой поперечными волокнами (комиссурами) (рис. 10, 6). Упорядоченная таким образом нервная система называется ортогоном. Стволы ортогона представляют собой совокупность нервных клеток и их отростков (рис. 10).

1 — щупальцевидный вырост; 2 — нерв, иннервирующий вырост; 3 — мозговой ганглий; 4 — боковой продольный нервный ствол; 5 — брюшной продольный нервный ствол; 6 — комиссура


ганглия появляются длинные отростки, идущие в продольные стволы ортогона (рис. 10, 4, 5).

Таким образом, ортогон представляет собой первый шаг к централизации нервного аппарата и его цефализации (появлению мозга). Централизация и цефализация являются результатом развития сенсорных (чувствительных) структур.

Следующим этапом развития беспозвоночных животных является появление сегментированных животных — кольчатых червей. Их тело метамерно, т.е. состоит из сегментов. Структурной основой нервной системы кольчатых червей является ганглий — парное скопление нервных клеток, расположенных по одному в каждом сегменте. Нервные клетки в ганглии размещаются по периферии. Центральную его часть занимает нейропиль — переплетение отростков нервных клеток и глиальные клетки. Ганглий расположен на брюшной стороне сегмента под кишечной трубкой. Он посылает свои чувствительные и двигательные волокна в свой сегмент и в два соседних. Таким образом, каждый ганглий имеет три пары боковых нервов, каждый из которых является смешанным и иннервирует свой сегмент. Приходящие с периферии чувствительные волокна попадают в ганглий через вентральные корешки нервов. Двигательные волокна выходят из ганглия по дорсальным корешкам нервов. Соответственно этому чувствительные нейроны расположены в вентральной части ганглия, а двигательные — в дорсальной. Кроме того, в ганглии есть мелкие клетки, иннервирующие внутренние органы (вегетативные элементы), они расположены латерально — между чувствительными и двигательными нейронами. Среди нейронов чувствительной, двигательной или ассоциативной зон ганглиев кольчатых червей не обнаружено группирования элементов, нейроны распределены диффузно, т.е. не образуют центров.

Ганглии кольчатых червей соединены между собой в цепочку. Каждый последующий ганглий связан с предыдущим при помощи

1 — надглоточный нервный ганглий;

2 — подглоточный нервный ганглий;

3 — сложный слившийся ганглий грудного сегмента; 4 — брюшной ганглий; 5 — периферический нерв; 6 — коннектива


нервных стволов, которые называются коннективами. На переднем конце тела кольчатых червей два слившихся ганглия образуют крупный подглоточный нервный узел. Коннективы от подглоточного нервного узла, огибая глотку, вливаются в надглоточный нервный узел, который является самой ростральной (передней) частью нервной системы. В состав надглоточного нервного ганглия входят только чувствительные и ассоциативные нейроны. Двигательных элементов там не обнаружено. Таким образом, надглоточный ганглий кольчатых червей является высшим ассоциативным центром, он осуществляет контроль над подглоточным ганглием. Подглоточный ганглий контролирует нижележащие узлы, он имеет связи с двумя-тремя последующими ганглиями, тогда как остальные ганглии брюшной нервной цепочки не образуют связей длинней, чем до соседнего ганглия.

В филогенетическом ряду кольчатых червей есть группы с хорошо развитыми органами чувств (многощетинковые черви). У этих животных в надглоточном ганглии обособляются три отдела. Передний отдел иннервирует щупальца, средняя часть иннервирует глаза и антенны. И наконец, задняя часть развивается в связи с совершенствованием химических органов чувств.

Сходную структуру имеет нервная система членистоногих, т.е. построена по типу брюшной нервной цепочки, однако может достигать высокого уровня развития (рис. 11). Она включает в себя значительно развитый надглоточный ганглий, выполняющий функ-

1 — грибовидное тело; 2 — протоцеребрум; 3 — зрительная лопасть; 4 — дейтоцеребрум; 5 — тритоцеребрум


цию мозга, подглоточный ганглий, управляющий органами ротового аппарата, и сегментарные ганглии брюшной нервной цепочки. Ганглии брюшной нервной цепочки могут сливаться между собой, образуя сложные ганглиозные массы.

