Что такое нервная регуляция кровообращения

Регуляция кровообращения в организме человека осущест­вляется двояко: нервной системой и гуморально. Нервная регуляция кро­вообращения осуществляется сосудодвигательным центром, симпати­ческими и парасимпатическими волокнами вегетативной нервной систе­мы. Сосудодвигательный центр - это совокупность нервных образований, расположенных в спинном, продолговатом мозге, гипоталамусе и коре большого мозга. Основной сосудодвигательный центр находится в про­долговатом мозге и состоит из двух отделов: прессорного и депрессорного. Раздражение первого вызывает сужение артерий и подъем АД, а раздра­жение второго - расширение артерий и падение АД. Свои влияния на тонус сосудов он осуществляет в основном через симпатические нейроны спин­ного мозга (сосудодвигательные центры симпатических нервов). Функцию своеобразного дублера сосудодвигательного центра выполняет гипотала­мус, который начинает работать при снижении тонуса бульбарного сосу­додвигательного центра. В нем также есть прессорные (задние отделы) и депрессорные (передние отделы) зоны. Имеет прямое отношение к регуля­ции сосудистого тонуса при различных поведенческих реакциях.

Нейроны бульбарного сосудодвигательного центра находятся в со­стоянии постоянного тонического возбуждения. Это возбуждение переда­ется симпатическим нейронам спинного мозга, а от них по симпатическим нервам к сосудам и обусловливает их постоянное тоническое напряжение. Тонус же сосудодвигательного центра продолговатого мозга зависит от нервных импульсов, постоянно идущих к нему от рецепторов различных рефлексогенных зон.

Рефлексогенными зонами называются участки сосудистой стенки, содержащие наибольшее количество рецепторов. В этих зонах содержатся следующие рецепторы:

1) механорецепторы (баро-, или прессорецепторы - греч. baros - тя­жесть; лат. pressus - давление), воспринимающие колебания давления кро­ви в сосудах в пределах 1-2 мм рт. ст.;

2) хеморецепторы, воспринимающие изменения химического состава крови (СО2, О2, СО и др.);

3) волюмрецепторы (франц. volume - объем), воспринимающие из­менение объема крови;

4) осморецепторы (греч. osmos - толчок, проталкивание, давление), воспринимающие изменение осмотического давления крови.

К числу наиболее важных рефлексогенных зон относятся:

1) аортальная зона (дуга аорты);

2) синокаротидная зона (общая сонная артерия в месте ее бифурка­ции, т.е. разделения на наружную и внутреннюю сонные артерии);

4) устье полых вен;

5) область сосудов малого круга кровообращения.

Изменение давления, химического состава крови и т.д. чутко воспри­нимается рецепторами, информация об этом поступает в ЦНС и в соответ­ствии с полученной информацией изменяется работа сердца и кровенос­ных сосудов. Рассмотрим это на примере депрессорного и прессорного рефлексов.

Депрессорный (сосудорасширяющий) рефлекс возникает в связи с по­вышением давления крови в сосудах. При этом возбуждаются барорецеп-торы дуги аорты и сонного синуса. От них возбуждение по аортальному (депрессорному) и синокаротидному чувствительным нервам поступает в сосудодвигательный центр продолговатого мозга и вызывает:

1) брадикардию за счет снижения активности прессорной зоны и усиления тормозящего влияния эфферентных волокон блуждающего нер­ва;

2) расширение сосудов, получивших импульсацию по вазодила-таторам из сосудодвигательного центра.

Брадикардия и расширение сосудов приводят в падению АД. Парал­лельно рефлекторно уменьшается глубина и частота дыхательных движе­ний в результате снижения активности нейронов дыхательного центра.

Аналогичный эффект можно получить в эксперименте, если разд­ражать центральный конец перерезанного аортального и синокаротидного

Прессорный (сосудосуживающий) рефлекс наблюдается при пониже­нии давления в сосудистой системе. В этом случае частота импульсов, идущих из аортальной и каротидной зон по чувствительным нервам, резко уменьшается, что приводит к торможению центра блуждающего нерва и увеличению тонуса симпатической иннервации. При этом деятельность сердца стимулируется, сосуды суживаются, давление повышается. В опыте при раздражении периферического конца перерезанного симпатического нерва наблюдается также сужение сосудов. Гораздо чаще прессорный рефлекс возникает при раздражении хеморецепторов дуги аорты и сонных синусов повышенным содержанием углекислого газа и пониженным со­держанием кислорода. Он проявляется в повышении АД за счет сужения просвета сосудов. Одновременно рефлекторно увеличивается глубина и частота дыхательных движений в результате повышения активности ней­ронов дыхательного центра.

