Центральное звено связывающее нервные и гуморальные механизмы

Интегрирующая роль ЦНС в организме, функции ЦНС, принципы, механизмы регуляции. Единство и особенности нервной и гуморальной регуляции функций. Нервизм (Декарт, И.М.Сеченов, С.П.Боткин, И.П.Павлов). Виды влияния нервной системы на органы и ткани.

ЦНС в организме выполняет интегрирующую роль. Она объединяет в единое целое все ткани, органы, координируя их специфическую активность в составе целостных гомеостатических и целостных функциональных систем. Интегрирующая роль осуществляется на уровне нейрона, модуля, нервного центра и взаимодействия всех отделов ЦНС, объединяющих все системы организма в единую функциональную систему.

Управление деятельностью опорно – двигательного аппарата. ЦНС регулирует тонус мышц и посредством его перераспределения поддерживает естественную позу, а при нарушении восстанавливает ее, инициирует все виды двигательной активности.

Регуляция работы внутренних органов. Регуляция осуществляется посредством вегетативной НС и эндокринной системы: а) в покое – обеспечение гомеостазиса; б) во время работы – приспособительная рекакция деятельности внутренних органов согласно потребностям организма и поддержание гомеостаза;

Обеспечение сознания и всех видов психической деятельности. Психическая деятельность – идеальная, субъективно осознаваемая деятельность организма, осуществляемая с помощью нейрофизиологических процессов. ВНД – совокупность нейрофизиологических процессов, обеспечивающих сознание, подсознательное усвоение инфы и целенаправленное поведение организма в окружающей среде и обществе. Низшая нервная деятельность – совокупность нейрофизиологических процессов, обеспечивающих осуществление безусловных рефлексов и инстинктов.

Формирование взаимодействия организма с окружающей средой. Осуществляется с помощью избегания или избавления от неприятных раздражителей, регуляции интенсивности обмена веществ при изменении температуры окр среды.

Регуляция функций организма – изменение интенсивности их работы для достижения полезного результата в соответствии с потребностями организма в различных условиях его жизнедеятельности. Регуляция осуществляется согласно нескольким принципам, основным из которых является системный принцип – в регуляции любого показателя организма участвует несколько органов и систем. По уровням различают клеточный, органный, системный и организменный уровни регуляции. Регуляторные механизмы могут локализоваться внутри органов и экстраорганно. Поведенческая регуляция, как и другие механизмы регуляции, направлена на поддержание гомеостаза. Имеется три механизма регуляции: нервный, гуморальный и миогенный.

Нервный механизм регуляции.

Имеется два вида влияний НС на органы – пусковое и модулирующее.

Пусковое влияние вызывает деятельность органа, находящегося в покое, прекращение импульсации, вызвавшей деятельность органа, ведет к возвращению его в исходное состояние.

Модулирующее влияние ведет к изменению интенсивности деятельности органа. Оно распространяется как на органы, деятельность которых без нервных влияний невозможна, так и на органы, которые могут работать без пускового влияния НС.

Модулирующее влияние осуществляется несколькими способами: 1. Посредством изменения характера электрических процессов в органе; 2. С помощью изменения интенсивности обмена веществ в органе; за счет изменения кровоснабжения органа.

Гуморальная и миогенная регуляция.

Гуморальная регуляция осуществляется при помощи гормонов, метаболитов и медиаторов.

Гормоны – БАВ, вырабатываемые эндокринными железами или специализированными клетками, находящимися в различных органах. Гормоны вырабатываются также нервными клетками. Это нейрогормоны, например, гормоны гипоталамуса, регулирующие функции гипофиза. БАВ вырабатываются также неспециализированными клетками – тканевые гормоны.

Тканевые гормоны – биогенные амины (гистамин, серотонин), простагландины, кинины оказывают свое действие на клетки посредством изменения их биологических свойств (проницаемости мембран, возбудимости), изменения интенсивности обменных процессов, чувствительности клеточных рецепторов, образования вторичных посредников. Они изменяют чувствительность клеток к нервным и гуморальным влияниям, поэтому их называют модуляторами регуляторных сигналов. Тканевые гормоны действуют посредством специализированных клеточных рецепторов. Тканевые гормоны изменяют проницаемость клеток, тем самым влияя на развитие ПД.