Головной мозг членистоногих состоит из трех отделов: переднего — протоцеребрума, среднего — дейтоцеребрума и заднего — тритоцеребрума. Сложным строением отличается мозг насекомых. Особенно важными ассоциативными центрами насекомых являются грибовидные тела, располагающиеся на поверхности протоцеребрума, причем чем более сложным поведением характеризуется вид, тем более развиты у него грибовидные тела. Поэтому наибольшего развития грибовидные тела достигают у общественных насекомых (рис. 12).

Практически во всех отделах нервной системы членистоногих существуют нейросекреторные клетки. Нейросекреты играют важную регулирующую роль в гормональных процессах членистоногих.

В процессе эволюции первоначально диффузно расположенные биполярные нейросекреторные клетки воспринимали сигналы либо отростками, либо всей поверхностью клетки, затем сформировались нейросекреторные центры, нейросекреторные тракты и нейросекреторные контактные области. В последующем произошла специализация нервных центров, увеличилась степень надежности во взаимоотношениях двух основных регуляторных систем (нервной и гуморальной) и сформировался принципиально новый этап регуляции — подчинение нейросекреторным центрам периферических эндокринных желез.

1 — церебральная комиссура; 2 — церебральные ганглии; 3 — педальные ганглии; 4 — коннектива; 5 — висцеральные ганглии


Нервная система моллюсков также имеет ганглионарное строение (рис. 13). У простейших представителей типа она состоит из нескольких пар ганглиев. Каждая пара ганглиев управляет определенной группой органов: ногой, висцеральными органами, легкими и т.д. — и расположена рядом с иннервируемыми органами или внутри их. Одноименные ганглии попарно соединены между собой комиссурами. Кроме того, каждый ганглий связан длинными коннективами с церебральным комплексом ганглиев.

У более высокоорганизованных моллюсков (головоногие) нервная система преобразуется (рис. 14). Ганглии ее сливаются и образуют общую окологлоточную массу — головной мозг. От заднего отдела головного мозга отходят два крупных мантийных нерва и образуют два больших звездчатых ганглия. Таким образом, у головоногих наблюдается высокая степень цефализации.

С тех пор как эволюция подарила появившейся жизни на Земле нервную систему диффузного типа, прошло еще много этапов развития, ставших поворотными пунктами в деятельности живых организмов. Эти этапы друг от друга отличаются по видам и количеству нейрональных образований, по синапсам, по признакам функциональной специализации, по группировкам нейронов, по общности их функций. Основных этапов четыре - так образовывались нервная система диффузного типа, стволового, узлового и трубчатого.


Характеристика

Из наиболее древних - нервная система диффузного типа. Она имеется у таких живых организмов, как гидра (кишечнополостные - медузы, например). Характеризовать такой тип нервной системы можно множественностью связей в соседних элементах, и это позволяет любому возбуждению довольно свободно распространяться во все стороны по нервной сети. Нервная система диффузного типа к тому же обеспечивает взаимозаменяемость, что дает значительно большую надежность функциям, но все эти реакции бывают неточного, расплывчатого характера.

Нервная система узловая типична для ракообразных, моллюсков, червей. Такой тип характерен тем, что возбуждение может проходить только четко и жестко определенными путями, поскольку у них иначе организованы связи нервных клеток. Это гораздо более ранимая нервная система. Если повреждается один узел, нарушаются функции организма полностью. Однако узловой тип нервной системы точнее и быстрее по своим качествам. Если диффузный тип нервной системы характерен для кишечнополостных, то трубчатой нервной системой обладают хордовые, где включены черты и узлового, и диффузного типа. Высшие животные взяли от эволюции все самое лучшее - и надежность, и точность, и локальность, и быстроту реакций.

Как это было

Диффузный тип нервной системы характерен для начальных этапов развития нашего мира, когда взаимодействие живых существ - простейших организмов - осуществлялось в водной среде первобытного океана. Простейшие выделяли некоторые химические вещества, которые растворялись в воде, и таким образом первые представители жизни на планете получали продукты обмена веществ вместе с жидкостью.

