Болезни нервной регуляции патофизиология

Патофизиология. Том 2

Под ред. В.В. Новицкого, Е.Д. Гольдберга, О.И. Уразовой

Библиография:

Патофизиология : учебник : в 2 т. / под ред. В.В. Новицкого, Е.Д. Гольдберга, О.И.

Уразовой. - 4-е изд., перераб. и доп. - ГЭОТАР-Медиа, 2009. - Т. 2. - 640 с. : ил.

Учебник подготовлен коллективом авторов - ведущими патофизиологами России и стран

СНГ (Украина, Грузия). В его создании принимали участие известные педагоги -

представители московской, томской, казанской, харьковской и тбилисской научных школ

патофизиологов, а также крупнейшие специалисты, работающие в научно-

исследовательских институтах Российской академии медицинских наук.

Настоящее издание является практически полностью переработанным и дополненным

вариантом учебников "Патологическая физиология" под редакцией А.Д. Адо и В.В.

Новицкого (Томск, 1994 г.) и "Патофизиология" под редакцией В.В. Новицкого и Е.Д.

Гольдберга (Томск, 2001, 2006 гг.).

Второй том посвящен патологической физиологии органов и систем. Существенно

изменены и дополнены разделы по патофизиологии кроветворной, дыхательной и

пищеварительной систем, опухолевого роста, типовых нарушений обмена веществ. В

значительной степени пересмотрены и дополнены другие главы учебника.

Для студентов медицинских вузов (всех факультетов).

ЧАСТЬ III ПАТОФИЗИОЛОГИЯ ОРГАНОВ И СИСТЕМ ГЛАВА 14

ПАТОФИЗИОЛОГИЯ СИСТЕМЫ КРОВИ

ГЛАВА 15 ПАТОФИЗИОЛОГИЯ СЕРДЕЧНО- СОСУДИСТОЙ СИСТЕМЫ

ГЛАВА 16 ПАТОФИЗИОЛОГИЯ ДЫХАНИЯ

ГЛАВА 17 ПАТОФИЗИОЛОГИЯ ПИЩЕВАРЕНИЯ

ГЛАВА 18 ПАТОФИЗИОЛОГИЯ ПЕЧЕНИ

ГЛАВА 19 ПАТОФИЗИОЛОГИЯ ПОЧЕК

ГЛАВА 20 ПАТОФИЗИОЛОГИЯ ЭНДОКРИННОЙ СИСТЕМЫ

ГЛАВА 21 ПАТОФИЗИОЛОГИЯ НЕРВНОЙ СИСТЕМЫ

ГЛАВА 22 ПАТОФИЗИОЛОГИЯ ВЫСШЕЙ НЕРВНОЙ ДЕЯТЕЛЬНОСТИ

АВТОРСКИЙ КОЛЛЕКТИВ

Академики РАМН: А.Д. Адо, И.Г. Акмаев, Н.П. Бочков, Ю.А. Владимиров, Е.Д.

Гольдберг, Г.Н. Крыжановский, А.А. Кубатиев, В.А. Неговский, В.В. Новицкий, В.П.

Пузырев, М.М. Хананашвили.

Члены-корреспонденты РАМН: З.С. Баркаган, Н.Е. Кушлинский, Ю.Б. Лишманов, Г.В.Порядин, С.Б. Ткаченко;

Профессоры: М.Б. Баскаков, Э.И. Белобородова, В.Т. Долгих, В.В. Долгов, Н.А.

Клименко, В.В. Климов, В.С. Лаврова, Л.Н. Маслов, Г.И. Мчедлишвили, Н.П. Пирогова, В.И. Пыцкий, Е.А. Степовая, Ф.Ф. Тетенев, О.И. Уразова, Б.М. Федоров, Т.С. Федорова, О.Ю. Филатов, И.А. Хлусов.

Доценты: С.Э. Бармина, Г.В. Бурлаков, Л.М. Далингер, О.Б. Запускалова, М.Ю. Хлусова, Е.Н. Чернова