Действие гормонов или парагормонов непосредственно на соседние клетки, минуя кровь называют паракринным. Действие вещества на рецепторы клетки, выделившей это вещество, называется аутокринным.

Гормны оказывают два вида влияний: функциональное и морфогенетическое.

Функциональное влияние гормонов бывает трех видов: пусковое, модулирующее и пермиссивное. Пусковое влияние – способность гормона запускать деятельность эффектора. Модулирующее влияние – изменение интенсивности протекания процессов в органах и тканях. Модулирующим является и изменение чувствительности к действию других гормонов. Пермисивное влияние – способность одного гормона обеспечивать реализацию эффектов другого гормона.

Метаболиты – продукты, образующиеся в организме в процессе обмена веществ как результат различных биохимических реакций. Это аминокислоты, нуклеотиды, коферменты, кислоты: угольная, молочная, пировиноградная, адреналиновая, ионный сдвиг, изменение рН. Метаболиты действуют в основном как местные регуляторы, но могут влиять на другие органы и ткани, а также на активность нервных центров.

Миогенный механизм регуляции.

Сущность миогенного механизма состоит в том, что предварительное умеренное растяжение скелетной или сердечной мышц увеличивает силу их сокращения. Сократительная активность гладкой мышцы также зависит от степени наполнения полого органа, а значит, и от его растяжения.

Единство регуляторных механизмов заключается в их взаимодействии. Так, при действии холодного воздуха на терморецепторы кожи увеличивается поток афферентных импульсов в ЦНС, это ведет к выбросу гормонов, повышающих интенсивность обмена веществ, и следовательно, к увеличению теплопродукции.

Нервная и гуморальная регуляция тесно связаны, но различаются рядом свойств.

1. НС, в отличие от гуморального механизма регуляции, формирует ответные реакции на изменения как внешней, так и внутренней среды организма.

2. У нервного и гуморального механизма регуляции различные способы связи: у НС – нервный импульс как универсальный сигнал, у гуморального механизма – гормоны, медиаторы, метаболиты и тканевые гормоны.

3. Различается точность нервных и гуморальных механизмов. Хим. вещества попадая в кровь, разносятся по всему телу и действуют на многие органы и ткани. НС может оказывать точное локальное влияние на отдельный орган или даже группу клеток этого органа.

4. У нервного и гуморального механизмов различная скорость связи.

5. В организации гуморального механизма нередко наблюдается противоположное действие БАВ на один и тот же орган взависимости от места его воздействия

6. Гормональные механизмы подчиняются НС, которая передает свое влияние на эндокринные железы непосредственно или с помощью нейропептидов и своих медиаторов, выделяемых нервными окончаниями и действующих на специальные, чувствительные к медиаторам структуры – рецепторы.

Почву для концепции нервизма подготовил Декарт, выдвинувший идею о рефлекторном принципе деятельности нервной системы. Гофман сформулировал гипотезу о влиянии нервов на все перемены в здоровом и больном состоянии. Согласно Куллену, все процессы в здоровом и больном организме регулирует нервный принцип, действующий через головной мозг посредством нервов – проводников нервной деятельности. По мнению Мухина, все человеческое тело можно рассматривать как построенное из нервов, ибо остальные части тела существуют вследствие нервов как управляющих их способностями.

Согласно Боткину, организм – целостная система, деятельность которой направляется и регулируется нервной системой.

Павлов обосновал представление о трофическом влиянии НС на органы и ткани, сформулировал принципы рефлекторной теории, доказал важную роль НС в регуляции секреции желез ЖКТ, ввел понятие об условных рефлексах и на их основе создал учение о ВНД.

Совокупность синаптически связанных нейронов, обеспечивающих приспособительную регуляцию функций органов или группы органов согласно потребностям организма, составляет нервный центр.

Системный принцип регуляции.

