Экстрапирамидная система в центральной нервной системе

В соответствующих статьях была описана достаточно подробно пирамидная система, которая обеспечивает у человека произвольные или сознательные движения. Но, очевидно, должна быть и система, которая занимается обеспечением непроизвольных или автоматических движений? Да, такая особая, более древняя двигательная нервная система существует, причем обособленно от нашего сознания.


На самом деле, экстрапирамидные пути появляются тогда, когда пирамидного тракта вовсе еще не существует, например, у древних рыб. У амфибий (земноводных) пути этой системы усложняются, появляются дополнительные образования (подкорковые центры). Такое название условно, ведь полноценной коры еще нет и эти центры являются высшими органами регуляции моторики и тонуса, тем более амфибии могут охотиться и передвигаться без участия мышления, а на рефлекторных актах.


Если внимательно подумать, то можно понять, какие двигательные функции являются у человека бессознательными и не требуют участия коры. Это те движения, которые имеют только однозначную трактовку. Что это значит и как понять?


  • Приобретение и закрепление навыков.

Это интереснейший феномен. Мы видим, как ловко может работать ювелир или резчик по дереву, музыкант – играть на инструменте, читая ноты прямо с листа, а шлифовальщик – одним движением затачивать нож, получая идеально ровную грань. При этом они разговаривают с нами, отвлекаются, и выполняют свою работу, словно шутя.

Кроме того, ритмика, пластичность и темп движений, над которыми мы совершенно не задумываемся, также принадлежат экстрапирамидной системе.

В том случае, если происходит поражение этого отдела, то возникают неврологические двигательные расстройства. К ним относится нарушение мышечного тонуса, обездвиженность, либо, наоборот, появление бессознательных гиперкинезов. Но о неврологии этих поражений мы расскажем в других статьях, а сейчас вернемся к анатомии.


Схема экстрапирамидной системы, в свою очередь, представлена самым древним образованием (бледным шаром, globus pallidus), и новыми структурами, о которых скажем далее. Не стоит удивляться такому необычному названию. Ведь мозговые ядра, обеспечивающие бессознательные движения, имеют такое причудливое видимое строение и схожесть с некоторыми предметами. Они описаны и получили свое название задолго до появления нейроанатомии, способов получения срезов мозга и их окрашивания. Настоящее исследование экстрапирамидной системы началось лишь со второй половины XIX века. Функции были описаны, а сами образные и яркие названия остались. Всего в составе ядер различают: три их скопления с каждой стороны:

  • Стриатум, или полосатое тело. В свою очередь, оно состоит из хвостатого и чечевицеобразного ядер. Само чечевицеобразное ядро в своем составе имеет древнюю часть – бледный шар, и новую часть – скорлупу, putamen.


  • Ограда, или claustrum, лежащая в виде тонкой серой прослойки. О ее функциях до сих пор идет спор, пока о ней известно мало;
  • Миндалевидное тело, имеющее обширные связи с лимбической системой и подкорковыми центрами обоняния;
  • Парные образования – красные ядра, или nucleus ruber.

  • Мозжечок. Не являясь экстрапирамидной структурой, он вносит исключительно важный вклад в бессознательное равновесие, и должен быть упомянут среди структур этой системы. Он подобен компьютеру, который полностью получает чувствительную информацию о положении тела и равновесии на входе, и модулирует двигательный ответ на выходе;
  • Черная субстанция. Это парный орган, названный так вследствие накопления меланина. Она расположена между покрышечной частью и ножкой мозга. Она очень хорошо кровоснабжена, имеет многочисленные связи, как с таламусом, так и со всеми базальными ядрами. Выделяют отдельно нигростриальную зону или связь черной субстанции посредством медиаторов с базальными ганглиями.

Нейротрансмиттером, или переносчиком импульсов между ядрами, является как дофамин (например, он снижает тормозящие функции в системе стриатума), так и ГАМК (Гамма-аминомасляная кислота), которая тормозит работу, например, черной субстанции.

Тонкие взаимоотношения между всеми структурами экстрапирамидной системы и другими образованиями поистине неисчерпаемы и до сих пор во многом остаются неизученными. Так, кроме названных структур, существуют связи с таламусом и ядрами ретикулярной формации, с оливами, ядрами четверохолмия, ядром Даркшевича. Пути пронизывают мост, мозжечок. От разных отделов коры головного мозга (лобных долей и гиппокампа) идут к экстрапирамидной системе нисходящие волокна. В работе системы принимают участие также гамма-мотонейроны спинного мозга и восходящие пути проприоцептивной чувствительности (анализатор суставно-мышечного чувства).