Древнейшая форма такого взаимодействия происходила между отдельными клетками многоклеточных организмов посредством химических реакций. Это продукты обмена веществ - метаболиты, они появляются, когда распадаются белки, углекислота и тому подобное, и являются гуморальной передачей влияний, гуморальным механизмом корреляции, то есть связями между разными органами. Характеристикой диффузного типа нервной системы отчасти может служить и гуморальная связь.


Особенности

Диффузный тип нервной системы характерен для организмов, у которых уже известно, куда именно направлено то или иное химическое вещество, поступившее из жидкости. Ранее распространялось оно медленно, действало в малых количествах и либо быстро разрушалось, либо еще быстрее выводилось из организма. Здесь нужно отметить, что гуморальные связи были одни и те же и для растений, и для животных. Когда у многоклеточных появилась нервная система диффузного типа (кишечнополостных, например) на определенной стадии развития живого мира, это уже была новая форма регуляций и связей, качественно отличающая мир растений от мира животных.

И далее во времени - чем выше становилось развитие организма животного, тем более взаимодействовали органы (рефлекторное взаимодействие). Сначала живые организмы имеют нервную систему диффузного типа, а затем в процессе эволюции уже обладают регулирующей гуморальные связи нервной системой. Нервная связь, в отличие от гуморальной, всегда точно направлена не только к нужному органу, но и к определенной группе клеток, связи происходят во многие сотни раз быстрее, чем первые живые организмы распространяли химические вещества. Гуморальная связь с переходом к нервной не исчезла, она подчинилась, и потому возникли нервно-гуморальные связи.


Следующий этап

От диффузного типа нервной системы (существует у кишечнополостных) живые существа ушли, получив специальные железы, органы, вырабатывающие гормоны, которые образуются из пищевых веществ, поступающих в организм. Основными функциями нервной системы являются и регуляция деятельности всех органов друг с другом, и взаимодействие всего организма в целом с внешней средой.

Любое внешнее воздействие окружающая среда оказывает в первую очередь на органы чувств (рецепторы), осуществляясь посредством изменений, которые происходят и во внешней среде, и в нервной системе.

Время шло, нервная система развивалась, и с течением времени сформировался высший ее отдел - головной мозг, большие полушария. Они и стали распоряжаться и распределять всю деятельность организма.

Плоские черви

Нервную систему образует нервная ткань, состоящая из невероятного количества нейронов. Это такие клетки с отростками, считывающие и химическую, и электрическую информацию, то есть сигналы. Например, нервная система плоских червей диффузному типу уже не принадлежит, это тип нервной системы узловой и стволовый.

Скопления нервных клеток у них составляют парные головные узлы со стволами и многочисленными ответвлениями, которые тянутся во все органы и системы. Значит, не диффузного типа нервная система - у планарии (это и есть плоский червь, хищник, который поедает маленьких рачков, улиток). У низших форм плоских червей еще встречается нервная система сетевидная, однако в целом к диффузному типу они уже не относятся.


Кольчатые черви

Также не диффузного типа нервную систему имеют кольчатые черви, она у них гораздо лучше организована: нервного сплетения, которое можно наблюдать у моллюсков, у них нет. Они обладают центральным нервным аппаратом, в составе которого мозг (надглоточный ганглий), окологлоточные коннективы и пара нервных стволов, которые расположились под кишкой и соединились поперечными комиссурами.

У большей части кольчатых червей полностью ганглионизированы нервные стволы, когда в каждом сегменте есть пара ганглиев, иннервирующая собственный сегмент тела. Примитивные кольчатые черви живут с широко расставленными в подбрюшии нервными стволами, соединенными длинными комиссурами. Можно назвать такое строение нервной системы лестничной. Высокоорганизованные представители имеют укорочение комиссур и сближение стволов практически до слияния. Это еще называют брюшной нервной цепью. Нервную систему диффузного типа имеют гораздо более простые живые организмы.

Книдарии

Самая простая диффузная нервная система у стрекающих (книдарий) - плексус, в виде сетки, которая состоит из мультиполярных или биполярных нейронов. Гидроидные имеют ее поверх мезоглеи, в эктодерме, а коралловые полипы и сцифоидные медузы - в энтодерме.