Заключается в том, что различные показатели организма поддерживаются на оптимальном уровне с помощью многих органов и систем. Системы органов объединяются в различные функциональные системы.

Функциональная система – динамическая совокупность органов и систем органов, объединяющихся для достижения организмом полезного результата.

Выделяют гомеостатические и поведенческие функциональные системы. Гомеостатические обеспечивают поддержание на оптимальных для метаболизма уровнях различных показателей организма. Это достигается посредством изменения интенсивности работы внутренних органов. Полезным результатом поведенческой функциональной системы является удовлетворение биологических потребностей, социальный и бытовой успех.

Типы регуляции функций организма.

По времени включения регуляторных механизмов относительно момента изменения величины регулируемого показателя организма имеется два типа регуляции: по отклонению и по опережению. Регуляция осуществляется с помощью обратной отрицательной связи: отклонение любого показателя от норма включает регуляторные механизмы, устраняющие это отклонение.

Регуляция по отклонению основана на циклическом механизме, при котором всякое отклонение от оптимального уровня регулируемого показателя мобилизует регуляторные механизмы для восстановления его на прежнем уровне. Регуляция по отклонению осуществляется при помощи обратной отрицательной связи, обеспечивающей разнонаправленной влияние: усиление функций органов при ослаблении показателей, и ослабление их деятельности при чрезмерном усилении и увеличения показателей организма. Положительная обратная связь оказывает только однонаправленное действие, причем стимулирует развитие процесса, находящегося под контролем управляющего комплекса.

Регуляция по опережению заключается в том, что регулирующие механизмы включаются до реального изменения показателя на основе инфы, поступающей о возможном изменении показателя в будущем.

В основе регуляции по опережению лежит механизм условного рефлекса.

Типы регуляции. Рефлекс. Универсальность и приспособленный характер изменчивости рефлекса, развитие концепции, рефлекс (Декарт, И.М.Сеченов, И.П.Павлов, П.К.Анохин).

Рефлекс – ответная реакция организма на раздражение сенсорных рецепторов, осуществляемая с помощью НС. Каждый рефлекс осуществляется посредством рефлекторной дуги, которая состоит из следующих структур.

1. Воспринимающее звено – рецептор. Он воспринимает изменение внешней или внутренней среды, что достигается посредством трансформации энергии раздражения в рецепторный потенциал, обеспечивающий возникновение нервного импульса. Совокупность рецепторов, раздражение которых вызывает рефлекс, называется рефлексогенной зоной.

2. Афферентное звено, передающее сигнал в ЦНС.

3. Управляющее звено – совокупность центральных и периферических нейронов, формирующих ответную реакцию организма.

4. Эфферентное звено – аксон эффекторного нейрона. Назначение – доставка нервных импульсов к эффекторам.

5. Эффектор (рабочий орган).

Рефлексы классифицируют по срокам появления в онтогенезе: врожденные и приобретенные. Безусловные делят на несколько групп:

1. В зависимости от числа синапсов в центральной части рефлекторной дуги различают моно и полисинаптические рефлексы. Моносинаптическим является коленный разгибательный рефлекс, возникающий при ударе по сухожилию надколенника. Большинство рефлексов являются полисинаптическими, в их осуществлении участвуют несколько последовательно включенных нейронов ЦНС. От числа нейронов, участвующих в осуществлении рефлекса, зависит время рефлекса – длительность интервала от начала стимуляции до конца ответной реакции. Оно включает: время трансформации энергии раздражения в распространяющийся импульс; время проведения возбуждения в афферентном пути, в центральной части рефлекторной дуги и в эфферентном пути; время активации эффектора и его ответной реакции.

2. По биологическому значению: пищедобывательные, половые, защитные.

3. По рецепторам, раздражение которых вызывает ответную реакцию: экстероцептивные, проприоцептивные, интероцептивные.

4. По локализации рефлекторной дуги: центральные и периферические. Последними могут быть только вегетативные рефлексы, они подразделяются на интраорганные, межорганные и экстероорганные.