Проводящие пути экстрапирамидной системы также включают в себя эфферентные, двигательные нисходящие пути от мозжечка, который имеет большое значение в поддержании бессознательного равновесия позы, и ретикулоспинальный путь, который осуществляет регуляцию двигательной активности спинного мозга.


Деятельность и активность экстрапирамидной системы по числу нейронных последовательностей может превышать более быструю пирамидную. Так, существует шестинейронный путь, первый нейрон которого находится в премоторной зоне коры, второй – в области моста, третий – в коре мозжечка, четвёртый - в зубчатых или пробковидных ядрах, пятый – в красных ядрах, шестой – в передних рогах спинного мозга.

Конечно, мы можем совершать небольшое количество целенаправленных движений, при этом регуляция тонуса мышц и позы захватывает во время бодрствования все мышцы.

Важно помнить, что глубокая интеграция экстрапирамидной и лимбической системы приводит к тому, что эмоциональные расстройства меняют непроизвольные жесты и мимику человека, и наоборот – поражения экстрапирамидной системы вызывают насильственный плач или смех, приводят к речевым нарушениям.

Выше говорилось, что бессознательное моргание и вздрагивание при звуке выстрела говорит о том, что первичные анализаторы зрения и слуха – латеральные и медиальные коленчатые тела, принимая чрезмерный, говорящий об опасности раздражитель, вначале переключают его на экстрапирамидные волокна, а уж затем, после закрывания глаз, наступает осознание того, что произошло.

При этом человек может побледнеть, у него возникнет сердцебиение и другие вегетативные реакции на раздражитель. Это говорит о том, что пути слуха и зрения ассоциированы не только с системой бессознательных движений, но и с таламусом и центрами вегетативной регуляции. Несмотря на все открытия, такая интегральная, целостная деятельность мозга и по сей день представляет большую загадку для исследователей.

Нужно сказать, что экстрапирамидные расстройства – это один из интереснейших разделов неврологии, который может проявиться изменением тонуса мышц – от восковой гибкости до полной ригидности, появлением насильственных движений и угасанием нужных, возникновением хореи, тиков, различных гиперкинезов.

ГлавнаяНеврологияНеврология Экстрапирамидные расстройства – виды, причины и лечение

Экстрапирамидная система (ЭПС) – часть нервной системы человека, других млекопитающих и более древних животных. Она помогает организму совершать движения, контролируя и уточняя их без участия сознания. Иногда с возрастом, из-за приёма некоторых лекарств или по другим причинам работа ЭПС нарушается, приводя к нарушению осознанных и неосознанных движений человека.

Экстрапирамидные расстройства (или синдромы) – это группа состояний, которые проявляются нарушением работы мышц. Изменения касаются только скелетной мускулатуры – мышц, которыми человек осознанно может управлять. Проблема может вовлекать качественные (сила, точность, скорость, амплитуда движений) и количественные (частота движений) расстройства.

Здоровая экстрапирамидная система нужна человеку для совершения неосознанных действий. Ещё к её задачам относится поддержание нужного мышечного тонуса, равновесия, позы. Название связано с тем, как проходят нервные волокна через спинной мозг и ствол головного мозга. Анатомически и функционально у человека выделяют несколько групп нервных путей, проходящих из головного мозга в спинной, в том числе пирамидные и экстрапирамидные пути.


Пирамидная система отвечает за осознанные движения. Начинается она в коре головного мозга, точнее –предцентральной извилине обоих лобных долей. Этот участок отвечает за осознанное создание любых движений с помощью скелетных мышц. Сигнал к мышцам проходит через пирамидные пути спинного мозга и двигательные нервы, выходящие из него.


ЭПС регулирует неосознанные движения, их координацию и координацию осознанных движений, мышечный тонус, осанку, проявления эмоций. Нарушение в ЭПС приводит к изменению этих двигательных функций.

Разновидности и симптомы

Экстрапирамидная система в своей структуре имеет стриопаллидарную систему, которая делится на два основных отдела: стриатум (или неостриатум) и паллидум. Они отличаются сроками эволюционного появления у животных и своими задачами. Поражения стриатума и паллидума имеют разные проявления, иногда – кардинально противоположные.


Появляется интенционный тремор – дрожание пальцев и кистей в покое, которое ослабляется или полностью исчезает при осознанных движениях с большой амплитудой. Этот симптом называется паркинсонизм, или амиостатический синдром.

Повреждения стриатума проявляется как гипотонически-гиперкинетические нарушения. Мышцы, находящиеся в покое, становятся более расслаблены (гипотонус), но склонны к неконтролируемым движениям (гиперкинезы). Это основное отличие от паллидарных симптомов – там пациент был вялый и с трудом двигался, здесь человек значительно более активен, но такие движения контролировать невозможно. Часто гиперкинезы похожи на рефлекторные движения, выполняемые при ползании, плавании, лазании и других действиях.