Особенностью такой системы является то, что активность может распространяться в абсолютно любом направлении и из абсолютно любой стимулированной точки. Такой тип нервной системы считается примитивным, однако питается, плавает да и в остальном действует такой организм не очень-то и просто. Стоит посмотреть, как перемещаются актинии на раковины моллюсков.


Медузы, актинии и другие

Помимо нервной сети медузы и актинии имеют систему биполярных длинных нейронов, которые образуют цепочки, поэтому обладают способностью быстрее передавать импульсы без затухания на большие расстояния. Именно это и позволяет им осуществлять хорошую общую реакцию на всевозможные стимулы. Другие группы беспозвоночных могут иметь и нервные сети, и нервные стволы, отмеченные на самых разных участках тела: под кожей, в кишечнике, в глотке, у моллюсков - в ноге, у иглокожих - в лучах.

Однако уже у стрекающих существует тенденция, при которой нейроны концентрируются у ротового диска или в подошве, как у полипов. По краю зонтика у медуз образованы нервные окончания, а в некоторых местах - сгущения на кольце - нервные клетки в больших скоплениях (ганглии). Краевые ганглии на зонтиках медуз - первый шаг к появлению центрального отдела нервной системы.

Рефлекс

Основная форма нервной деятельности - рефлекс, реакция организма на сигнал об изменении внешней или внутренней среды, которая осуществляется с участием нервной системы, отвечая на раздражение рецепторов. Любое раздражение с возбуждением рецепторов пробегает по центростремительным волокнам к центральной нервной системе, далее посредством вставочного нейрона - обратно на периферию уже по центробежным волокнам, точно попадая к тому или иному органу, деятельность которого изменена.

Такой путь - через центр к рабочему органу - называют рефлекторной дугой, и образован он тремя нейронами. Сначала срабатывает чувствительный, затем - вставочный, а напоследок - двигательный. Рефлекс - довольно сложный акт, осуществить его без участия большого числа нейронов не получится. Но в результате такого взаимодействия может осуществиться ответная реакция, организм ответит на раздражение. Медуза, например, обожжет, иногда угостит смертельным ядом.


Первый этап развития нервной системы

У простейших нервная система отсутствует, однако даже некоторые инфузории имеют фибриллярный внутриклеточный возбудимый аппарат. В процессе развития многоклеточные сформировали специальную ткань, которая была способна воспроизводить активные реакции, то есть возбуждаться. Сетевидная система (диффузная) первыми своими подопечными выбрала гидроидные полипы. Именно они вооружились отростками нейронов, диффузно (сетевидно) расположив их по всему телу.

Такая нервная система очень быстро проводит сигнал возбуждения из той точки, где получено раздражение, и этот сигнал несется во всех направлениях. Это придает нервной системе интегративные (свойственные всему организму, объединяющие) качества, хотя ни один фрагмент тела, взятый отдельно, такой особенностью не обладает.

Централизация

Централизация в незначительной степени отмечается уже в диффузной нервной системе. Гидры приобретают нервные уплотнения в областях орального полюса и подошвы, например. Это усложнение происходило параллельно развитию органов движения, а выражалось в обособлении нейронов, когда они из диффузной сети уходили в глубину тела и образовывали там скопления.

Например, у кишечнополостных, свободно живущих (медуз) нейроны скапливаются в ганглии, таким образом формируя нервную систему диффузно-узлового типа. Такой тип возник в первую очередь за счет того, что развивались специальные рецепторы прямо на поверхности тела, которые были способны реагировать избирательно на световые, химические или механические воздействия.


Нейроглия

Живые организмы вместе с вышеперечисленным в процессе эволюции увеличивают и число нейронов, и разнообразие их. Таким образом сформировалась нейроглия. Появились нейроны и двухполюсные, имеющие аксоны и дендриты. Постепенно организмы получают возможность проводить возбуждение направленно. Нервные структуры тоже дифференцируются, передаются сигналы клеткам, которые управляют ответными реакциями.

Так целенаправленно шло развитие нервной системы: одни клетки специализировались на рецепции, другие - на проведении сигнала, а третьи - на ответном сокращении. Дальше последовало эволюционное усложнение, централизация, выработка узловой системы. Появляются кольчатые черви, членистоногие, моллюски. Теперь нейроны сконцентрированы в ганглиях (нервные узлы), которые нервными волокнами крепко связаны между собой с рецепторами и органами исполнения (железами, мышцами).