5. В зависимости от отдела НС: соматические и вегетативные.

Развитие концепции рефлекса.

На первом этапе были сформулированы основные положения о принципе деятельности ЦНС французским естествоиспытателем Декартом. Он сформулировал два важных положения рефлекторной теории: 1. Реакция организма на внешние воздействия является отраженной. 2. Ответная реакция на раздражение осуществляется при помощи НС.

На втором этапе было экспериментально обосновано материалистическое представление о рефлексе. Было установлено, что рефлекторная реакция может осуществляться на одном метамере лягушки. Выявлено, что стимулы могут быть не только внешними, но и внутренними; установлена роль задних чувствительных и передних двигательных корешков спинного мозга.

Сеченов обосновал приспособительный характер изменчивости рефлекса, открыл центральное торможение, а также явление суммации возбуждения в ЦНС.

На третьем этапе были открыты условные рефлексы и разработаны основы учения о ВНД. Павлов сформулировал три принципа рефлекторной теории: 1. Принцип детерминизма, согласно которому любая рефлекторная реакция причинно обусловлена – возникает при действии раздражителя; 2. Принцип структурности, суть которого заключается в том, что каждая рефлекторная реакция осуществляется при помощи определенных структур, и чем больше структурных элементов участвует в осуществлении этой реакции, тем она совершеннее; 3. Принцип единства процессов анализа и синтеза – НС анализирует с помощью рецепторов все действующие внешние и внутренние раздражители и на основании этого анализа формирует целостную ответную реакцию (синтез).

На четвертом этапе было создано учение о функциональных системах (Анохин).

Центральное звено осуществляет регуляцию совокупностью нервных структур составляющих вазомоторный центр. Он включает различные уровни ЦНС, где все ниже расположенные структуры соподчинены.

На спинальном уровне в грудном и поясничном отделах расположены сосудосуживающие центры.

Основным центром поддержания тонуса сосудов и регуляции АД является вазомоторный центр продолговатого мозга. Состоит их 3-х зон:

Депрессорная зона. Способствует снижению активности симпатического отдела нервной системы, расширению сосудов, снижению периферического сопротивления, активирует парасимпатические механизмы.

Прессорная зона. Способствует повышению АД, увеличивая сердечный выброс и периферическое сопротивление. Между первой и второй зонами существуют сложные синергические отношения.

Кардиоингибирующая зона (тормозящая). Воздействует на сердечно-сосудистую систему через блуждающий нерв. Это деление условно, т.к. зоны перекрывают друг друга.

В промежуточном мозге расположены высшие подкорковые центры вегетативной нервной системы, организующие адаптивные реакции системы кровообращения. Так, в гипоталамусе имеются прессорные и депрессорные зоны, выполняющие функции подобно продолговатому мозгу.

Раздражение лобных или теменных долей коры приводит к изменению кровяного давления. Влияние коры на изменения сосудистого тонуса, а следовательно и на кровоток изучено более глубоко методом условных рефлексов. Если многократно сочетать, например, согревание или охлаждение участка кожи, вызывающие изменения просвета сосудов со звуком (светом), то через некоторое время один индифферентный условный раздражитель (звук) вызывает такую же сосудистую реакцию, как безусловное раздражение (тепло, холод).

Эфферентное звено

Эфферентная регуляция осуществляется нервным и гуморальным механизмами.

Нервный механизм реализуется через симпатические и парасимпатические нервные волокна. Симпатические волокна являются главными вазоконстрикторами, поддерживают тонус сосудов, постоянный уровень кровяного давления.

Парасимпатические нервы (блуждающий, барабанная струна, языкоглоточный, тазовый нервы) вызывают сильное расширение (вазодилатацию) сосудов. Но не везде парасимпатические нервы вызывают одинаковый эффект, в сердце наблюдается суживание сосудов. Симпатические нервы расширяют сосуды сердца и скелетных мышц. Расширение сосудов может происходить при снижении вазоконстрикторной активности нервных волокон.