Гиперкинезы являются основным заметным проявлением повреждения стриатума, но иногда встречаются и при паллидарных дефектах.


Более частые подёргивания кистей, предплечий, плеч, стоп, голеней, бёдер, лица, шеи. Движения размашистые. Характерно изменение локализации – рука может резко смениться ногой, затем сокращения могут перейти на лицо. Появляются характерные изменения мимики, речи, походки.

Движения похожи на хорею, но менее амплитудные и более локализованы. Реже переходят с одной группы мышц на другую.

Длительное сокращение или чередование сокращения с расслаблением одной или нескольких близкорасположенных мышц. Может затрагивать любую скелетную мышцу.

Частое подёргивание одной или нескольких близкорасположенных мышц одной группы. Очень напоминает осознанные, целенаправленные движения, но на самом деле человек их делает не специально.

Одновременное сокращение мышц с противоположной функцией. Они возникают нечасто, но их относят к наиболее неприятным для человека, иногда вызывают болезненные ощущения.


Крупноамплитудные, размашистые движения конечностей в плечевом, тазобедренном суставах. Напоминают рисование шара, движения метателя диска.

Причины возникновения

Главная причина всех экстрапирамидных расстройств – нарушение работы нервной системы в местах соединения нейронов – синапсах. Нейроны передают информацию друг другу с помощью специальных сигнальных веществ – медиаторов. Эти молекулы выделяются одним нейроном в небольшую щель между ним и соседним, через мембрану второго попадают внутрь и, тем самым, передают информацию. Разные синапсы работают на основе разных медиаторных веществ.

В экстрапирамидной системе нейроны чаще всего используют дофамин, серотонин и ацетилхолин в качестве медиаторов. Нарушение их обмена чаще всего и приводит к экстрапирамидным расстройствам.

Основные факторы, вызывающие нарушение работы экстрапирамидной системы:

  • побочный эффект от приёма лекарственных средств (в первую очередь – нейролептиков (антипсихотиков));
  • возрастные изменения в ядрах ЭПС;
  • наследственные заболевания;
  • опухоли головного мозга;
  • перенесённые инфекции головного мозга;
  • нарушения обмена веществ, микроэлементов;
  • другие причины.

Диагностика

Главная задача врача во время диагностики любых симптомов, похожих на экстрапирамидные расстройства, – это выяснение причины их возникновения. Важен тщательный, внимательный визуальный осмотр пациента. После него врач назначает дополнительные методы исследования: клинический анализ крови, оценка количества некоторых гормонов в крови, микроэлементов, медиаторов. Используются визуализационные методы: магнитно-резонансная томография головы, электроэнцефалография, доплерография сосудов шеи. Реже проводятся миография, пункция спинномозговой жидкости, различные биопсии.

Сложность определения конкретной причины изменений требует применения большого количества анализов и обследований. При необходимости длительного приёма лекарственных средств, побочным эффектом, которым может быть экстрапирамидное расстройство, их дозировка корректируется.

Лечение

Терапия должна зависеть от выявленной причины. Обычно назначаются:

  • противопаркинсонические препараты для улучшения создания и эффекта дофамина;
  • ингибиторы моноаминооксидазы (МАО) – фермент, отвечающий за расщепление дофамина в синаптической щели);
  • холиноблокаторы – лекарства для временного блокирования ацетилхолиновых рецепторов, прекращающие его эффект;
  • противосудорожные средства (обычно – для уменьшения гиперкинезов).

Также могут применяться хирургические методы. Они могут быть направлены на разрушение экстрапирамидных путей (деструктивные методы) или электростимуляцию нервов, ядерных структур мозга.


Чаще всего лекарства назначаются пожизненно. В зависимости от основного заболевания, продолжительность жизни может быть как значительно уменьшена, так и абсолютно не изменена.

Профилактика

Специфической профилактики экстрапирамидных нарушений нет. Как и большинство заболеваний, эти расстройства невозможно полностью предотвратить. Снизить вероятность развития помогут активный, здоровый образ жизни, ограничение вредной пищи и вредных привычек.


Елена Першина

Обращайтесь ко мне по любому интересующему вас вопросу.

Почему мы двигаемся? Ответ, казалось бы, очевиден. Благодаря движению рук и ног, сокращению мышц. Однако это является лишь последним этапом в осуществлении двигательного акта. Руководит нашими конечностями центральная нервная система. В первую очередь - головной мозг. А именно - две структуры, расположенные параллельно, но в то же время находящиеся в постоянном взаимодействии: пирамидная и экстрапирамидная системы.