Дифференциация

Далее происходит разделение деятельности организма на составляющие: пищеварительная, половая, кровеносная и остальные системы обособились, но взаимодействие между ними необходимо, и эту функцию взяла на себя нервная система. Центральные нервные образования значительно усложнились, возникло множество новых, теперь уже в полной зависимости друг от друга.

Околощитовые нервы и ганглии, которые контролируют питание и движение, развились в рецепторы у филогенически высших форм, и они теперь стали воспринимать запах, звук, свет, появились органы чувств. Поскольку главные рецепторы расположились в головном конце, ганглии в этой части туловища развились сильнее, подчинив, наконец, деятельность всех остальных. Именно тогда образовалсчя головной мозг. Например, у кольчатых червей и членистоногих нервная цепочка развита уже очень хорошо.

Сохранились животные, которые не имеют нервной системы. Это – простейшие одноклеточные организмы и примитивные многоклеточные. У одноклеточных животных функции восприятия выполняют особые участки мембраны клетки (хемочувствительные, фоточувствительные), а моторные функции – специальные органы движения (мембранеллы) типа ресничек, жгутиков и т. п.

У таких сложно организованных одноклеточных организмов, как инфузории, обнаружены внутриклеточные органеллы, выполняющие функции анализа поступающей информации (сенсориум) и организации согласованных движений эффекторов (моториум), а также специальные фибриллы (кинотодесмы), по которым передаются команды от моториума к эффекторам. Т.е. у одноклеточных организмов отсутствует необходимость в существовании специализированных клеток, поскольку сам организм является одноклеточным.

У многоклеточных организмов произошла дифференциация клеток тела по их расположению в теле (наружные, промежуточные и внутренние, выстилающие внутреннюю полость), так и по функции.

Часть поверхностных клеток специализировалась на восприятии внешних воздействий и превратилась в чувствительные (рецепторные). Другие клетки приобрели способность сокращаться и, объединившись, создали мышечные слои. И, наконец, появились клетки, специализированные на передаче возбуждения от рецепторов к мышечным клеткам. Это – нервные клетки. Поскольку мышечные клетки образовали мышечные слои, способные выполнять согласованные сокращения, нервные клетки тоже должны были объединиться в систему для их координации. Так развивается нервная система. Чем более совершенны движения животных, тем лучше развита их нервная система. Неподвижные животные (губки) имеют на поверхности вокруг пор отдельные эпителиально-мышечные клетки, которые способны и воспринимать раздражения, и реагировать на них сокращением.

Тем не менее, диффузная сеть с окологлоточным нервным кольцом была относительно медленно действующим устройством. Измеренная проводимость по нервной сети кишечнополостных составляет не более 5-20 см/с. Этого явно не хватает животным размером более 5 см, поэтому уже у актиний выделились участки нервной сети с высокой скоростью проведения (см. рис. 3, в). В некоторых случаях она достигает 150 см/с, что делает актиний изощрёнными охотниками за значительно более эволюционно продвинутыми позвоночными. Окологлоточное нервное кольцо было явным достижением, но оно не могло дифференциально управлять всем телом или обеспечить контроль за свободным плаванием.

У свободно живущих многоклеточных (кишечнополостные) существует сеть нервных клеток, сгущающаяся в тех местах организма, которые выполняют функцию перемещения тела или захвата и заглатывания пищи. Таким образом, у наиболее примитивного представителя кишечнополостных (пресноводной губки) сеть короткоотростчатых нервных клеток сгущается вблизи подошвы, вокруг щупалец и ротового отверстия. У более сложно организованного кишечнополостного (медузы) сеть уплотняется в тяжи, образующие два кольца вокруг колокола (зонтика). Согласованные сокращения мышц колокола медузы позволяют ей перемещаться в воде по принципу реактивного двигателя.

В нервной сети кишечнополостных нейроны соединяются между собой отростками как протоплазматическим (непрерывным), так и эфаптическим (непосредственный контакт между отростками) способами. Обнаружены и настоящие синаптические контакты. Такая организация нервной системы называется сетевидной, или диффузной.