Гуморальные механизмы регуляции

Важную роль в гуморальной регуляции тонуса сосудов играют гормоны надпочечников, нейрогипофиза, юкстагломерулярного аппарата почек.

Альдостерон (вырабатывается в корковом слое надпочечников, повышает чувствительность стенок сосудов к действию адреналина и норадреналина.

Вазопрессин (гормон нейрогипофиза) суживает артерии брюшной полости, легких; расширяет сосуды мозга, сердца.

Ренин. Он способствует выработке в крови ангиотензина I, который превращается в ангиотензин II, который является мощным вазоконстриктором. К нему чувствительны только рецепторы прекапиллярных артериол.

В регуляции кровотока участвуют также биологически активные вещества и местные гормоны. Гистамин расширяет сосуды. Действуя на тонус сосудов он является фактором приспособительного перераспределения крови, увеличивает кровенаполнение капилляров, проницаемость стенок сосудов, вызывает снижение АД. Усиленное образование и действие гистамина вызывает реакцию покраснения кожи.

Серотонин действует неоднозначно.

Брадикинин расширяет сосуды.

Простагландины, действуют многообразно и часто с противоположным эффектом.

1. Афферентное звено.

Представлено многочисленными баро- и хеморецепторами, расположенными в нескольких рефлексогенных зонах сосудистой системы (аорта, синокаротидная зона, сосуды легких и др.).

Барорецепторы реагируют на степень и скорость растяжения стенки сосудов (или полостей сердца). При повышении АД или наполнения камер сердца барорецепторы отвечают усилением афферентной импульсации, при снижении АД - ее уменьшением.

Хеморецепторы дуги аорты, синокаротидной зоны и других рефлексогенных зон (сердце, почки, органы пищеварения) аналогично реагируют на изменение в крови концентрации О2, СО2, ионов Н + .

Чувствительные волокна от баро- и хеморецепторов дуги аорты и каротидного синуса проходят в составе синокаротидного нерва, ветвей языкоглоточного нерва и депрессорного нерва.

2. Центральное звено.

Центральное звено регуляции сосудистого тонуса – вазомоторный (сосудо-двигательный) центр - представлено различными функционально связанными между собой нервными структурами, расположенными в продолговатом, спинном мозге, гипоталамусе, коре больших полушарий.

Известна так называемая ишемическая реакция ЦНС. При значительном снижении системного АД (около 40 мм рт.ст.) возникает ишемия сосудо-двигательного центра и активация симпатической нервной системы. Медиатором последней является норадреналин, вызывающий тахикардию (b1-рецепторы) и увеличение тонуса сосудов(a1 и a2-рецепторы).

3. Эфферентное звено.

Включает нервные и гуморальные механизмы регуляции сосудистого тонуса. В зависимости от скорости развития циркуляторных эффектов различают: 1) механизмы быстрого кратковременного действия; 2) механизмы промежуточного действия; 3) механизмы длительного действия.

К механизмам быстрого кратковременного действия относятся нервные рефелекторные реакции, возникающие при раздражении баро- и хеморецепторов описанных рефлексогенных зон, а также при ишемии ЦНС. Эти реакции развиваются в течение нескольких секунд и реализуются через рефлекторные изменения активности симпатической и парасимпатической нервных систем, а также через изменение концентрации гуморальных веществ - адреналина и норадреналина. Раздражение барорецепторов аорты и каротидного синуса (например, при повышении АД или механическом воздействии на эти зоны) закономерно приводит к снижению симпатических (вазоконстрикторных) и усилению парасимпатических (депрессорных) влияний. В результате снижается сосудистый тонус, а также частота и сила сокращения сердца, что способствует нормализации АД. Наоборот, при падении АД (например, при кровопотере) импульсация с барорецепторов уменьшается, и начинают преобладать симпатические влияния - увеличение ЧСС, сердечного выброса и сосудистого тонуса.

Аналогичным образом возникает ответ на раздражение рецепторов растяжения предсердий и рецепторов растяжения желудочков, например, при быстром увеличении их наполнения. В результате снижения тонуса симпатических и повышения активности парасимпатических нервов развивается брадикардия и вазодилатация.