Пирамидная система - что это такое?

Она представляет собой совокупность нервных клеток (мотонейронов), группирующихся в комплекс проводящих путей, которые тянутся от коры головного мозга (центра высшей нервной деятельности) через передние рога спинного мозга до рецепторов, находящихся в мышцах. Благодаря такой передачи нервного импульса и осуществляется движение.

Особенностью является то, что передача этих нервных импульсов произвольна, то есть контролируется сознанием.


Что такое экстрапирамидная система?

Это система нейронов и проводящих путей головного мозга, благодаря которой возможно наличие четких, быстрых, высокоточных движений. Хотя эти пути не пересекаются с путями пирамидной системы, они постоянно взаимодействуют.

Основное отличие пирамидной и экстрапирамидной системы: непроизвольность функционирования экстрапирамидных проводящих путей. Например, при появлении желания взять ручку человек произвольно, осознанно тянется к определенной ручке (пирамидные пути). Однако чтобы дотянуться до нее, ему не нужно прицеливаться, высчитывать расстояние и силу, все это происходит автоматически (экстрапирамидные пути).

Структура

Экстрапирамидная система состоит из серого вещества головного мозга, то есть скопление тел нервных клеток. Такое же серое вещество присутствует и в коре головного мозга. Основной структурной единицей является базальное ядро или базальный ганглий. Это такие ядра, как:

  • Стриопалидарная система, состоящая из чечевицеобразного и хвостатого ядра. Чечевицеобразный ганглий в свою очередь состоит из скорлупы и бледного шара.
  • Стриатум - более филогенетически древняя составляющая этой части базальных ядер, она включает в себя хвостатое ядро и скорлупу.
  • Паллидум - более молодая составляющая, представлена бледным шаром.
  • Субталамическое ядро.
  • Красное ядро.
  • Черное вещество, расположенное в среднем мозге.


Помимо базальных ганглиев, в состав экстрапирамидной системы головного мозга также включают:

  • таламус;
  • мозжечок;
  • ядра оливы и преддверия в продолговатом мозге;
  • ретикулярную формацию;
  • ассоциативные центры коры головного мозга.

Кроме того, существует деление вышеперечисленных структур на два отдела:

  • Неостриатум - включает в себя кору, скорлупу и хвостатое ядро. Эта система является эволюционно более молодой;
  • Палеостриатум - состоит из бледного шара, вестибулярных ядер, субталамического ядра, структур среднего мозга (покрышки и черной субстанции).

Стриопаллидарная система

Пожалуй, наиболее значимой частью базальных ганглиев, имеющей наибольшее количество взаимосвязей с остальными отделами центральной нервной системы, является стриопаллидарная система.

Скорлупа и хвостатое ядро получают информацию по нервным волокнам из коры больших полушарий, таламуса, среднего мозга (черной субстанции). Из стриатума волокна сначала направляются в паллидум, а потом уже к остальным отделам нервной системы: таламус, гипоталамус, субталамическому ядру, стволу (состоит из среднего мозга, моста и продолговатого мозга). Посредством таламуса стриопаллидарная система взаимодействует также с мозжечком - основным координатором движений и равновесия.


Проводящие пути

Структура головного мозга, в том числе и экстрапирамидных путей, действительно сложна. И для лучшего ее запоминания стоит представить себе все структуры, через которые проходит путь. А лучший метод - зарисовать их.

Выделяют следующие пути экстрапирамидной системы:

  • ретикулярно-спинномозговой;
  • красноядерно-спинномозговой;
  • преддверно-спинномозговой;
  • крыше-спинномозговой;
  • оливо-спинномозговой.

Ретикулярно-спинномозговой путь берет свое начало в ретикулярной формации в области ствола головного мозга. Здесь находится первый нейрон. Импульс по нервным волокнам распространяется вниз на второй нейрон. Его локализация - передние столбы спинного мозга. Затем по спинномозговым нервам импульс доходит до поперечнополосатых мышц, где и заканчивается этот путь.

Красноядерно-спинномозговой путь начинается первым нейроном в красных ядрах, расположенных в среднем мозге. Отростки этого нейрона переходят на противоположную сторону и потом по этой стороне продолжают свой ход до сегментов спинного мозга, где заканчивается вставочным нейроном (интернейроном) - в его сером веществе. На двигательные ядра спинного мозга, от которых импульс идет дальше к скелетным мышцам, этот путь влияет опосредствованно - через вставочный нейрон.

Преддверно-спинномозговой путь состоит из первого нейрона, расположенного в вестибулярных ядрах (латеральном - ядро Дейтерса, нижнем - ядро Роллера). Вторые нейроны также находятся в передних столбах спинного мозга, до которых импульс доходит через продолговатый мозг и передний канатик спинного мозга. Затем аксоны вторых нейронов достигают скелетных мышц.