СПИСОК СОКРАЩЕНИЙ

АДГ - антидиуретический гормон АДФ - аденозидифосфат

АИГА - аутоиммунная гемолитическая анемия АКМ - альвеолярно-капиллярная мембрана

АКТГ - адренокортикотропный гормон АлАТ - аланинаминотрансфераза АМФ -

АПТВ - активированное парциальное тромбопластиновое время АПФ -

ангиотензинпревращающий фермент АсАТ (АСТ) - аспартатаминотрансфераза АТ -

АТ-рТТГ - антитела к рецептору тиреотропного гормона

АТ-ТГ - антитела к тиреоглобулину

АТ-ТПО - антитела к тиреопероксидазе

АФК - активные формы кислорода

АФС - антифосфолипидный синдром

АХЗ - анемия хронических заболеваний

Ацетил-КоА - ацетил-коэнзим А

АЭС - атомная электростанция

БАВ - биологически активные вещества

БОЕ-Э - бурстобразующая единица эритроцитов

БТШ - белок теплового шока

ВИП - вазоактивный интестинальный полипептид

ВИЧ - вирус иммунодефицита человека

ВМК - высокомолекулярный кининоген

ВОЗ - Всемирная организация здравоохранения

ГАМК - γ-аминомасляная кислота

ГБН - гемолитическая болезнь новорожденного

ГЗТ - гиперчувствительность замедленного типа

ГИМ - гемопоэзиндуцирующее микроокружение

ГИП - гастринингибирующий пептид

Г-КСФ - гранулоцитарный колониестимулирующий фактор ГЛП - гиперлипопротеинемия

ГЛЮТ - глюкозный транспортер

ГМ-КСФ - гранулоцитарно-макрофагальный колониестимулирующий фактор

ГОМК - γ-оксимасляная кислота ГОЭ - гормон-отвечающий элемент ГП - гликопротеин

ГПП - глюкагоноподобный пептид

ГПУВ - генератор патологически усиленного возбуждения

ГР - глюкокортикоидный рецептор

Гр - грэй, единица измерения дозы облучения

ГСИК - гормон, стимулирующий интерстициальные клетки

ГТГ - гонадотропный гормон

ГТТ - глюкозотолерантный тест

ГУС - гемолитико-уремический синдром

ГЭБ - гематоэнцефалический барьер

ДL - диффузионная способность легких

ДВС - диссеминированное внутрисосудистое свертывание

ДГР - дуоденогастральный рефлюкс

ДНК - дезоксирибонуклеиновая кислота

ДНТК - диффузный ноцицептивный тормозной контроль

ДО - дыхательный объем

ДПК - двенадцатиперстная кишка

ЕК - естественные (или натуральные) киллеры

ЖЕЛ - жизненная емкость легких

ЖКТ - желудочно-кишечный тракт

ИБС - ишемическая болезнь сердца

ИВЛ - искусственная вентиляция легких

ИГА - индекс гистологической активности

ИК - иммунный комплекс

ИМТ - индекс массы тела

иРНК - информационная рибонуклеиновая кислота ИФР - инсулиноподобный фактор

роста КОЕ-Ба - колониеобразующая единица базофилов КОЕ-Г - колониеобразующая

единица гранулоцитов КОЕ-ГМ - колониеобразующая единица гранулоцитов и

макрофагов КОЕ-ГЭММ - колониеобразующая единица гранулоцитов, эритроцитов,

макрофагов, мегакариоцитов КОЕ-М - колониеобразующая единица макрофагов КОЕ-

Мгкц - колониеобразующая единица мегакариоцитов КОЕ-Н - колониеобразующая

единица нейтрофилов КОЕс - колониеобразующая единица селезенки КОЕ-Э -

колониеобразующая единица эритроцитов КОЕ-Эо - колониеобразующая единица

эозинофилов КОС - кислотно-основное состояние КСМ - кислые сульфатированные

мукополисахариды КФК - креатинфосфокиназа ЛГ - лютеинизирующий гормон ЛДГ -

лактатдегидрогеназа ЛП - липопротеины

ЛП-липаза - липопротеиновая липаза

α-ЛП - α-липопротеины (липопротеины высокой плотности) β-ЛП - β-липопротеины

(липопротеины низкой плотности) ЛПВП - липопротеины высокой плотности ЛПНП -

липопротеины низкой плотности ЛПОНП - липопротеины очень низкой плотности ЛППП -

липопротеины промежуточной плотности ЛПС - лихорадоподобное состояние ЛПТ - липотрофин

