Интегративная и координационная деятельность нервной системы

Центральная нервная система координирует деятельность всех органов и систем, обеспечивает эффективное приспособление организма к изменениям окружающей среды, формирует целенаправленное поведение. Эти жизненно важные задачи решаются благодаря интегративной деятельности ЦНС.

Интегративная деятельность ЦНС – это ее способность объединять, обобщать все поступающие сигналы, отрабатывать их в связи с прошлым опытом. В результате формируется определенная реакция организма биологически или социально наиболее важная в данной ситуации.

В интегративной деятельности условно выделяют 4 основных уровня:

1. Интеграция на уровне рецептора. Рецептор, воспринимая информацию, осуществляет ее первичный отбор по интенсивности, продолжительности, модальности и формирует нервные импульсы.

2. Интегративная деятельность нейрона – это способность нейрона воспринимать возбуждение и торможение, обрабатывать их с учетом генетической и приобретенной памяти нейрона и вырабатывать временную последовательность потенциалов действия. Интегративная деятельность нейрона базируется на конвергентных свойствах нейрона и его структурных изменениях, лежащих в основе обучения и памяти.

3. Интеграция на уровне центра. Нервный центр – это совокупность нервных клеток, расположенных на различных уровнях ЦНС и обеспечивающих определенную физиологическую реакцию организма. Иерархический принцип строения нервных центров создает возможность тонко дифференцировать ответные реакции.

Свойства нервных центров обусловлены свойствами нейронов, центральных синапсов и типами связей между нейронами. Для нервных центров характерны:

· высокий аэробный обмен веществ и высокая чувствительность к гипоксии;

· чувствительность к фармакологическим препаратам;

· меньшая возбудимость, чем у нервных волокон;

· односторонняя передача возбуждения;

· последействие (продолжение рефлекса после прекращения действия раздражителя);

· суммация (способность центральных синапсов к суммации допороговых импульсов и явлениями облегчения и конвергенции).

4. Межцентральная интеграция обеспечивает согласование деятельности различных нервных центров и формирование сложных поведенческих, эмоциональных и адаптивных реакций, организовывая деятельность организма как единого целого.

В естественных условиях любой рефлекторный акт является результатом интегративной деятельности. В основе интегративной деятельности ЦНС лежат механизмы координации.

Координация – это согласованное взаимодействие процессов возбуждения и торможения в ЦНС. Координация процессов в нервных центрах происходит при осуществлении любого рефлекторного акта. Этот процесс базируется на принципах конвергенции, дивергенции и обратной связи (рисунок 13).

Конвергенция – схождение различных путей (тормозящих, возбуждающих) проведения нервных импульсов на одной нервной клетке. Это обуславливает интегративную функцию нейрона. Принцип конвергенции лежит в основе таких процессов, как общий конечный путь, пространственная суммация и окклюзия (см. ниже).

Дивергенция – это способность нейрона устанавливать многочисленные синаптические связи с другими нервными клетками. Благодаря процессу дивергенции один нейрон может участвовать в различных нервных реакциях и контролировать большое число других нейронов, а также каждый нейрон может обеспечивать широкое перераспределение импульсов, что приводит к иррадиации возбуждения.

Рис. 13. Схема дивергенции (А) и конвергенции (Б) сигналов в ЦНС. Схематически изображены нервные клетки, их аксоны и образуемые ими синапсы. Стрелки отмечают направление передачи сенсорной информации

Обратные связи – поступление нервных импульсов в ЦНС с иннервируемого органа или клетки. Обратные связи разделяют на центральные (кольцевой тип связи между нейронами) и рефлекторные (импульсы возвращаются в нервный центр с рецепторов иннервируемого органа). По эффекту обратные связи могут быть положительными и отрицательными.

В нервные центры от рецепторов обычно поступает ритмическая импульсация. При этом ответная реакция ЦНС не всегда линейно зависит от силы и частоты раздражителя. В нервных центрах можно наблюдать явление суммации допороговых стимулов и окклюзии сверхпороговых.

Суммация. Различают пространственную и последовательную суммацию. Последовательная суммация возникает при ритмической стимуляции одного рецептивного поля. В основе ее лежит механизм облегчения. Пространственная суммация допороговых стимулов происходит при одновременной стимуляции различных рецептивных полей. Она базируется на принципах облегчения и конвергенции.

Окклюзия- это процесс, при котором общая ответная реакция нервных центров на сверхпороговые стимулы меньше, чем алгебраическая сумма раздельных эффекторов каждого. Последовательная окклюзия происходит при быстрой повторной стимуляции нейрона. При этом нейрон не воспроизводит все поступающие к нему сигналы, в результате чего происходит уменьшение сильных сигналов.

В основе пространственной окклюзии лежит процесс конвергенции, который приводит к уменьшению количества суммарнореагирующих нейронов.

Различные рефлекторные реакции могут взаимодействовать между собой. Примером такого взаимодействия являются феномены иррадиации возбуждения, доминанта и принцип общего конечного пути.