Крыше-спинномозговой путь считается самым молодым из всех путей, составляющих анатомию экстрапирамидной системы. Начинаясь в верхних холмиках среднего мозга, куда поступает зрительная информация, он дальше переходит на противоположную сторону, направляясь аналогично другим путям к соответствующим сегментам спинного мозга.

Оливо-спинномозговой путь необходим для поддержания мышечного тонуса шеи и обеспечения равновесия. Он начинается с образования в продолговатом мозге - ядра оливы, достигает шестого сегмента шейного отдела спинного мозга. Оттуда отростки мотонейронов проводят импульс к мышцам шеи.


Основные функции

Как уже было отмечено выше, экстрапирамирадная система - важная составляющая центральной нервной системы, которая дает возможность выполнять повседневные действия. Но каким же образом она регулирует наши движения, делая их такими точными и аккуратными?

Ниже перечислены основные функции экстрапирамидной системы:

  • упорядоченность произвольных движений, изначально регулируемых пирамидной системой;
  • регуляция автоматических двигательных актов как врожденного, так и приобретенного характера;
  • поддержание равновесия;
  • регуляция тонуса мышц;
  • непроизвольное сокращение мимических мышц;
  • регуляция движений, выполняющих роль сопутствующих (например, быстрое движение руками при беге).


Патологические изменения

Нарушение функции и структуры экстрапирамидной системы получило название дискинезий, дословно - нарушение движений. Оно может меняться как в сторону повышенной двигательной активности - гиперкинезов, так и в сторону уменьшения количества движения, появления их скупости - гипокинезов. Характерно то, что такое нарушение никак нельзя изменить при помощи сознания. Гиперкинезы непроизвольны, появляются внезапно и также внезапно прекращаются.

Гиперкинезы

Выделяют следующие типы гиперкинетических нарушений физиологии экстрапирамидной системы:

  • Хорея - быстрые, внезапно возникающие, беспорядочные, непроизвольные движения руками, ногами, мышцами лица. Это проявляется появлением гримас на лице, странных жестов.
  • Атетоз - движения пальцев рук, также может быть в мышцах языка и лица. Проявляется выгибанием, червеобразными движениями пальцев, выкручиванием языка.
  • Торсионная дистония - внезапные повороты туловища в разные стороны, выгибание всего тела. Часто имеют штопорообразный вид. В первую очередь происходит поражение шейных мышц.
  • Гемибализм - односторонние, размашистые движения, чаще всего, рук напоминающие взмах птичьего крыла.
  • Тик - быстрые, простые, стереотипные движения небольших групп мышц.
  • Миоклония - короткие подергивания отдельных мышечных волокон в очень быстром темпе. Часто при этом перемещения конечностей не наблюдаются.


Болезнь Паркинсона

Классическим проявлением гипокинетического синдрома является болезнь Паркинсона или синдром паркинсонизма. Их отличие заключается в том, что болезнь Паркинсона возникает при непосредственном повреждении строения экстрапирамидной системы, а синдром паркинсонизма - одно из проявлений каких-либо других заболеваний, не связанных с поражением базальных ядер.

Болезнь Паркинсона развивается при повреждении черной субстанции среднего мозга, которая начинает вырабатывать меньшее количество дофамина. Его основная функция - уменьшения тормозного влияния хвостатого ядра на двигательную активность. Когда эта функция падает, хвостатое ядро угнетает моторику в большей мере, что приводит к развитию гипокинезов.

Болезнь Паркинсона: симптомы

Помимо скованности и уменьшения количества движений, болезнь Паркинсона проявляется также:

  • повышенным мышечным тонусом - в неврологии употребляется термин "повышение тонуса по гиперпластическому типу";
  • скованность мимики;
  • сутулая осанка;
  • характерна поза просителя - наклоненная вниз голова, руки согнуты в локтях, туловище наклонено;
  • дрожание конечностей (тремор);
  • трудности в начале движения и при его завершении (торможение).


Структура головного мозга действительно сложна и многогранна. Это объясняется множеством функций, которые он выполняет. Чего стоит только одна экстрапирамидная система! Чтобы мы могли сделать элементарное движение, требуется одновременно задействовать множество образований головного мозга. Интересно и то, что масса процессов происходит за доли секунды.

Да, медицина шагнула далеко за последние десятилетия. Однако нейрохирурги даже не догадываются, сколько еще тайн таит в себе головной мозг.