ЛЭО - лейко-эритробластическое отношение

МАИР - Международное агентство по изучению рака

МВБ - макрофагальный воспалительный белок

МВЛ - максимальная вентиляция легких

МВПР - множественные врожденные пороки развития

Мег-КСФ - мегакариоцитарный колониестимулирующий фактор

М-КСФ - макрофагальный колониестимулирующий фактор

МОД - минутный объем дыхания

МОК - минутный объем крови

мРНК - матричная рибонуклеиновая кислота

МСГ - меланоцитстимулирующий гормон

мтДНК - митохондриальная ДНК

МФЗ - мультифакториальное заболевание

МХБ - макрофагальный хемоаттрактантный белок

НПС - нижний пищеводный сфинктер

НЭЖК - неэтерифицированные жирные кислоты

ОБЭ - относительная биологическая эффективность

Расстройство функциональных систем, то есть недостаточность полезного приспособительного результата как системообразующего фактора определенной системы, может быть не только следствием недостатка в органах нормальных клеток, а также дефицита массы и энергии в клеточных эффекторах функций Расстройства функциональных систем могут быть следствиями нарушений регуляции организма нервной системой. В таких случаях говорят о болезнях нервной регуляции. При данных болезнях расстройства в системах нервной регуляции функциональных систем выступают ведущим звеном патогенеза. При этом патогенные влияния со стороны систем регуляции на органы-эффекторы определяют в последних одностороннюю экспрессию генома клеток как причину альтерации тканей, а также дефицита массы и энергии в клетках, что снижает пластичность полезного приспособительного результата всей функциональной системы.
В основном патогенез болезней нервной регуляции связан с формированием в центральной нервной системе (ЦНС) патологических детерминант и систем.
К болезням нервной регуляции можно отнести:
1. Некоторые виды сердечных артимий.
2. Первичную артериальную гипертензию.
3. Дискинезию желчных путей.
4. Бронхиальную астму (неаллергическую).
5. Неинсулинзависимый сахарный диабет.
6. Панические атаки с артериальной гипотензией и диспноэ.
Общий патогенез нарушений доминантных отношений в ЦНС. Отличие физиологической доминанты от патологической. Реализация принципа доминанты в норме и при патологии
Согласно определению А. А. Ухтомского, доминанта — это господствующие в данный момент в центральной нервной системе центр, констелляция центров или физиологическая система нервной регуляции. Деятельность доминанты сопровождается сопряженным торможением других тесно связанных с нею нервных образований. Такое сопряженное торможение происходит через:
1. Тормозящее влияние со стороны самой доминанты.
2. Избирательное торможение со стороны систем общего интегративного контроля в центральной нервной системе.
Через доминантные внутрицентральные отношения происходит образование центрального аппарата функциональной системы. В соответствии с принципом доминанты внутри центральной нервной системы происходит реализация межсистемных отношений.
Патологию доминантных отношений составляют:
♦ Недостаточность сопряженного торможения как причина невозможности образования новой функциональной системы, в том числе систем адаптации, компенсации и саногенеза.
♦ Чрезмерное торможение как причина нарушения или невозможности системообразования и структурно-функционального закрепления функциональной системы.
Если в определенной совокупности нейронов доминанты и связанных с нею отделов центральной нервной системы недостаточно сопряженное торможение, то активированная совокупность нейронов распространяется на нейрональные сети, подлежащие локальному торможению ради физиологического системогенеза, что извращает физиологический смысл формирования доминанты и обуславливает возникновение патологической системы.
Генератор патологически усиленного возбуждения. Определение, общепатогенетическое значение
Генератор патологически усиленного возбуждения в центральной нервной системе — это интегрированная совокупность гиперактивированных нейронов, которая генерирует исходящий от данной совокупности избыточно интенсивный и продуцируемый вне зависимости от деятельности интегрирующих систем регуляции неконтролируемый поток импульсов. Формирование и дальнейшее развитие генератора — это типовой патологический процесс, происходящий через действие эндогенных механизмов межнейронального уровня. Необходимое условие формирования и деятельности генератора — это недостаточность тормозных механизмов в популяции его нейронов.
Процесс возникновения генератора индуцируется первичным нарушением тормозных механизмов в результате взаимодействия организма с этиологическим фактором, а также усиленным возбуждением нейронов (значительная и устойчивая деполяризация), которое обуславливает вторичную недостаточность тормозных механизмов.
В патологической констелляции супрасегментарных нейронов, составляющих генератор патологически усиленного возбуждения, межнейрональные взаимодействия обеспечивают его устойчивость, распространение и развитие и осуществляются несинаптическими и синаптическими механизмами. В результате межнейрональных взаимодействий генератор приобретает способность развивать самоподдерживающуюся активность, которая не зависит от специальной стимуляции. Патогенетическое значение генератора патологически усиленного возбуждения состоит в том, что он обуславливает избыточную активацию тех отделов центральной нервной системы, где локализованы популяции нейронов генератора патологически усиленного возбуждения. В результате данные отделы приобретают значение патологических детерминант, вызывающих образование патологических систем.
Генераторы могут возникать в разных отделах центральной нервной системы, то есть имеют значение универсального патогенетического механизма.
Специфика деятельности генераторов во многом определяет особенности соответствующих нейропатологических синдромов, имеющих генераторную природу. Действие первичного генератора служит причиной образования генератора вторичного, что способствует резистентности патологических систем. Кроме генераторов патологически усиленного возбуждения источниками патологической стимуляции других отделов могут становиться различные патологически измененные образования периферической или центральной нервной системы.

20.1. ЭТИОЛОГИЯ И ПАТОГЕНЕЗ НЕРВНЫХ РАССТРОЙСТВ

20.1.1. Причины и условия возникновения нарушений деятельности нервной системы

Патогенные факторы, вызывающие повреж­дения нервной системы (НС) и нарушение ее деятельности, имеют экзогенную либо эндоген­ную природу. Экзогенные патогенные факто­рымогут быть специфически, избирательно нейротропными,поражающими определенные структуры НС, и неспецифическими,повреж­дающими не только нервные, но и другие тка­невые элементы. К экзогенным факторам, пора­жающим нервную систему, относятся биологи­ческие возбудители: вирусы (бешенство, поли­омиелит), микробы (лепра), растительные ток­сины (стрихнин, кураре), микробные токсины (ботулинический, столбнячный), спирты (этило­вый, метиловый), ядохимикалии (хлорофос), отравляющие вещества и др. Специфическим для человека патогенным фактором является слово. Оно может вызвать нарушения психической де­ятельности, поведения, расстройства различных функций. Нарушения деятельности нервной си­стемы и нервной регуляции функций могут быть вызваны условнорефлекторно.

Эндогенные патогенные факторыделятся на первичные и вторичные. К первичнымотносятся наследственные нарушения деятельности гене­тического и хромосомного аппаратов нейронов, с ними связаны наследственные болезни нервной системы (болезнь Дауна, эндогенные психозы и др.), нарушения кровообращения в различных отделах ЦНС, ишемия и др.