Общий конечный путь. Данный принцип введен в физиологию Ч. Шеррингтоном и основан на способности различных проводящих путей создавать синаптические контакты на одной и той же эффекторной клетке. В основе этого лежит принцип конвергенции. К мотонейронам спинного мозга кроме первичных афферентных волокон конвергируют волокна различных нисходящих трактов, идущих из центральных структур мозга, а также аксоны возбуждающих и тормозных вставочных нейронов спинного мозга. Вследствие этого Ч. Шеррингтон именно мотонейроны рассматривал как общий конечный путь многочисленных структур мозга, связанных с регуляцией моторных функций. Принцип общего конечного пути показывает, каким образом одна и та же конечная реакция может быть получена при раздражении различных структур мозга. Этот принцип имеет важное значение для анализа рефлекторной деятельности нервной системы.

Иррадиация возбуждения – это широкое распространение возбуждения по различным нервным центрам. В основе этого процесса лежит большая продолжительность и сила поступающих стимулов в ЦНС, высокая возбудимость нейронов и ослабление центрального торможения. Механизм иррадиации – дивергенция.

Иррадиация возбуждения по нервным центрам способствует возможности одних нейронов участвовать в различных нервных реакциях и контролировать деятельность других нейронов. Однако иррадиация возбуждения может стать патологической в связи с возникновением сильного очага возбуждения и с изменением свойств нервной ткани, усиливающим распространение возбуждения по ней, как это бывает при эпилепсии.

Доминанта – временно господствующий очаг возбуждения в ЦНС, обуславливающий интегральный характер функционирования нервных центров в каждый данный период времени и определяющий целесообразное поведение человека.

Доминантный очаг возбуждения притягивает к себе возбуждение из других нервных центров и одновременно подавляет их деятельность. Доминантный очаг обладает также и свойством притягивания сигналов с других рецептивных полей.

Доминанта может исчезнуть при возникновении более сильной доминанты, реализации доминантного рефлекса или ее затухания в следствие истощения энергетических ресурсов.

Различают следующие виды доминанты: физиологическую и патологическую. Физиологическая доминанта обусловлена биологическими и социальными потребностями (мотивами). Патологическая – проявляется в виде вредных привычек (табакокурение, алкоголизм, наркомания) или при психических расстройствах.

И. П. Павлов указывал также на то, что принцип доминанты лежит в основе формирования временной функциональной связи (условного рефлекса). Таким образом, явление доминанты является одним из важнейших принципов работы ЦНС.

Тема 3. Частная физиология центральной нервной системы.

Вопросы для самоподготовки.

2. Функции спинного мозга.

2.1. Проводниковая функция (проводящие пути спинного мозга).

2.2. Рефлекторная функция. Рефлексы спинного мозга.

2.3. Спинальный шок.

II. Продолговатый мозг.

1. Строение продолговатого мозга (границы, пирамиды, оливы, особенности расположения белого и серого вещества, ядра продолговатого мозга).

2. Функции продолговатого мозга.

2.1. Проводниковая функция продолговатого мозга.

2.2. Рефлекторная деятельность продолговатого мозга:

- центры жизненноважных рефлексов (дыхательный, сердечно-сосудистый);

- защитные рефлексы (мигание, чихание, кашель, рвотный акт и др.);

- рефлексы, связанные с пищеварительной деятельностью (глотание, отделение пищеварительных соков и др.);

- рефлексы, связанные с функциями ядер черепно-мозговых нервов, расположенных в продолговатом мозге (в том числе и вегетативные);

3. Участие продолговатого мозга в регуляции мышечного тонуса и рефлексов позы.

III. Средний мозг.

1. Строение среднего мозга (границы, ядра).

2. Функции среднего мозга.

2.1. Проводниковая функция.

2.2. Рефлекторная деятельность среднего мозга:

- роль красных ядер и черной субстанции в распределении мышечного тонуса (синдром Паркинсона и децеребрационная ригидность).

3. Роль среднего мозга в сохранении нормального положения тела в пространстве (выпрямительные и статокинетические рефлексы).

IV. Ретикулярная формация ствола мозга.

- строение РФ (расположение, ядра РФ, афферентные и эфферентные связи, виды нейрональных контактов);

- функции РФ (контроль сна и бодрствования, участие в регуляции вегетативных функций, фазный и тонический мышечный контроль, участие в механизмах формирования целостных условно -рефлекторных реакций организма).

1. Строение мозжечка (червь, полушария, кора и белое вещество, ножки, ядра; связи мозжечка с другими структурами ЦНС).

2. Функции мозжечка:

- участие в координации движений;

- регуляция мышечного тонуса;

- сохранение позы и равновесия тела;

- участие в регуляции вегетативных функций (функций внутренних органов);

- влияние мозжечка на образование условных рефлексов.

3. Симптомы нарушения функций мозжечка (астазия, атаксия, астения, атония, дистония и др.).

VI. Промежуточный мозг.

1. Составные части промежуточного мозга (эпиталамус, метаталамус, таламус и гипоталамус).

2.1. Нейронная организация.