1. Красноядерно-спинномозговой путь. Красное ядро является основным двигательным координационным центром экстрапирамидной системы. Оно имеет многочисленные связи с корой полушарий большого мозга, со стриопаллидарной системой, с таламусом, с подталамической областью и с мозжечком. Нервные импульсы, поступающие к нейронам красного ядра от коры полушарий, ядер стриопаллидарной системы и ядер промежуточного мозга, после соответствующей обработки следуют по красноядерно-спинномозговому пути, обеспечивающему выполнение сложных привычных движений (ходьба, бег), делая эти движения пластичными, способствуя сохранению определенной позы на протяжении длительного времени, а также обусловливая поддержание тонуса скелетной мускулатуры.

От нейронов полушарий большого мозга, преимущественно из лобной доли, аксоны формируют корково-стриарный тракт, который проходит через переднюю ножку внутренней капсулы. Лишь небольшая часть волокон этого тракта заканчивается непосредственно на мелких мультиполярных клетках красного ядра среднего мозга. Бо́льшая часть волокон направляется к ядрам стриарной системы (базальным ядрам головного мозга), в частности к хвостатому ядру и скорлупе. От нейронов стриарной системы к красному ядру направляется стриарно-красноядерный путь.

Из структур промежуточного мозга с красным ядром связаны нейроны медиальных ядер таламуса (подкорковый чувствительный центр экстрапирамидной системы), нейроны бледного шара (паллидарная система) и нейроны задних ядер гипоталамуса. Аксоны клеток ядер промежуточного мозга собираются в таламо-красноядерный пучок, который заканчивается на клетках красного ядра и черного вещества. Нейроны черного вещества также имеют связи с красным ядром.

Нервные импульсы, поступающие к нейронам красного ядра из мозжечка, осуществляют так называемую поправочную деятельность. Они обеспечивают выполнение тонких целенаправленных движений и предотвращают инерционные проявления при движениях.

Мозжечок связан с красными ядрами посредством двухнейронного пути – мозжечково-красноядерного тракта. Первыми нейронами этого пути являются клетки коры полушарий мозжечка, аксоны которых заканчиваются в зубчатом ядре. Вторыми нейронами являются клетки зубчатого ядра, аксоны которых покидают мозжечок через верхние ножки. Мозжечково-красноядерный тракт входит в средний мозг, па уровне нижних холмиков перекрещивается с одноименным трактом противоположной стороны (перекрест Верне- кинга) и заканчивается на клетках красного ядра (рис. 4.10).


Рис. 4.10. Красноядерно-спинномозговой путь:

1 – зубчато-красноядерный путь; 2 – мозжечок; 3 – кора мозжечка; 4 – зубчатое ядро; 5 – шейный сегмент; 6 – поясничный сегмент; 7 – двигательные ядра передних рогов спинного мозга; 8 – красноядерно-спинномозговой путь; 9 – мост; 10 – красное ядро; 11 – средний мозг

От нейронов каждого красного ядра начинается нисходящий красноядерно-спинномозговой путь (пучок Монакова) и красноядерно-ядерный путь, которые сразу же в покрышке среднего мозга переходят на противоположную сторону и образуют передний перекрест покрышки (перекрест Фореля).

Красноядерно-ядерный путь проходит в покрышке ствола головного мозга и заканчивается на мотонейронах двигательных ядер черепных нервов. Аксоны мотонейронов ядер черепных нервов направляются к скелетным мышцам глазного яблока, головы, глотки, гортани и верхней части пищевода, обеспечивая их эфферентную иннервацию.

Красноядерно-спинномозговой путь проходит в боковом канатике спинного мозга. В последнем он располагается кпереди от латерального корково-спинномозгового пути. Постепенно пучок волокон истончается, так как аксоны посегментно заканчиваются на мотонейронах двигательных ядер передних рогов спинного мозга своей стороны. Аксоны мотонейронов покидают спинной мозг в составе передних корешков спинномозговых нервов, а затем в составе самих нервов и их ветвей направляются к скелетным мышцам.

2. Крыше-спинномозговой путь осуществляет безусловнорефлекторные двигательные реакции в ответ па внезапные сильные зрительные, слуховые, тактильные и обонятельные раздражения. Первые нейроны крыше-спинномозгового пути располагаются в верхних холмиках среднего мозга – подкорковом интеграционном центре среднего мозга (рис. 4.11). В данный интеграционный центр информация поступает из подкорковых центров зрения (ядро верхнего холмика), подкоркового центра слуха (ядро нижнего холмика), подкоркового центра обоняния (ядро сосцевидного тела) и коллатералей от проводящих путей общей чувствительности (спинномозговая, медиальная и тройничная петли).