К вторичнымэндогенным патогенным воз­действиям относятся те, которые возникают в самой нервной системе после повреждающего действия первичных агентов в ходе развития патологического процесса. Это - изменения ней­ронов, нарушение выделения и рецепции ней-ромедиаторов, приобретенные альтерации гено­ма нейронов, изменения межнейрональных от-

ношений, нервной трофики и др. Универсаль­ное патогенетическое значение имеет формиро­вание агрегатов гиперактивных нейронов, пред­ставляющих собой генераторы патологически усиленного возбуждения (сокращенно - генера­торы), образование патологических детерминант и патологических систем. Важную роль патоген­ного фактора играют антитела к нервной ткани, образующиеся, как правило, на более поздних стадиях патологического процесса.

Возникновение вторичных эндогенных пато­генных факторов означает этап эндогенизациипатологического процесса. На этом этапе непос­редственной причиной развития процесса явля­ются уже не первичные, а вторичные эндоген­ные механизмы, присущие самой измененной нервной системе. Однако этиологические перво­причины и на этом этапе не теряют своего зна­чения - их патогенное действие ведет к новым повреждениям, к усилению уже возникших или к появлению новых вторичных эндогенных па­тогенных механизмов.

Понимание указанных особенностей патоге­неза и знание механизмов каждой стадии раз­вития патологического процесса необходимы для проведения адекватной патогенетической тера­пии. Так, бесполезно лечить вызванные столб­нячным токсином поражения ЦНС только про­тивостолбнячной сывороткой, нейтрализующей столбнячный токсин, так как последний уже связался с нервными элементами и вызвал соот­ветствующие изменения в ЦНС (в частности, повреждение белков, участвующих в выделении тормозных передатчиков). Терапия на этой ста­дии должна быть направлена на устранение по­следствий действия столбнячного токсина (по­давление гиперактивности нейронов, борьба с с УД°Р° г ами и др.). Применение противостолб­нячной сыворотки на данной стадии необходи­мо для нейтрализации новых порций столбняч­ного токсина, продуцируемого в ране столбняч­ной палочкой.

Реализация патогенных воздействий зависит от их силы и продолжительности - чем сильнее и длительнее эти воздействия, тем значительнее их эффект. Однако даже слабые патогенные воз-Часть III. ПАТОФИЗИОЛОГИЯ ОРГАНОВ И СИСТЕМ

Факторы, не вызывающие патологии исход­но нормальной нервной системы, могут приоб­рести патогенное значение для нервной систе­мы, измененной предыдущими патологически­ми процессами, при генетически обусловленной предрасположенности, при повышенной возбу­димости и пр. Лимбические структуры, в част­ности гиппокамп, более других способны разви­вать и удерживать патологическую гиперактив­ность, которая может быть вызвана даже одно­кратным патогенным воздействием.

Важную роль в сохранении патологических эффектов играет пластичность нервной систе­мы- способность закреплять возникшие изме­нения. Это свойство имеет существенное значе­ние для нормальной деятельности нервной сис­темы. Оно обеспечивает возможность ее разви­тия, образования новых связей, обучения, струк­турных перестроек и др. Однако пластичность -слепая сила, она закрепляет не только биологи­чески полезные, но и патологические изменения, которые играют роль патогенного фактора. Бла­годаря пластичности закрепляются возникшие структурно-функциональные патологические изменения в нервной системе (например, синап-гические нарушения, образовавшиеся генера­торы возбуждения, патологические системы и др.). С пластичностью связаны во многих случа­ях хронизация патологического процесса и его устойчивость к лечебным воздействиям.

20.1.2. Две стороны патогенеза
нервных расстройств

На уровне межнейрональных отношений та­кой интеграцией является агрегат гиперактив­ных нейронов, на уровне межклеточных отно­шений - новая патодинамическая организация, состоящая из измененных отделов ЦНС - пато­логическая система. Таким образом, собственно патологическая часть процесса характеризуется не только разрушением, но и формированием патологических интеграции - агрегата нейронов и патологической системы: происходит разруше­ние физиологических и формирование патоло­гических систем.

20.1.3. Поступление патогенных
агентов в нервную систему

Существуют два основных пути поступления патогенных агентов в ЦНС - из крови(через сосудистую стенку) и по нервным стволам.

В первом случае патогенный агент (токсичес­кое вещество, вирусы, микробы и др.) должен преодолеть гематоэнцефалический барьер (ГЭБ), который образуется сосудистой стенкой (эндоте-лиоцитами), а также глиальными элементами (астроцитами). ГЭБ осуществляет активный и избирательный транспорт из крови в мозг пита­тельных и других биологически активных ве­ществ, необходимых для деятельности мозга. Одновременно он защищает мозг от непосред­ственного действия находящихся в крови пато­генных агентов. У плодов и новорожденных ГЭБ более проходим. Ряд токсических агентов (стрих-



Рис. 182. Продвижение столбнячного токсина по невральному пути и развитие местного столбняка. Токсин, введенный в икроножную мышцу крысы, поступает отсюда через мионевральный синапс в двигательные волокна и по ним, через передние корешки, достигает передних рогов люмбосакраль-ных сегментов спинного мозга, где действует на систему эфферентного выхода (мотонейроны и связанные с ними вставочные нейроны), нарушая тормозные механизмы этих нейронов. Вследствие этого указанные нейроны растормаживаются, гиперактивируются и образуют генератор патологи­чески усиленного возбуждения, который продуциру­ет поток импульсов: последние поступают по двига­тельным волокнам в мышцу и вызывают повышение электрической активности (ЭА) и тоническое сокращение (гипертонус) мышцы. Скорость и интенсивность развития процесса зависят от дозы столбнячного токсина. При избранной болезнетвор­ной дозе токсин достигает передних рогов у крысы через 9 ч; в этот период в мышце впервые регистри­руется незначительная ЭА, сохраняющаяся после активности, вызванной нанесением раздражения (сдавливание стопы). С течением времени по мере поступления токсина в передние рога и увеличения мощности генератора продуцируемый им поток импульсов усиливается, ЭА в мышце возрастает, появляется небольшой (+) гипертонус мышцы. Участки нерва, переднего корешка и переднего рога, содержащие столбнячный токсин, затемнены