Возбуждение хеморецепторов дуги аорты и каротидного синуса при снижении напряжения О2, повышении напряжения СО2 или увеличении концентрации ионов Н + в крови приводит к сужению резистивных сосудов и подъему АД. К такому же эффекту приводит рефлекторная реакция на ишемию ЦНС, например, при недостаточном кровоснабжении головного мозга, гипоксемии или резком падении АД. Повышение концентрации Н + и СО2 сопровождается раздражением хеморецепторов ствола мозга и значительным подъемом АД.

Симпатической нервной системе принадлежит ведущая роль в регуляции тонуса периферических сосудов. Влияние адреналина и норадреналина на тонус различных сосудистых областей зависит от концентрации этих веществ в крови и от соотношения в разных сосудах a- и b-адренорецепторов. Как известно, возбуждение a-рецепторов сопровождается сокращением гладких мышц, а возбуждение b-рецепторов - их расслаблением.

Норадреналин воздействует преимущественно на a-адренорецепторы, вызывая в экстремальных условиях увеличение сосудистого тонуса, системного периферического сопротивления и АД. Адреналин взаимодействует как с a-, так и с b-адренорецепторами. В физиологических концентрациях он возбуждает преимущественно b-рецепторы, вызывая расслабление гладкой мускулатуры сосудов, особенно тех из них, в которых преобладают b-адренорецепторы (скелетные мышцы, мозг, сердце). Одновременно адреналин повышает УО и ЧСС, в результате чего в обычных физиологических условиях уровень системного АД под действием адреналина существенно не меняется.

В экстремальных ситуациях (сильный эмоциональный стресс, острое кровотечение и т.п.), когда концентрация адреналина в крови повышается в десятки раз, может проявляться его взаимодействие с a-адренорецепторами сосудов и преобладать сосудосуживающие реакции (особенно в коже, органах пищеварения и легких, в которых имеется большое количество a-рецепторов).

Главным регуляторным механизмом промежуточного действия является почечная ренин-ангиотензиновая система (РАС). Ее активация, наступающая при снижении кровоснабжения почек любого генеза (падение АД, сужение почечных сосудов и т.п.), сопровождается выделением ренина, который способствует превращению ангиотензиногена в ангиотензин I. Последний под действием АПФ превращается в ангиотензин II, обладающий мощным вазоконстрикторным действием. Кроме того, ангиотензин II возбуждает центральные и периферические симпатические структуры. Все это приводит к росту периферического сопротивления и повышению (нормализации) АД. Следует помнить, что существует альтернативный путь трансформации АI в АII, без участия АПФ.

К регуляторным механизмам длительного действия относят почечные системы контроля за объемом жидкости, гормональные системы альдостерона, вазопрессина, тироксина, глюкокортикоидов.

Физиологической регуляцией называется активное изменение функций организма или его поведения, направленное на обеспе­чение оптимальных условий жизнедеятельности, сохранение го­меостаза в меняющихся условиях окружающей среды. Например, в состоянии покоя артериальное давление поддерживается на оп­ределенном уровне. При физической нагрузке благодаря регуля-торным механизмам оно повышается и тем самым обеспечивает полноценное функционирование мышечной системы в данных условиях, а после прекращения работы оно понижается до преж­него значения. Таким образом, регуляция органов кровообраще­ния обеспечивает оптимальную величину артериального давления и в покое, и при нагрузке.

Регуляция функций может выражаться в виде различных про­явлений. Иногда необходимо включение или выключение какой-

либо функции: сокращение и расслабление мышцы, начало и пре­кращение слюноотделения. В других случаях требуется усилить или ослабить какой-то процесс: сокращения сердца, частоту и глубину дыхания или же произвести количественные и качественные изме­нения в составе секретов — желудочного сока, молока и т. п.

В процессе эволюции в организме животных сложились две регуляторные системы — гуморальная (химическая) и нервная (рефлекторная).

Гуморальная регуляция (лат. humor — жидкость) осуществляется за счет биологически активных веществ, кото­рые имеются в организме и оказывают влияние через кровь на ткани и органы.