Аксоны первых нейронов направляются вентрально и кверху, обходят центральное серое вещество среднего мозга и переходят на противоположную сторону, образуя задний перекрест покрышки (перекрест Мейнерта). Далее тракт проходит в дорсальной части моста рядом с медиальным продольным пучком. По ходу тракта в стволе головного мозга отходят волокна, которые заканчиваются на мотонейронах двигательных ядер черепных нервов. Эти волокна объединяются под названием крыше-ядерного пучка. Они обеспечивают защитные реакции с участием мышц головы и шеи.

В области продолговатого мозга крыше-спинномозговой путь приближается к дорсальной поверхности пирамид и направляется в передний канатик спинного мозга. В спинном мозге он занимает самую медиальную часть переднего канатика, ограничивая переднюю срединную щель.

Крыше-спинномозговой путь прослеживается на протяжении всего спинного мозга. Постепенно истончаясь, он посегментно отдает ответвления к мотонейронам двигательных ядер передних рогов спинного мозга своей стороны. Аксоны мотонейронов проводят нервные импульсы к мускулатуре туловища и конечностей.


Рис. 4.11. Крыше-спинномозговой путь:

1 – верхний холмик среднего мозга; 2 – задний перекрест покрышки; 3 – крыше-спинномозговой путь; 4 – двигательные ядра передних рогов спинного мозга; 5 – поясничный сегмент; 6 – шейный сегмент; 7 – продолговатый мозг; 8 – средний мозг

При поражении крыше-спинномозгового тракта исчезают стартовые рефлексы, рефлексы на внезапные звуковые, слуховые, обонятельные и тактильные раздражения.

3. Ретикулярно-спинномозговой путь обеспечивает выполнение сложных рефлекторных актов (дыхательные, хватательные движения и т.д.), требующих одновременного участия многих групп скелетных мышц. Следовательно, он осуществляет координационную роль при этих движениях. Ретикулярно-спинномозговой путь проводит нервные импульсы, оказывающие активирующее или, наоборот, тормозное воздействие на мотонейроны двигательных ядер передних рогов спинного мозга. Кроме того, этот путь передает импульсы, обеспечивающие тонус скелетной мускулатуры.

Первые нейроны ретикулярно-спинномозгового пути располагаются в ретикулярной формации ствола головного мозга. Аксоны этих нейронов идут в нисходящем направлении. В спинном мозге они образуют пучок, который располагается в переднем канатике. Пучок хорошо выражен только в шейном и верхнегрудном отделах спинного мозга. Посегментно он истончается, отдавая волокна к гамма-мотонейронам двигательных ядер передних рогов спинного мозга. Аксоны этих нейронов направляются к скелетным мышцам.

  • 4. Преддверно-спинномозговой путь обеспечивает безусловнорефлекторные двигательные акты при изменении положения тела в пространстве. Преддверно-спинномозговой путь образован аксонами клеток латерального и нижнего вестибулярных ядер (ядер Дейтерса и Роллера). В продолговатом мозге он располагается в дорсальном отделе. В спинном мозге проходит на границе бокового и переднего канатиков, поэтому пронизан горизонтально ориентированными волокнами передних корешков спинномозговых нервов. Волокна преддверно-спинномозгового пути посегментно заканчиваются на мотонейронах двигательных ядер передних рогов спинного мозга. Аксоны мотонейронов в составе корешков спинномозговых нервов покидают спинной мозг и направляются к скелетной мускулатуре, обеспечивая перераспределение тонуса мышц в ответ на изменение положения тела в пространстве.
  • 5. Оливо-спинномозговой путь обеспечивает безусловнорефлекторное поддержание тонуса мышц шеи и двигательные акты, направленные па сохранение равновесия.

Оливо-спинномозговой путь начинается от нейронов нижнего оливного ядра продолговатого мозга. Являясь филогенетически новым образованием, нижнее оливное ядро имеет непосредственные связи с корой полушарий лобной доли (корково-оливный путь), с красным ядром (красноядерно-оливный путь) и с корой полушарий мозжечка (оливо-мозжечковый путь). Аксоны клеток нижнего оливного ядра собираются в пучок – оливо-спинномозговой путь, который проходит в переднемедиальном отделе бокового канатика. Он прослеживается только на уровне шести верхних шейных сегментов спинного мозга.

Волокна оливо-спинномозгового тракта посегментно заканчиваются на мотонейронах двигательных ядер передних рогов спинного мозга, аксоны которых в составе передних корешков спинномозговых нервов покидают спинной мозг и направляются к мышцам шеи.