Значение депрессорных и прессорных рефлексов: поддерживают по­стоянный уровень АД в сосудах и предупреждают возможность его чрез­мерного повышения. Вот почему рефлексогенные зоны аорты и каротидного синуса называются "обуздывателями кровяного давления".

По современным представлениям, центры, регулирующие деятель­ность сердца, и сосудодвигательный центр функционально объединены в сердечно-сосудистый центр, который управляет функциями кровообраще­ния.

Гуморальные вещества, оказывающие влияние на тонус сосудов, де­лят на сосудосуживающие и сосудорасширяющие. Как правило, сосудосу­живающие вещества оказывают общее воздействие, сосудорасширяющие -местное.

К сосудосуживающим веществам относятся:

1) адреналин - гормон мозгового слоя надпочечников;

2) норадреналин - медиатор симпатических нервов и гормон надпо­чечников;

3) вазопрессин - гормон задней доли гипофиза;

4) ангиотензин II (гипертензин) образуется из альфа-2-глобулина под влиянием ренина - протеолитического фермента почек;

5) серотонин - биологически активное вещество, образуемое в слизи­стой оболочке кишечника, мозге, тромбоцитах, соединительной ткани.

К сосудорасширяющим веществам относятся:

1) гистамин - биологически активное вещество, образующееся в стенке желудочно-кишечного тракта и других органах;

2) ацетилхолин - медиатор парасимпатических и других нервов;

3) тканевые гормоны: кинины, простагландины и др.;

4) молочная кислота, углекислый газ, ионы калия, магния и т.д.

5) натрийуретический гормон (атриопептид, аурикулин), вырабаты­ваемый кардиомиоцитами предсердий. Обладает широким спектром фи­зиологической активности. Он подавляет секрецию ренина, ингибирует эффект ангиотензина II, альдостерона, расслабляет гладкие мышечные клетки сосудов, способствуя тем самым снижению АД.

Обеспечение потребности организма в кислороде. В ор­ганизме, в каждом органе тела, имеются запасы питательных ве­ществ, но нет запасов кислорода. Поэтому доставка кислорода, осуществляемая органами кровообращения, всегда должна точно соответствовать меняющейся потребности организма. Изменение количества потребляемого организмом кислорода вызывает увели­чение или уменьшение частоты и силы сердечных сокращений, а следовательно, минутного объема крови. Во время интенсивной физической работы минутный объем крови, поступающей из сердца в аорту, может повыситься в несколько раз.

При напряженной умственной деятельности значительно повы­шается потребление кислорода клетками мозга, тогда как в других органах, в частности мышцах, нужда в кислороде остается неболь­шой. Работа органов кровообращения была бы крайне неэконом­ной, если бы ради усиленной доставки кислорода одному органу увеличилось кровоснабжение всего организма. В действительности этого не происходит, так как путем изменения ширины просвета мелких артерий и капилляров всегда регулируется распределение крови между различными областями тела: сосуды работающих органов расширяются, а сосуды неработающих или слабо рабо­тающих — суживаются. Так, через расслабленную мышцу проте­кает мало крови, так как большинство капилляров находится в спавшемся состоянии. Через усиленно работающую мышцу ток крови может увеличиваться в несколько десятков раз.

Расширение сосудов в одних участках тела влечет за собой их сужение в других участках. Вот почему после сытного обеда, ког­да значительно усиливается кровенаполнение брюшных внутрен­ностей, мозг и мышцы получают меньше крови, и хочется лежать, а не заниматься физическим или умственным трудом.

Правильное и постоянно меняющееся распределение крови между различными органами предохраняет сердце от чрезмерной работы, и организм получает возможность при всех условиях его деятельности обходиться всего лишь 4—5 литрами крови.

Нервная регуляция кровообращения. К сердцу от головного мозга идет блуждающий нерв, а от спинного—симпатические. Блуждающий нерв тормозит' деятельность сердца, замедляет и ослабляет, его сокращения. Симпатические нервы, наоборот, уча­щают и усиливают сокращения сердца. Таким образом, симпати­ческие и блуждающий нервы оказывают на сердце противополож­ное действие.