В регуляции функций участвуют следующие гуморальные вещества.

1. Электролиты. Ионы натрия, калия, кальция, магния, хлора ответственны за возникновение и проведение электрических им­пульсов в биологических мембранах (биотоки). Растворенные в крови минеральные соли создают осмотическое давление, опре­деляют кислотно-щелочные свойства крови, от величины которых зависят многие процессы в организме.

2. Конечные и промежуточные продукты обмена веществ — диок­сид углерода, глюкоза, мочевина и др. Так, например, диоксид уг­лерода является важнейшим стимулятором дыхательного центра, а от уровня глюкозы в крови зависит деятельность многих желез внутренней секреции и других органов.

3. Гормоны — биологически активные вещества, образующиеся в эндокринных железах и клетках.

4. Нервные медиаторы — вещества, образующиеся в нервных окончаниях и передающие возбуждение от нерва на мышцу или железу.

5. Цитомедины — вещества, образующиеся в различных клетках
и несущие информацию для других клеток.

Гуморальная регуляция — более древний способ регуляции у растений, одноклеточных и многоклеточных животных. У высших животных гуморальная регуляция не утратила своего значения.

В связи с усложнением строения организмов гуморальной регу­ляции оказалось недостаточно для быстрых изменений жизненных реакций, их корреляции и взаимодействия в условиях меняющейся окружающей среды. На определенном этапе развития животного организма появилась нервная система, которая обеспечила быст­рую и направленную передачу сигналов в виде нервных импульсов (биотоков) к определенным органам-адресатам, в то время как гу­моральная регуляция неспецифична, так как гуморальные раздра­жители, циркулируя в крови, оказывают воздействие на любые чув­ствительные к ним ткани (например, инсулин — гормон поджелу­дочной железы — участвует в 22 реакциях, а адреналин — гормон надпочечников — влияет почти на все функции организма).

Нервная регуляция. Нервная система состоит из центрального и периферического отделов. Центральная нервная система — это головной и спинной мозг, где расположены нерв­ные клетки (нейроны), объединенные в нервные центры. Перифе­рическая нервная система — это отростки нейронов, формирую­щие нервы и пронизывающие все тело животного.

Как соматическая, так и вегетативная нервная система имеет нервные центры в головном и спинном мозге и периферические нервы, через которые осуществляется двусторонняя связь нервной системы с органами.

Основной формой деятельности нервной системы является рефлекс. Рефлекс — это ответная реакция организма на раз­дражение из внешней или внутренней среды при участии нерв­ной системы. Например, отдергивание руки от горячего предмета (двигательный рефлекс) или выделение желчи из желчного пузы­ря (вегетативный рефлекс).

Любой рефлекс осуществляется при участии определенных морфологических структур, которые составляют рефлекторную дугу. Рефлекторная дуга — это путь, по которому про­ходит возбуждение от места раздражения через центральную нерв­ную систему к исполнительному органу.

Рефлекторная дуга (рис. 1.2) состоит из следующих звеньев:

рецепторы — чувствительные нервные окончания, воспринима­ющие раздражения. Под воздействием раздражителя в рецепторах возникает потенциал действия (биоток);


центростремительный, или афферентный, нерв, по которому возбуждение (потенциал действия) передается в центральную нервную систему;

Рис. 1.2. Схема рефлекторной дуги:

1 А Ш Раздражитель

/ — рецепторы, или чувствительные нервные окончания; 2— центростремительный, или афферентный, нерв; 3— нервный центр; 4— центробежный, или эфферентный, нерв; 5— эффек­тор, или исполнительный орган

нервный центр — совокупность нейронов, перерабатывающих полученную от рецепторов информацию и подготавливающих ко­манду для исполнительных органов;

центробежный, или эфферентный, нерв, по которому нервный импульс передается исполнительным органам;

эффектор, или исполнительный орган.