6. Медиальный продольный пучок осуществляет согласованные движения глазных яблок и головы. Эта функция необходима для поддержания равновесия тела. Выполнение данной функции становится возможным только в результате морфофункциональной связи между нервными центрами, обеспечивающими иннервацию мышц глазного яблока (двигательные ядра III, IV и VI пар черепных нервов), центрами, отвечающими за иннервацию мышц шеи (двигательное ядро XI пары и двигательные ядра передних рогов шейных сегментов спинного мозга), центром равновесия (ядро Дей- терса). Координируют работу названных центров нейроны крупных ядер ретикулярной формации – интерстициального ядра (ядра Кахаля) и ядра задней спайки (ядра Дарк- шевича).

Интерстициальное ядро и ядро задней спайки располагаются в ростральном отделе среднего мозга в его центральном сером веществе. Аксоны нейронов этих ядер формируют медиальный продольный пучок, который проходит под центральным серым веществом вблизи срединной линии. Не меняя своего положения, он продолжается в дорсальной части моста и в вентральном направлении отклоняется в продолговатом мозге. В спинном мозге он располагается в переднем канатике, в углу между медиальной поверхностью переднего рога и передней белой спайкой. Прослеживается медиальный продольный пучок только на уровне верхних шести шейных сегментов.

От медиального продольного пучка направляются волокна к двигательному ядру глазодвигательного нерва, иннервирующему большинство мышц глазного яблока. Далее в пределах среднего мозга из состава медиального продольного пучка направляются волокна к нейронам двигательного ядра блокового нерва стороны. Это ядро отвечает за иннервацию верхней косой мышцы глазного яблока.

В мосту в состав медиального продольного пучка вступают аксоны клеток ядра Дейтерса (VIII пара), которые идут в восходящем направлении к нейронам интерстициального ядра. От медиального продольного пучка отходят волокна к нейронам двигательного ядра отводящего нерва (VI пара), отвечающего за иннервацию латеральной прямой мышцы глазного яблока. И, наконец, в пределах продолговатого и спинного мозга от медиального продольного пучка волокна направляются к нейронам двигательного ядра добавочного нерва (XI пара) и двигательным ядрам передних рогов шести верхних шейных сегментов, отвечающих за функцию мышц шеи.

Кроме общей координации работы мышц глазного яблока и головы, медиальный продольный пучок выполняет важную интегративную роль в деятельности мышц глаза. Осуществляя связь с клетками ядра глазодвигательного и отводящего нервов, он обеспечивает согласованную функцию наружной и внутренней прямых мышц глаза, проявляющуюся в сочетанном повороте глаз в сторону. При этом происходит одновременное сокращение латеральной прямой мышцы одного глаза и медиальной прямой мышцы другого глаза.

При поражении интерстициального ядра или медиального продольного пучка происходит нарушение координированной работы мышц глазного яблока. Чаще всего это проявляется в виде нистагма (частые сокращения мышц глазного яблока, направленные в сторону движения, при остановке взгляда). Нистагм может быть горизонтальным, вертикальным и даже ротаторным (вращательным). Нередко указанные нарушения дополняются вестибулярными расстройствами (головокружение) и вегетативными расстройствами (тошнота, рвота и т.д.).

7. Задний продольный пучок осуществляет связи между вегетативными центрами ствола головного и спинного мозга.

Задний продольный пучок (пучок Шютце) берет начало от клеток задних ядер гипоталамуса. Аксоны этих клеток объединяются в пучок лишь на границе промежуточного и среднего мозга. Далее он проходит в непосредственной близости от водопровода среднего мозга. Уже в среднем мозге часть волокон заднего продольного пучка направляется к добавочным ядрам глазодвигательного нерва. В области моста от заднего продольного пучка отходят волокна к слезному и верхнему слюноотделительному ядрам лицевого нерва. В продолговатом мозге ответвляются волокна к нижнему слюноотделительному ядру языкоглоточного нерва и дорсальному ядру блуждающего нерва.

В спинном мозге задний продольный пучок располагается в виде узкой ленты в боковом канатике, рядом с латеральным корково-спинномозговым трактом. Волокна пучка Шютце посегментно заканчиваются на нейронах промежуточно-латеральных промежуточных ядер, являющихся вегетативными симпатическими центрами спинного мозга.

Лишь небольшая часть волокон заднего продольного пучка обособляется на уровне поясничных сегментов и располагается вблизи центрального канала. Этот пучок носит название околоэпендимального. Волокна данного пучка заканчиваются на нейронах крестцовых парасимпатических ядер.

Аксоны клеток парасимпатических и симпатических ядер покидают ствол головного или спинного мозга в составе черепных или спинномозговых нервов и направляются к внутренним органам, сосудам и железам. Таким образом, задний продольный пучок играет очень важную интегративную роль в регуляции жизненно важных функций организма.

Читайте также:

Пожалуйста, не занимайтесь самолечением!
При симпотмах заболевания - обратитесь к врачу.