Ко всем кровеносным сосудам подходят ветви симпатических нервов. Импульсы, проходящие по этим нервам, вызывают суже­ние сосудов, а следовательно, уменьшение кровотока. При чрез­мерно сильном раздражении симпатического нерва наступает его торможение, и сосуды не суживаются, а иногда наблюдается даже их расширение.

В естественных условиях регуляция кровообращения всегда носит рефлекторный характер и проявляется в одновременном из­менении деятельности сердца и сосудов. Иными словами, под вли­янием раздражения рефлекторно происходит ускорение или за­медление общего кровотока, т. е. изменение минутного объема крови, а также увеличение или уменьшение кровенаполнения от­дельных органов или систем органов. Важнейший источник реф­лекторного воздействия на сердце и сосуды — изменение мышеч­ной активности, особенно переход от состояния покоя к работе.

Для обеспечения надлежащего содержания в крови кислорода особое значение имеют импульсы, которые идут от самой сердечно­сосудистой системы. Так, в месте разветвления общей сонной ар­терии на наружную и внутреннюю и в стенке аорты имеются ре­цепторы, чувствительные к содержанию в крови кислорода: при его избытке наступает рефлекторное замедление сердечных сокра­щений, апри пониженном его содержании — их учащение.

Саморегуляция сердечно-сосудистой системы. При любых ре­акциях на раздражение все участки сердечно-сосудистой системы

б«

должны работать согласованно. Такая согласованность обеспечи­вается собственными рефлексами кровеносной системы. В стенках сердца, а также артерий и вен находятся рецепторы, чувствитель­ные не к содержанию кислорода, а к изменениям кровяного давле­ния. При его повышении артерии растягиваются сильнее обычного. Это вызывает раздражение соответствующих рецепторов, особен­но в аорте и в области разветвления общей сонной артерии. От рецепторов по нервам импульсы поступают в сердечно-сосудистый центр продолговатого мозга, который посылает ответные импуль­сы, приводящие к урежению пульса и расширению кровеносных сосудов.

При резком усилении притока крови к сердцу растягиваются стенки предсердий и впадающих в них крупных вен, что влечет за собой раздражение соответствующих рецепторов. В ответ наступает рефлекторное учащение сердечных сокращений, и в ре­зультате увеличивается отток крови из предсердий в желудочки сердца.

Собственные рефлексы сердечно-сосудистой системы, возни­кающие при раздражении рецепторов других ее участков, проявля­ются главным образом в местном сужении или расширении сосудов.

Таким образом кровеносная система сама себя регулирует, поддерживая нормальное кровяное давление и устраняя препят­ствия, возникающие по пути тока крови.

Гуморальная регуляция. Работа сердца и распределение крови между отдельными органами находится под влиянием не только нервной системы, но и ряда веществ, находящихся в крови. Осо­бое значение имеют адреналин и ацетилхолин, которые постоянно в том или ином количестве образуются под контролем нервной системы в организме. Адреналин оказывает на сердце и сосуды такое же действие, как раздражение симпатических нервов: введе­ние его в кровь суживает сосуды, учащает и усиливает сокраще­ния сердца. Ацетилхолин оказывает противоположное действие:

он замедляет и ослабляет сердечные сокращения, расширяет кро­веносные сосуды.

Такая регуляция, осуществляемая через кровь, т. е. гумораль­ным путем, способствует созданию более или менее длительных сдвигов в работе кровеносной системы, на фоне которых могут происходить быстрые рефлекторные реакции.

Возрастные особенности регуляции кровообращения. К концу внутриутробного периода развития многие клетки сердечных нер­вных узлов еще сохраняют зародышевое строение и' не функциони­руют. После рождения количество функционально созревших кле­ток нервных узлов сердца начинает очень постепенно увеличивать­ся вплоть до 10-летнего возраста.