нин, спирты, некоторые фармакологические пре­параты) сравнительно хорошо проходит ГЭБ. Для биологических возбудителей (вирусы, микробы) в норме ГЭБ практически непроницаем. Однако в условиях патологии, при действии ряда физи­ческих и химических факторов возникает пато­логическая проницаемость ГЭБ, что приводит к утяжелению текущего или возникновению но­вого патологического процесса. Так, сильный длительный стресс способствует поступлению вируса гриппа в мозг.

Путями поступления ряда патогенных аген­тов в ЦНС являются нервные стволы. Невраль-ный путь характерен для столбнячного токсина, вирусов полиомиелита, бешенства и др. Вход­ными воротами для столбнячного токсина явля­ется мионевральный синапс, откуда токсин по­ступает по двигательным волокнам в спинной и продолговатый мозг (рис. 182). В ЦНС токсины (столбнячный), вирусы, антитела к нервной тка­ни могут распространяться от нейрона к нейро­ну внутри нервных отростков (с аксотоком) и по межнейрональным пространствам. Этот невраль-ный путь является одним из механизмов гене­рализации патологических процессов.

20.1.4. Механизмы защиты нервной системы

К тканевым барьерным механизмам следует добавить также защитную функцию различных оболочек мозга и нервов. Защиту нейрона и его отростков обеспечивают окружающие глиальные и шванновские клетки, а также мембрана само­го нейрона. Нервная система защищена также иммунологическим барьером, который состоит из клеточных и гуморальных механизмов общей иммунной системы организма и собственной иммунной системы ЦНС, куда входят иммуно-циты и глиоциты; последние способны превра­щаться в макрофаги и осуществлять поглоще­ние и переваривание вирусов, а также погибших и необратимо поврежденных нейронов.

Часть III. ПАТОФИЗИОЛОГИЯ ОРГАНОВ И СИСТЕМ



ленный, антагонистический характер. В услови­ях патологии указанный принцип реализуется в деятельности антисистем (Г. Н. Крыжановс-кий), антагонистически по отношению к пато­логическим системам. Антисистема активируется или формируется вместе с образованием патоло­гической системы, ограничивая развитие после­дней и подавляя ее деятельность. Например, при возникновении чрезмерной боли активируется антиноцицептивная система, регулирующая бо­левую чувствительность, активация антиноци-цептивной системы купирует возникновение бо­левого синдрома.

Антиэпилептическая система контролирует уровень возбуждения в различных отделах ЦНС. Электрическая стимуляция каудального ядра моста, относящегося к антиэпилептической сис­теме, подавляет активность в эпилептическом очаге в коре головного мозга, вызванном аппли­кацией стрихнина (рис. 183, Б). Подавляющий

эффект может продолжаться и после прекраще­ния электростимуляции ядра моста (рис. 183, В). Коагуляция гипервозбужденного ядра ведет к восстановлению эпилептической активности в корковом очаге (рис. 183, Г).

Тоническая активность антисистемы являет­ся одним из механизмов поддержания устойчи­вого состояния здоровья. Недостаточная деятель­ность антисистем представляет собой условие развития патологического процесса. Например, недостаточность антиноцицептивной системы ведет к появлению повышенной болевой чувстви­тельности и к формированию болевых синдро­мов; недостаточность антиэпилептической сис­темы обусловливает предрасположенность к су­дорогам.

Весь комплекс разнообразных процессов, пре­дотвращающих возникновение и развитие пато­логических изменений, обеспечивающих ликви­дацию этих изменений, компенсацию и восста­новление разрушенных функций, составляет класс саногенетических механизмов (С. М. Пав­ленко).

20.1.5. Выпадение функций нервной системы

Выпадение той или иной функции нервной системы может быть обусловлено либо разруше­нием, либо угнетением деятельности структур, осуществляющих данную функцию. Примером выпадения функции вследствие повреждения (разрушения) структуры может быть вялый па­ралич мышцы при гибели иннервирующих ее мотонейронов спинного мозга, пораженных вирусом полиомиелита, либо при перерыве или дегенерации двигательного нерва. При повреж­дении структур, относящихся к сенсорным системам, выпадают соответствующие виды чув­ствительности (болевая, зрительная и пр.).



нейронов из выполнения функции увеличивает­ся степень функционального дефекта; такая си­туация имеет место при полиомиелите, травмах ЦНС и др. Восстановление в том или ином объе­ме функции при лечебных воздействиях связа­но не с регенерацией нейронов (нейроны не ре­генерируют), а с улучшением состояния и нор­мализацией деятельности обратимо поврежден­ных нейронов и со снятием охранительного тор­можения.