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Pathos - болезнь, genesis - развитие

Патогенез - это наука о механизмах развития заболевания. Существуют общие механизмы патогенеза:

1. Нейрогенные механизмы

2. Гуморальные механизмы

3. Метаболические механизмы

4. Патоиммунные механизмы

5. Генетические механизмы

Нейрогенные механизмы включают: нейрорецепторы, афферентное, центральное и эфферентное звенья.

1. Нейрорецепторы являются первичным звеном в этом механизме при действии чрезвычайного раздражителя. Его действие на нейрорецепторы происходит опосредованно, рефлекторно. Кроме нейрорецепторов, есть клеточные рецепторы, раздражение которых обусловлено прямым действием патогенного фактора. При раздражении нейрорецепторов возникает рефлекторный потенциал, энергия раздражения. Возбуждение этих рецепторов является пусковым фактором в развитии болезни. Нейрорецепторы образуют рецепторные поля, рефлексогенные зоны. Эти зоны обладают специфичностью, избирательной чувствительностью. Например, рецепторы тонкого кишечника реагируют на брюшнотифозную палочку, рецепторы толстого кишечника - на дизентерийную палочку. Таким образом, специфичность рецепторов, рефлексогенных зон определяет локализацию болезненного процесса. Рецепторы и рефлексогенные зоны обладают также свойством реактивности. Реактивность рецепторов и рефлексогенных зон определяет качество патологии или болезни. Их раздражение ведет к развитию патологического рефлекса (например, возбуждение α-адренорецепторов норадреналином вызывает спазм коронарных сосудов, нарушение коронарного кровообращения и развитие ишемической болезни сердца).

2. Начало болезни может быть связано с повреждением афферентных (чувствительных) проводников. Раздражение этого звена отражает нарушение в тканях, органах и вызывает дистрофические изменения в них.

3. Центральное звено представлено ЦНС. Многие эмоциональные факторы влияют непосредственно на центральные структуры, вызывая нарушение функции и развитие болезни (например, неврозы, сердечно-сосудистые заболевания). Следствием действия этих стрессорных факторов является формирование в ЦНС патологической системы саморегуляции: развивается дисрегуляция, возникает патологическая доминанта, нарушается интегративная деятельность мозга. Эти процессы отражают психосоматические отношения, что послужило толчком для развития психосоматической медицины. Психосоматические нарушения определяют развитие большинства заболеваний.

4. Эфферентное звено - это регуляторное звено. Оно представлено симпатической и парасимпатической нервной системой. Происходит дисбаланс между этими системами. Преобладание симпатической нервной системы ведет к развитию сердечно-сосудистых заболеваний, преобладание парасимпатической нервной системы - к развитию аллергии, патологии желудочно-кишечного тракта.

Эти механизмы характеризуют участие гормонов, нейромедиаторов, биологически активных веществ. Гуморальные факторы взаимодействуют с клеточными рецепторами, оказывая на них прямое действие. Гуморальные механизмы определяют специфичность заболевания. Например, главным звеном в развитии сахарного диабета внепанкреатического типа является нарушение функции инсулиновых рецепторов. В развитии аллергических заболеваний большое место занимают биологически активные вещества.

Эти механизмы являются универсальными. Они могут быть первичным звеном в развитии болезни. В реализации этого механизма большую роль играют нарушение выработки энергии, накопление токсических веществ (свободных радикалов, аммиака, гидроперекисей липидов), нарушение биосинтетических процессов.

Эти механизмы играют основную роль в аллергических реакциях, при иммунодефицитных состояниях. Но они играют роль и при других заболеваниях, являются вторичными. Например, при атеросклерозе. Реализация этого механизма осуществляется благодаря участию цитотоксических лимфоцитов и образованию патоиммунного комплекса "Антиген-Антитело".

Эти механизмы являются ведущими в развитии наследственных и хромосомных заболеваний. Но они также принимают участие в развитии других болезней, например, лейкозов, опухолей. Реализация этих механизмов осуществляется через конформацию системы "ДНК-РНК-белок".

Читайте также:

Пожалуйста, не занимайтесь самолечением!
При симпотмах заболевания - обратитесь к врачу.