Подходящие к сердцу симпатические нервы начинают функ­ционировать еще до рождения. Волокна блуждающего нерва хотя и подходят к сердцу, но еще нет связи между их конечными раз-

ветвлениями и клетками нервных узлов, через которые передаются импульсы сердечной мышце. Только после рождения, и то не сразу, устанавливается эта связь. ' Даже после установления связи между нейронами долгое время отсутствуют те сердечные рефлек­сы, которые протекают при участии блуждающего нерва. Поэтому, например, в грудном возрасте ориентировочный рефлекс обычно сопровождается учащением сердечных сокращений, а не уреже-нием, как это свойственно старшим детям и взрослым.

В детском возрасте очень изменчиво функциональное состояние нервных клеток: меняется уровень их возбудимости, а сильное или длительное возбуждение легко переходит в торможение. Этой осо­бенностью нервных клеток объясняется характерная для детей раннего и дошкольного возраста' неустойчивость ритма сердечных сокращений. Электрокардиограмма, т. е. графическая запись сер­дечных импульсов, с помощью электрических датчиков показывает, что циклы сердечных сокращений заметно отличаются друг от друга по их длительности, по высоте зубцов и длительности ин­тервалов между отдельными зубцами. Неустойчивы и рефлектор­ные изменения работы сердца и сосудов, в частности собственные рефлексы кровеносной системы, направленные на поддержание нормального кровяного давления.

В последующие годы постепенно повышается устойчивость как ритма сердечных сокращений, так и рефлекторных изменений со стороны сердца и сосудов. Однако еще долгое время, нередко вплоть до 15—17 лет, сохраняется повышенная возбудимость сер­дечно-сосудистых нервных центров. Этим объясняется чрезмерная выраженность у детей сосудодвигательных и сердечных рефлексов. Они проявляются в побледнении или, наоборот, покраснении кожи лица, замирании сердца или учащении его сокращений.

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет


Иннервация сердца и сосудов. Деятельность сердца регулируется двумя парами нервов: блуждающими и симпатическими (рис. 70). Блуждающие нервы берут начало в продолговатом мозге, а симпатические нервы отходят от шейного симпатического узла. Блуждающие нервы тормозят сердечную деятельность. Если начать раздражать блуждающий нерв электрическим током, то происходит замедление и даже остановка сердечных сокращений (рис. 71). После прекращения раздражения блуждающего нерва работа сердца восстанавливается.

Рис. 70. Схема иннервации сердца

Под влиянием импульсов, поступающих к сердцу по симпатическим нервам, учащается ритм

сердечной деятельности и усиливается каждое сердечное сокращение (рис. 72). При этом возрастает систолический, или ударный, объем крови.

В изучении особенностей влияния центробежных нервов на сердце важную роль сыграли исследования И. П. Павлова.

Если собака находится в спокойном состоянии, то ее сердце сокращается от 50 до 90 раз в минуту. Если перерезать все нервные волокна, направляющиеся к сердцу, то сердце сокращается теперь 120—140 раз в минуту. Если перерезать только блуждающие нервы сердца, то ритм сердца возрастет до 200—250 раз в минуту. Это связано с влиянием сохранившихся симпатических нервов. Сердце человека и многих животных находится под постоянным сдерживающим влиянием блуждающих нервов.


Рис. 71. Влияние раздражения блуждающего нерва на сердце лягушки.

Блуждающий и симпатический нервы сердца обычно действуют согласованно: если повышается возбудимость центра блуждающего нерва, то соответственно понижается возбудимость центра симпатического нерва.

Во время сна, в состоянии физического покоя организма сердце замедляет свой ритм за счет усиления влияния блуждающего нерва и некоторого снижения влияния симпатического нерва. Во время физической работы ритм сердца учащается, сокращения становятся сильнее. При этом происходит усиление влияния симпатического нерва и снижение влияния блуждающего нерва на сердце. Таким путем обеспечивается экономный режим работы сердечной мышцы.


Рис. 72. Влияние раздражения симпатического нерва на сердце лягушки.

Изменение просвета кровеносных сосудов происходит под влиянием импульсов, передающихся на стенки сосудов по сосудосуживающим нервам. Импульсы, поступающие по этим нервам, возникают в продолговатом мозге в сосудодвигательном центре. Открытие и описание деятельности этого центра принадлежит Ф. В. Овсянникову.

Рефлекторные влияния на деятельность сердца и сосудов

Ритм и сила сердечных сокращений меняются в зависимости от эмоционального состояния человека, выполняемой им работы. Состояние человека влияет и на кровеносные сосуды, меняя их просвет.