Выпадение функции при возникновении структурных дефектов проявляется не сразу. Оно происходит тогда, когда повреждение достигло такого размера, что уже стали недостаточными механизмы компенсации и перекрытия нарушен­ной функции. Иначе говоря, на этой стадии патологический процесс достиг значительногоразвития, а не начинается,как принято думать. В таких случаях врач имеет дело с уже доволь­но запущенным состоянием. Вот почему тера-

пия бывает не всегда эффективна даже на этой, ранней, стадии и столь важна диагностика пато­логических изменений на доклиническойста­дии процесса.

Выпадение функции, обусловленное угнете­нием деятельности структур ЦНС, может воз­никнуть также при усиленной активности тех отделов ЦНС, которые в норме оказывают тор­мозное влияние. Так, если гиперактивируются отделы продолговатого мозга, которые в норме оказывают тормозное влияние на рефлексы спин­ного мозга, то последние испытывают глубокое торможение и связанная с ними функция выпа­дает. Известны рефлекторные выпадения чув­ствительности, истерические параличи, суггес­тивные (самовнушаемые, или гипнотические) нарушения движений и чувствительности и дру­гие феномены тормозного подавления функции.


  • соматическая и вегетативная

  • передние и задние корешки
  • межпозвоночные узлы
  • нервные сплетения
  • периферические нервы

  • спинной и головной мозг
  • сегментарный тип строения

в задних корешках аппарат, воспринимающий раздражение с периферии и переводит в передние рога.

1. Мозжечок - управление координацией движений

2. Ствол мозга (продолговаты мозг, мост, ножки мозга, зрительные бугры и подбугорная область): Гипоталамус: - основные вегетативные центры (дыхания, кровообращения, обмена веществ)

б) ядра черепно-мозговых нервов 1 + 2 - старый мозг.

3. Плащ (большие полушария и кора больших полушарий КБП) -

  • новый мозг
  • сознание
  • мышление
  • установление новых временных связей организма с окружающей средой.
  • осуществляет свою деятельность через старый мозг
  • морфофункциональная единица - нейрон, его особенности:

1. Имеет отростки:

  • аксон - от клетки
  • дендриты - с помощью нейрофибрилл проводят возбуждение к телу клетки
  • закон динамическое кохелизации клетки.

2. Наличие зерен, окрашенных основными красителями в синий цвет (тигроидное вещество - выступают в качестве эквивалента функциональной активности клеток, это РНК; в состоянии покоя идет накопление клетке тигроидного вещества, при повреждении нейрона -идет разрушение тигроидного вещества - тигролиз).

3. Способность нейронов соединяться друг с другом с помощью синапсов, которые не нарушают анатомической обособленности каждого нейрона, синапсы на дендритах, его синапсах и теле нейрона.

  • ацетилхолин
  • норадреналин
  • адреналин
  • дофамин
  • серотонин

  • глицин
  • ГАМК
  • глутаминовая кислота.

При патологии - нарушение синаптической передачи, затруднение выработки медиатора.

4. Нейроны образуют чувствительные и двигательные пути.

При повреждении проводящих путей - состояние парабиоза:

а) уравнительная (сильное и слабое раздражение вызывает одинаковый эффект).

б) парадоксальная (на слабый раздражитель более сильный ответ, чем на более сильный).

в) тормозная (раздражение любой силы не вызывает эффекта) при очень сильном повреждении.

1. Наличие гематоэнцефалического барьера (ГЭБ), обладающего избирательной проницаемостью.

Проницаемость ГЭБ повышается при:

  • эмоциональном возбуждении
  • травме, охлаждении, перегревании
  • облучении

2. Головной мозг и особенно КБП очень чувствительны к гипоксии и гипогликемии (через 5-7 с потеря сознания; через 3-5 мин - обратимые нарушения в коре мозга; больше 5-6 мин - необратимые изменения).

3. Нормальная деятельность ЦНС основана на принципе иерархии вершиной которой является кора (КБП) нижний уровень - спинной мозг.

Факторы, нарушающие деятельность ЦНС:

  • экзогенные
  • эндогенные
  1. Нарушение мозгового кровообращения (тромбоз, эмболия)
  2. Механическая травма (сотрясение, ушиб)
  3. Внедрение инфекции (миелит, менингит, энцефалия, арахноидит)
  4. Недостаток витаминов (особенно группы В)
  5. Опухоли
  6. Нарушение функции эндокринных желез
  7. Врожденные патологии.
  8. Слова и неблагоприятные жизненные ситуации.

Клинические проявления поражения ЦНС.

  1. Нарушение чувствительности
  2. Расстройство движения
  3. Нарушение вегетативной, трофической функции.
  4. Нарушение ВНД (неврозы)
  5. Нарушение адаптивно-приспособительной деятельности.

  • болевая
  • температурная
  • тактильная

  • вибрационная
  • мышечно-суставная
  • чувство веса, силы тяжести.

  • полная потеря - анестезия
  • понижение - гипестензия
  • повышение - гипертензия

Передача по трем нейронам:

2 основных афферентных систем, каждая состоит из 3-х нейронов:

1) спинобугорный путь

1 нейрон - в межпозвоночном ганглии аксон через задние корешки в спинной мозг к клеткам задних рогов, там 2-1 нейрон, аксоны которого переходят на противоположную сторону и в составе передних столбов поднимаются в зрительным буграм, где находится 3-й нейрон, аксон которого идет к задней центральной извилине.