Так, уиглокожих в центре вокруг пищевода нервные клетки, концентрируясь, образуют три нервных кольца, от которых в каждый луч (у морской звезды) отходят соответственно по три нервных ствола. В стволах имеются и тела нервных клеток, связанных с периферической нервной сетью. Справедливо было бы выделить диффузно-узловой тип организации нервной системы, промежуточный между примитивным диффузным и сложным централизованным. Его развитие связано прежде всего с совершенствованием анализаторной функции.

Уже умедуз можно обнаружить скопления нервных клеток в виде узлов (краевые тельца), выполняющих функцию анализа информации, получаемой от органов чувств (глазков, органа равновесия). В связи с концентрацией органов чувств на переднем конце тела у животных с билатеральным строением тела там же скапливаются нервные клетки в виде узла – "головного мозга". Например, уплоских червей от головного узла к переднему концу тела отходят головные нервы к органам чувств (глазам, органам осязания и т. д.), а к заднему – несколько продольных нервных тяжей ("стволов"), соединяющихся между собой поперечными перемычками. Тяжи состоят из длинных отростков нервных клеток, а также из самих нервных клеток с короткими отростками. Подобную конструкцию называют ортагоном. Такое же строение нервной системы и у круглых червей, но у них тяжи начинаются от окологлоточного кольца.

Централизованная узловая (ганглионарная) нервная система дождевого червя представлена окологлоточным нервным кольцом и брюшной нервной цепочкой. В окологлоточном кольце сильно развитые надглоточные ганглии соединены перемычками с менее развитыми подглоточными узлами; которые, в свою очередь, связаны с нервной цепочкой Цепочка состоит из парных ганглиев, располагающихся в каждом сегменте тела червя Головные надглоточные ганглии переплетаются, в основном, с дистантными рецепторами. Однако дальнейшее развитие церебральных (головных) надглоточных ганглиев зависит от развития интегративной (ассоциативной) функции.

У моллюсков имеется несколько пар ганглиев в "стратегически важных" частях тела:

ü церебральные ганглии, связанные преимущественно с рецепторами головы, расположены в головной части тела;

ü педальные (моторные) ганглии – у начала ноги;

ü висцеральные ганглии – вблизи внутренних органов;

ü плевральные ганглии – между головой и ногой. Ганглии соединены между собой нервными стволами, а с периферией – нервами. У двустворчатых моллюсков нервная система менее развита и состоит лишь из трех пар узлов.

Ø у головоногих моллюсков (кальмары, осьминоги, каракатицы) ЦНС является наиболее сложной:

ü головнойганглий у них стал единственным, а все остальные слились с ним, образовав мощную массу нервной ткани (головной мозг). Головной мозг защищен хрящевой капсулой, имеет множество (до 14) долей. Последние осуществляют связь с хорошо развитыми органами чувств и выполняют анализаторную (сенсорную) функцию:

· подглоточные доли, а также базальные доли надглоточного отдела замыкаются на различных мышцах и определяют моторную функцию,

· задним долям мозга свойственны интегративные (ассоциативные) функции.

Функции головного мозга головоногих моллюсков и позвоночных животных совпадают. Задние доли по своим функциям и свойствам сходны с ассоциативной корой млекопитающих.

ü нижнего (окологлоточного) – тритоцеребрума,

ü среднего – дейтероцеребрума;

У ракообразных ЦНС имеет головные (надглоточные и подглоточные) ганглии и цепочку их в головогруди. У некоторых раков цепочка ганглиев сливается в один крупный узел, у паукообразных вместе с надглоточным ганглием она образует в головогруди сложноорганизованный мозг с большим количеством нервных клеток.

У насекомых нервная система кроме головного мозга имеет цепочку парных ганглиев, которые объединяются в крупные узлы:

ü брюшные узлы выполняют преимущественно висцеральные функции,

ü грудные – моторные функции (организация движения ног и крыльев).

Сенсорные же (анализаторные) и интегративные (ассоциативные) функции контролируются у насекомых головным мозгом.

Читайте также:

Пожалуйста, не занимайтесь самолечением!
При симпотмах заболевания - обратитесь к врачу.