При страхе, гневе, физическом напряжении из-за изменения просвета кровеносных сосудов человек бледнеет или краснеет.

Работа сердца и просвет кровеносных сосудов связаны с потребностями организма, его органов и тканей в обеспечении их кислородом и питательными веществами. Приспособление деятельности сердечно-сосудистой системы к тем условиям, в которых находится организм, осуществляется нервным и гуморальным регуляторными механизмами, которые обычно функционируют взаимосвязанно. Нервные влияния, регулирующие деятельность сердца и кровеносных сосудов, передаются к ним из центральной нервной системы по центробежным нервам. Раздражением любых чувствительных окончаний можно рефлекторно вызвать урежение или учащение сокращений сердца. Тепло, холод, укол и другие раздражения вызывают в окончаниях центростремительных нервов возбуждение, которое передается в центральную нервную систему и оттуда по блуждающему или симпатическому нерву достигает сердца.


Рис. 73. Схема строения надпочечников:

1 — корковый слой, где вырабатываются гормоны гидрокортизон, кортикостерон, альдостерон и др.;

2 — внутренний слой — мозговое вещество, в котором образуются

адреналин и норадреналин

Центробежные нервы сердца получают импульсы не только из продолговатого и спинного мозга, но и от вышележащих отделов центральной нервной системы, в том числе и от коры больших полушарий головного мозга. Известно, что боль вызывает учащение сердечных сокращений. Если ребенку при лечении делали уколы, то у него только вид белого халата условнорефлекторно будет вызывать частые сердцебиения. Об этом же свиде тельствует изменение сердечной деятельности у спортсменов перед стартом, учащихся и студентов— перед экзаменами.

Импульсы из центральной нервной системы передаются одновременно по нервам ас сердцу и из сосудодвигательного центра по другим нервам к кровеносным сосудам. Поэтому обычно на раздражение, поступившее из внешней или внутренней среды организма, рефлекторно отвечают и с ердце, и сосуды.

Гуморальная регуляция кровообращения

На деятельность сердца и сосудов оказывают влияние химические вещества, находящиеся в крови. Так, в железах внутренней секреции — надпочечниках — вырабатывается гормон адреналин (рис. 73). Он учащает и усиливает деятельность сердца и суживает просвет кровеносных сосудов. В нервных окончаниях парасимпатические нервов образуется ацетилхолин, который расширяет просвет кровеносных сосудов и замедляет и ослабляет сердечную деятельность. На работу сердца оказывают влияние и некоторые соли. Увеличение концентрации ионов калия тормозит работу сердца, а увеличение концентрации ионов кальция вызывает учащение и усиление сердечной деятельности.

Гуморальные влияния тесно связаны с нервной регуляцией деятельности системы кровообращения. Выделение самих химических веществ в кровь и поддержание их определенной концентрации в крови регулируется нервной системой.

Деятельность всей системы кровообращения направлена на обеспечение организма в разных условиях необходимым количеством кислорода и питательных веществ, выведение из клеток и органов продуктов обмена, сохранение на постоянном уровне кровяного давления. Это создает условия для сохранения постоянства внутренней среды организма.

Статья на тему Регуляция кровообращения

Различные ионы и другие химические факторы могут вызывать местное расширение или сужение сосудов. Большинство из них не принимают заметного участия в регуляции системной гемодинамики, однако вызывают местные специфические эффекты.

1. Увеличение концентрации ионов кальция вызывает сужение сосудов.
2. Увеличение концентрации ионов калия вызывает расширение сосудов, т.к. ионы калия тормозят сокращение гладких мышц.
3. Увеличение концентрации ионов магния вызывает значительное расширение сосудов, т.к. ионы магния тормозят сокращение гладких мышц.

4. Увеличение концентрации ионов водорода (уменьшение рН) вызывает расширение артериол; и наоборот, небольшое снижение концентрации ионов водорода вызывает сужение артериол.
5. Анионами, которые оказывают заметное влияние на кровеносные сосуды, являются ацетат и цитрат, которые вызывают умеренное расширение сосудов.
6. Увеличение концентрации углекислого газа вызывает выраженное расширение сосудов в большинстве тканей, особенно в тканях головного мозга. Кроме того, от концентрации углекислого газа зависит состояние сосудодвигательного центра головного мозга. Это непрямое влияние углекислого газа, опосредованное симпатической сосудосуживающей нервной системой, приводит к повсеместному сужению сосудов во всех сосудистых областях организма.