температурная чувствительность с противоположной стороны тела

2) Лемнисковая афферентная система:

1-й нейрон - межпозвонковый ганглий, аксон через задние корешки в составе задних столбов до продолговатого мозга к ядрам Голля-Бурдаха (2-й нейрон), аксоны которого переходят на противоположную сторону к зрительному бугру (3-й нейрон), аксон которого идет к задней центральной и парацентральной извилине.

При поражении: потеря способности определять скорость и направление движения конечностей, оценивать поднимаемый вес, тактильной чувствительности.

При отражении периферического нерва; задних корешков - выпадение всех видов чувствительности.

При поражении половины спинного мозга - синдром Броун-Секара:

на стороне поражения дистального места повреждения выпадает глубокая чувствительность.

Расстройство двигательной функции:

Врожденные рефлексы - мотонейроны спинного мозга, базальные ганглии.

Кора головного мозга (КБП) - установление временных связей, произвольные движения - их пластичность и тонкость.

Пирамидная система, более поздняя эволюция, контроль за мотонейронами со стороны коры.

1. Начало - клетки 5 слоя коры (КБП) клетки Беца, аксоны которых идут в ствол мозга и переходят на противоположную сторону к ядрам герпомозговых нервов, здесь 2-й нейрон, аксон которого составе черепно-мозгового нерва идет не периферию.

2. 1-й нейрон - клетки Беца передней центральной извилины, аксоны которых в продолговатом мозге образуют пирамиды. НА границе перехода в спинной мозг большая часть аксонов переходит на противоположную сторону и в составе передних и боковых столбов оканчиваются сегментарно на мотонейронах.

Пучок Тюрка не перекрещивается, идет в столбах и посегментарно перекрещиваясь, оканчивается на мотонейронах.

2-й нейрон - мотонейрон спинного мозга - его аксон через передние корешки идет к рабочему органу.

Подкорковые центры и проводящие пути от них.

  • полосатое тело
  • бледный шар
  • красное ядро
  • черная субстанция
  • мозжечок
  • ретикулярная формация
  • зубчатое ядро мозжечка.

От них аксоны идут на мотонейроны спинного мозга.

Поражение проявляется в двух формах:

1. Акинезия (отсутствие или ослабление движений):

паралич - полное отсутствие движений

парез - частичная утрата.

функционального происхождения (при истерии)

органического происхождения (при повреждении двигательных центров или проводящих путей).

поражение периферического нейрона (мотонейронов передних рогов спинного мозга, передних корешков, нервных сплетений, ствола нерва)

поражение центрального нейрона

атония (снижение тонуса мышц)

повышение тонуса мышц (т.к. в норме центральные нейроны тормозят спонтанную активность мотонейронов по повышению тонуса мышц, и тонус мышц в равновесии при повреждении центрального нейрона мотонейрон растормаживается и тонус мышц возрастает)

атрофия мышц из-за потери трофических влияний на ЦНС

атрофии мышц нет, т.к. сохраняется связь с трофическими центрами

арефлексия - отсутствие рефлексов (т.к. разрывается рефлекторная дуга)

повышение сухожильных и надкостничных рефлексов, увеличение зоны с которой могут быть вызваны рефлексы, появляются патологические рефлексы: Бабинского, Россолимо, хватательный, сосательный

реакция перерождения мышцы

нет реакции перерождения

контрактура - неизменное положение конечностей (в результате повышения тонуса мышц)

Акинезия - дефицит движения при поражениях экстрапирамидной системы (базальных ганглиев): преимущественно повышение тонуса и сгибательных и разгибательных мышц -движения неловкие, неточные, может быть необратимым.

При поражении черной субстанции: неподвижные позы, маскообразное лицо, поза манекена, скованность движений при ходьбе, отсутствуют сопутствующие движения рук и ног.

При поражении бледного шара - он в корке тормозит красное ядро, при его поражении повышенный тонус мышц и гипокинезия. Могут появиться непроизвольные движения - гиперкинезы - расстройство двигательных функций, проявляющееся в появлении насильственных движений или сокращением отдельных мышц независимо от воли больного.

Они свидетельствуют о повышении возбудимости двигательных центров в отсутствие поражения (нарушение иерархии).

2 группы гиперкинезов:

1. Дрожание - слабовыраженные непроизвольные движения в виде ритмичных колебаний конечностей, голов без больших локомоторных эффектов.

В основе - попеременное сокращение мышц сгибателей и разгибателей.

а) функциональные (при эмоциях)

- интенционное дрожание - только при произвольных движениях, увеличивается при продвижении к цели (при поражении мозжечка и ствола мозга).

- паркинсоновское дрожание - наблюдается в покое, при произвольных движениях пропадает; если сочетаться с ригидностью и акинезией, то это болезнь Паркинсона (нарушение взаимоотношений между черной субстанцией, бледным шаром и полосатым телом; дефицит дофамина в черной субстанции).

Судороги - непроизвольные мышечные сокращения со значительными перемещениями частей тела в пространстве:

  1. Тонические (атетоз, 1-я фаза эпилепсии, столбняк, резкое и длительное сокращение расслабленных мышц)
  2. Клонические (тики, 2-я фаза эпилепсии, быстрая смена сокращения и расслабления мышц)

Тонические судороги могут переходить в клонические и наоборот.