Регуляцию тканевого кровотока в зависимости от метаболических потребностей тканей осуществляют местные механизмы самих тканей. В данной главе увидим, что нервные механизмы регуляции гемодинамики выполняют такие общие функции, как перераспределение кровотока между разными органами и тканями, усиление или торможение насосной функции сердца и, что особенно важно, быстрый контроль над уровнем системного артериального давления.

В регуляции кровообращения принимает участие автономная (вегетативная) нервная система. Здесь мы дадим только краткий обзор анатомических и функциональных особенностей автономной нервной системы, необходимых для предстоящего изложения механизмов нервной регуляции.

Важную роль в регуляции кровообращения играет симпатическая нервная система. Парасимпатическая нервная система также участвует в регуляции кровообращения, главным образом в регуляции деятельности сердца.

Симпатическая нервная система. На рисунке представлена схема симпатической регуляции системы кровообращения. Симпатические сосудодвигательные волокна в составе спинномозговых нервов отходят от грудных и верхних поясничных сегментов спинного мозга. Они следуют к ганглиям симпатического ствола, который располагается по обе стороны от позвоночника. Затем симпатические волокна идут в двух направлениях: (1) в составе специфических симпатических нервов, которые иннервируют кровеносные сосуды внутренних органов и сердце, как показано в правой части рисунка; (2) в составе периферических спинномозговых нервов, которые иннервируют кровеносные сосуды головы, туловища и конечностей.

Симпатическая иннервация кровеносных сосудов. На рисунке показано, что в большинстве тканей все сосуды (за исключением капилляров, прекапиллярных сфинктеров и метартериол) иннервируются симпатическими нервными волокнами (симпатическими вазоконстрикторами).

Стимуляция симпатических нервов мелких артерий и артериол приводит к увеличению сосудистого сопротивления и, следовательно, к уменьшению кровотока в тканях.
Стимуляция симпатических нервов крупных кровеносных сосудов, особенно вен, приводит к уменьшению объема этих сосудов. Это способствует продвижению крови по направлению к сердцу и, следовательно, играет важную роль в регуляции сердечной деятельности, о чем будет сказано в следующих главах.

Симпатические нервные волокна сердца. Симпатические нервные волокна иннервируют и кровеносные сосуды, и сердце. Симпатическая стимуляция приводит к усилению сердечной деятельности за счет увеличения частоты и силы сердечных сокращений.

Нервная регуляция кровообращения решает несколько важнейших для существования организма задач. Во-первых, она поддерживает такой уровень артериального давления, при котором обеспечивается полноценное кровоснабжение ГМ и сердца. Во-вторых, при условии выполнения первой задачи, снабжает кровью все остальные органы. В-третьих, при условии выполнения двух первых задач, осуществляет перераспределение органного кровотока в соответствии с текущими физиологическими задачами организма (дополняя местные и гуморальные механизмы). Перечисленные задачи решаются с помощью ВНС, способной эффективно влиять на насосную функцию сердца (см. гл. 6) и на тонус сосудов всех органов и тканей.

Нервная регуляция сосудов осуществляется ВНС, главным образом — ее симпатическим отделом. Вегетативные нервы иннервируют все сосуды, кроме капилляров (у них нет гладких мышц — основной мишени нервной регуляции).

Плотность нервных окончаний в разных частях сосудистой системы неодинакова: артерии, как правило, иннервированы лучше, чем вены, а артериолы и мелкие артерии — лучше, чем крупные. Нервные окончания лежат на границе гладкомышечного слоя и наружной оболочки, где они ветвятся, образуя синаптические вздутия (варикозы). Расположение нервных окончаний в стенке артериолы и схема иннервации нреканиллярных сосудов показаны на рис. 8.5.


Рис. 8.5. Схема расположения нервных окончаний в стенке сосуда (а); иннервация микрососудов (б)

Симпатические нервные окончания в большинстве случаев выделяют в синаптическую щель НА, вызывающий сокращение гладкой мускулатуры стенок сосудов. По симпатическим нервным окончаниям к сосудам непрерывно идет поток импульсов с частотой 1—3 в секунду, который вызывает сокращение их гладких мышц. Это сокращение поддерживает сосуды в частично суженом состоянии (нейрогенный сосудистый тонус). Уменьшение импульсации по симпатическим сосудосуживающим нервам приводит к расширению сосудов, усиление имиульсации — к сужению сосудов. Таким образом, наличие нейрогенного тонуса расширяет регуляторные возможности симпатической нервной системы.

У некоторых видов животных, например у собак и кошек, существует особая система симпатических волокон, иннервирующая только артериальные сосуды скелетных мышц. Эта система активируется при стимуляции гипоталамуса. В покое импульсация в этих волокнах отсутствует, но появляется при эмоциональных реакциях: ярости, страхе, тревоге и др. Активация этих волокон приводит к выбросу из нервных окончаний АХ, вызывающего расширение сосудов. Значение этой реакции состоит в подготовке мышц к предстоящей работе. У человека такие волокна пока не обнаружены, хотя расширение сосудов скелетных мышц, предшествующее физической нагрузке, у него наблюдается.

Сосуды наружных половых органов иннервируются волокнами парасимпатического отдела ВНС. В покое импульсация в этих волокнах отсутствует, но появляется при половом возбуждении. Окончания этих волокон выделяют АХ и NO, который расширяет сосуды и увеличивает кровенаполнение половых органов. Парасимпатическую иннервацию имеют также сосуды легких и ГМ.

Таким образом, ведущая роль в регуляции тонуса сосудов принадлежит симпатическому отделу ВНС. Роль парасимпатического отдела незначительна. Это отличает нервную регуляцию сосудов от регуляции сердца, где оба отдела нервной системы одинаково важны.

Преганглионарные симпатические нейроны, участвующие в нервной регуляции сердечно-сосудистой системы, лежат в боковых рогах серого вещества большой группы сегментов спинного мозга (от восьмого шейного до третьего поясничного) и посылают свои аксоны к ганглиям, образующим симпатические цепочки (стволы). В цепочках эти аксоны могут образовывать синапсы на нейронах, лежащих в разных ганглиях. Симпатические ганглионарные нейроны непосредственно иннервируют сердце и сосуды, причем в стенке одного сосуда обычно располагаются нервные окончания, связанные с нейронами из нескольких ганглиев. Основные пути эффек- торного звена нервной регуляции сердечно-сосудистой системы показаны на рис. 8.6.

Активность преганглионариых симпатических нейронов находится под контролем нейронной сети, расположенной в продолговатом мозге и варолиевом мосте. Эта сеть получила название сердечно-сосудистого центра.

Сердечно-сосудистый центр ГМ располагается в ретикулярной формации продолговатого мозга и нижней трети моста. В его состав входит ядро блуждающего нерва и зоны, активация которых вызывает сужение сосудов с одновременным усилением работы сердца (прессорный центр) и расширение сосудов с одновременным угнетением работы сердца (депрес- сорный центр). Нейроны прессорного центра активируют симпатические преганглионарные нейроны и тормозят парасимпатические нейроны ядра блуждающего нерва. Нейроны депрессорного центра тормозят активность нейронов прессорного центра и активируют нейроны ядра блуждающего нерва.


Рис. 8.6. Схема анатомического строения основных путей и центров симпатической регуляции сердечно-сосудистой системы:

пунктиром показан парасимпатический путь в составе блуждающего нерва

Сердечно-сосудистый центр, с одной стороны, получает и интегрирует информацию от многочисленных рецепторов сердечно-сосудистой системы, а с другой — находится под постоянным контролем вышележащих нервных центров (рис. 8.7).

На сердечно-сосудистый центр оказывают влияние рецепторы, измеряющие системное давление крови (барорецепторы); рецепторы, измеряющие уровень кровоснабжения тканей (хеморецепторы 02, С02 и др.); рецепторы, измеряющие состояние стенок сердца (механорецепторы сердца), и др. Сердечно-сосудистый центр взаимодействует с дыхательным центром, который также располагается в структурах продолговатого мозга и моста.


Рис. 8.7. Схема основных связей сердечно-сосудистого регуляторного центра продолговатого мозга

Из вышележащих отделов ГМ на сердечно-сосудистый центр наибольшее влияние оказывают ядра ретикулярной формации моста, среднего мозга и гипоталамуса. На сердечно-сосудистый центр влияют также лимбическая система и некоторые отделы коры больших полушарий: двигательная область, передняя часть височной доли, орбитальная область лобной коры, передняя часть поясной извилины и др. Области ГМ, влияющие на сердечно-сосудистый центр, показаны на рис. 8.8.