  • локализованные судороги
  • генерализованные судороги

  • функциональные
  • органические

1. Тики - быстрые клонические судороги небольшой группы мышц (локализованные -мигание, подергивание щеки, губы, плечами, головой)

  • стереотипность движений
  • постоянная локализация
  • напоминают произвольные движения

могут иметь психологический характер

2. Хорея (пляска) - не имеет определенной локализации, напоминает произвольные движения, нет стереотопии (они все время меняются по силе, характеру и локализации. Степень сокращения меняется).

Функционального происхождения - при истерии.

Органического происхождения 0 поражение коры и базальных ядре полосатого тела, при ревматизме.

3. Атетоз - судороги тонического характера, медленные, ползучие движения главным образом в конечностях (пальцах); движения напряженные, т.к. вовлекаются и разгибатели и сгибатели (движения балерины)

длительный импульс - длительное сокращение.

движения червеобразные, боль, переломы костей.

При поражении подкорковых ядер.

4. Эпилептические судороги - сочетание генерализованных тонических и клонических судорог в виде припадков, начинающихся с тонической фазы (несколько секунд), затем - клоническая фаза (несколько минут). Припадок длится 3-5 мин. После припадка - амнезия.

Вегетативная нервная система:

  • головной
  • шейный
  • грудной
  • брюшной
  • тазовый отделы
  • Основные нейроны - в боковых рогах спинного мозга.
  • От них - преганглионарные волокна.
  • Ганглии (пара- и превертебральные)
  • Постганглионарные волокна

Парасимпатическая: краниальный отдел:

  • бульбарные ядра III, IV, IX, X, V пар ЧМН.
  • без перерыва оканчивается на рабочем органе (в интрамуральных ганглиях).

  1. Вегетативные волокна не достигают органа, а оканчиваются на ганглиозных клетках.
  2. В соматической нервной системе рефлекторная дуга идет через спинной мозг, а в вегетативной через интрамуральные ганглии.
  3. Активность вегетативной н/с изменяется под влиянием афферентных нервов или гормонов.
  4. При возбуждении вегетативной н/с образуется биоактивные вещества, которые поступая в кровь в кровь, проявляют такой же эффект, как и при раздражении нерва.
  5. Принцип мультиполярности - одно преганглионарное волокно может возбуждать много постганглионарных.
  6. Антагонизм между симпатическими и парасимпатическими отделами.

Ваготония - преобладание парасимпатического отдела.

  • редкий пульс
  • узкие зрачки
  • потливость
  • гиперсаливация
  • спокойный характер

  • снижение обмена веществ
  • гипотония и брадикардия

желудка и кишечника

  • спастические запоры
  • язвенная болезнь
  • астматическое дыхание

Симпатикотония - повышение активности симпатического отдела:

  • раздражительность
  • выпуклые глазные яблоки
  • широкий зрачок
  • тахикардия
  • повышение АД
  • атония желудка
  • гиперсекреция желудка
  • атонические запоры
  • повышение обмена веществ

Гипоталамус - вегетативные центры симпатич. и парасимпатич. отделов.

32 пары ядер - 3 группы:

  1. передние (парасимпатические эффекты)
  2. Средние
  3. Задние (симпатические эффекты)

Функциональная активность гипоталамуса зависит от:

  • лимбической системы
  • ретикулярной формации
  • коры большого мозга

Их поражение - поражение вегетативной н/с.

Неврозы - психогенно обусловленные заболевания, в основе которых лежат нарушения ВНД.

Модель - экспериментальные неврозы - нарушения ВНД у лабораторных животных при создании для них трудных условий.

Основные методические приемы:

  1. Перенапряжение возбудительного процесса (действие сверхсильных или сложных раздражителей).
  2. Перенапряжение тормозного процесса (выработка тонкой дифференциации).
  3. Перенапряжение подвижности нервных процессов:

а) ”сшибка” - столкновение процессов возбуждения и торможения

б) быстрая смена стереотипа

в) столкновение конкурентной деятельности различного биологического значения (пищевой и оборонительный рефлекс).

1. Снижение работоспособности нервных клеток.

2. Нарушение уравновешенности между возбудительным и тормозным процессами:

а) преобладание возбудительного процесса

б) преобладание тормозного процесса.

3ю Нарушение подвижности нервных процессов:

а) патологическая инертность: “застойные очаги”

“больные пункты” - следовая реакция

4. Развитие фазовых состояний, нарушение нормальных соотношений между действием раздражителя и ответной реакцией организма.

Предыдущая статья:Портальная гипертензия
Следующая статья: Повреждение
Лучшая по просмотрам статья:Повреждение
Последняя статья:Повреждение
Другие статьи:Повреждение
Портальная гипертензия
Патофизиология мозгового кровообращения
Гипертония

Все размещенные на нашем ресурсе материалы получены из открытых источников сети Интернет и опубликованы исключительно в информационных целях. В случае получения соответствующей просьбы от правообладателей в письменном виде, материалы будут незамедлительно убраны из нашей базы. Все права на материалы принадлежат первоисточникам и/или их авторам.

Читайте также:

Пожалуйста, не занимайтесь самолечением!
При симпотмах заболевания - обратитесь к врачу.