Большинство из перечисленных структур могут оказывать на работу сердечно-сосудистого центра как угнетающее, так и стимулирующее влияние в зависимости от интенсивности возбуждения и исходной активности центра.

Барорецепторы, осуществляющие контроль за уровнем давления, располагаются в основном в крупных сосудах и в сердце. Там они образуют скопления, которые называются рефлексогенными зонами. Важнейшими из них являются зоны дуги аорты и каротидного синуса (место ветвления сонной артерии на внутреннюю и внешнюю). Расположение этих зон показано на рис. 8.9.


Рис. 8.8. Области головного мозга, участвующие в регуляции кровообращения, и связывающие их пути


Рис. 8.9. Расположение барорецепторов (БР) и хеморецепторов (ХР) в аорте и сонной артерии

Барорецепторы по сути являются рецепторами растяжения, т.е. механорецепторами, реагирующими на изменения напряжения в стенке сосуда. Барорецепторы активны уже при нормальном уровне давления крови. Снижен не давления во время диастолы желудочков уменьшает их активность, а подъем давления во время систолы желудочков — увеличивает. При возрастании давления выше нормы частота импульсации от барорецепторов прогрессивно возрастает. Сигналы от барорецепторов поступают в депрес- сорный центр продолговатого мозга, который в ответ тормозит активность прессорного центра и активирует блуждающий нерв. В результате сосуды расширяются, а сердце тормозит свою работ>'. В совокупности это приводит к очень быстрому и эффективному снижению давления. Активность барорецепторов при этом тоже снижается. Напротив, при снижении артериального давления частота импульсов, идущих от барорецепторов, уменьшается, что приводит к рефлекторному усилению работы сердца и сужению сосудов. В результате артериальное давление повышается. Таким образом, барорефлексы стабилизируют давление на определенном уровне. Этот уровень задается сердечно-сосудистым центром под влиянием сигналов от других рецепторов или вышележащих отделов ГМ.

Сердечные механорецепторы были описаны в гл. 6.

Артериальные хеморецепторы, расположенные в каротидных и аортальных тельцах (см. рис. 8.9), не только играют важную роль в рефлекторной регуляции дыхания, но и влияют на систему кровообращения.

Хеморецепторы представляют собой клетки, чувствительные к недостатку кислорода, а также избытку углекислого газа и ионов водорода. Эти клетки располагаются в небольших (диаметром около 2 мм) хеморе- цептивных органах. Два из них лежат в области каротидного синуса (каротидные тельца), а два-три — вблизи аорты (аортальные тельца). Импульсы от этих хеморецепторов поступают в сердечно-сосудистый центр по чувствительным нервным волокнам, идущим параллельно с волокнами от барорецепторов (см. рис. 8.9). Хеморецепторы находятся в постоянном контакте с кровью, так как густо оплетены капиллярами. Когда артериальное давление падает, хеморецепторы начинают ощущать недостаток кислорода и избыток углекислого газа и ионов водорода, в результате чего они возбуждаются. Усиленная импульсация от рецепторов активирует сердечно-сосудистый центр, который возвращает давление к исходному уровню.

Таким образом, комплекс баро- и хеморецепторов осуществляет постоянный контроль за уровнем артериального давления, посылая сигналы о его отклонениях от нормы в сердечно-сосудистый центр. Этот центр, оказывая влияние на работу сердца и тонус сосудов, обеспечивает рефлекторную стабилизацию давления. Нейрогенные механизмы при необходимости дополняются гуморальными, в частности — эндокринными, которые также способны участвовать в регуляции работы сердца и тонуса сосуда. Время срабатывания нейрогенных механизмов регуляции — секунды, гуморальных — минуты и часы, что позволяет отнести их к системе быстрой регуляции кровообращения. В организме, однако, существует мощный механизм регуляции артериального давления, эффективность которого проявляется не так быстро, но поддерживается в течение недель и даже месяцев. Этот механизм может быть отнесен к системе долговременной регуляции кровообращения.

Читайте также:

Пожалуйста, не занимайтесь самолечением!
При симпотмах заболевания - обратитесь к врачу.