2.1. Функции таламуса:

- роль специфических (переключательных и ассоциативных) ядер, моторных и неспецифических ядер;

- регуляция важных физиологических состояний (смена сна и бодрствования, сохранение сознания, развитие процессов внутреннего торможения и др.).

3.1. Нейронная организация.

3.2. Афферентные и эфферентные связи гипоталамуса.

3.3. Функции гипоталамуса:

- роль гипоталамуса в регуляции вегетативных функций;

- участие в регуляции поведенческих реакций;

3.4. Функциональные расстройства у людей с повреждениями гипоталамуса.

VII. Базальные ядра.

1. Структуры, входящие в состав базальных ядер и их связи.

2. Функции базальных ядер:

- обеспечение миостатических реакций (плавности движений);

- обеспечение автоматизма движений – бессознательного их выполнения;

- обеспечение движения мимических мышц и участие в формировании эмоциональных реакций;

- формирование защитных ориентировочных рефлексов.

3. Патофизиология базальных ганглиев:

- гипофункция медиаторных систем (болезнь Паркинсона);

- гиперфункциональные симптомы (ригидность, баллизм, атетоз, хорея, тремор).

VIII. Кора больших полушарий.

1. Организация коры больших полушарий (клеточные слои, доли, области, поля).

2. Древняя и старая кора.

2.1. Структуры, входящие в состав (обонятельный мозг и лимбическая область).

2.2. Функции древней и старой коры:

- обеспечение реакций настораживания и внимания;

- регуляция вегетативных функций;

- осуществление видоспецифического (инстинктивного) поведения;

- осуществление социального поведения;

- участие в процессах сохранения памяти.

3. Функции новой коры.

3.1. Чувствительные зоны коры большого полушария.

3.2. Моторные зоны коры большого полушария.

3.3. Электрические явления в коре больших полушарий (электроэнцефалография – ЭЭГ).

Координационная функция ЦНС

Под координационной деятельностью ЦНС подразумевается согласованная и соподчиненная деятельность нервных центров, направленная на достижение полезного результата. В основу координационной деятельности ЦНС положено несколько принципов:

принцип общего конечного пути;

принцип проторения пути;

принцип обратной связи;

Принцип общего конечного пути. Сущность этого принципа заключается в конвергенции, когда на каком-либо одном нейроне или нервном центре сходятся несколько терминалей из других отделов ЦНС. Так, например, к одному мотонейрону подходят коллатерали аксонов первичных афферентов, спинальных интернейронов, нисходящих путей из стволовой части мозга и коры. Все эти терминальные окончания образуют на мотонейроне возбуждающие и тормозные синапсы и формируют конвергентную воронку, суженная часть которой и представляет собой мотонейрон. Суть этого механизма была раскрыта английским физиологом Ч. Шеррингтоном, который сформулировал принцип общего конечного пути. Согласно его представлениям, количественное преобладание чувствительных и других приходящих волокон над двигательными создает неизбежное столкновение импульсов в общем конечном пути, которым является группа мотонейронов и иннервируемые ими мышцы. Благодаря такому столкновению достигается блокирование всех воздействий, кроме одного, которое и регулирует протекание рефлекторной реакции. Принцип общего конечного пути, как один из принципов координации, применяется не только для спинного мозга, но и для любого другого отдела ЦНС.

Принцип реципрокности. Данный принцип отражает характер взаимоотношений между центрами, ответственными за осуществление противоположных функций. Классическим примером является активация проприорецепторов мышцы-сгибателя, которая одновременно возбуждает мотонейроны мышцы-сгибателя и тормозит через вставочные тормозные нейроны мотонейроны мышцы-разгибателя. Следовательно, в основу реципрокных отношений положено реципрокное торможение, которое играет важную роль в автоматической координации двигательных актов.

Интегративная функция ЦНС

Интегративная функция ЦНС заключается в соподчинении и объединении всех функциональных элементов организма в целостную систему, обладающую определенной направленностью действий. В осуществлении интегративной функции принимают участие различные уровни организации ЦНС. Для осуществления интегративной деятельности необходима координированная работа различных нейронов и нервных центров. Следовательно, координация и интеграция являются двумя одновременно протекающими и тесно взаимосвязанными процессами. В интеграционных процессах выделяют:

уровень микросистем нейронов;

уровень нервных центров;

уровень больших интегративных систем.

Интегративная функция на уровне нейрона. Функциональной единицей ЦНС является нейрон, клеточная мембрана которого представляет область интеграции синоптических влияний. Этот уровень будет являться первым и осуществляется он в результате взаимодействия ВПСП и ТПСП, которые генерируются при активации синоптических входов нейрона. Если входы на нейрон активируются одновременно, то происходит суммация постсинаптических потенциалов, что и является основой интеграции. Конвергенция возбуждающих и тормозных входов на мембране нейрона определяет частоту генерируемых им ПД и, следовательно, выступает в качестве универсального фактора интегративной деятельности нервной клетки. С современной точки зрения, нейрон представляет собой математическую модель простого процессора, имеющего несколько входов-дендритов и один выход-аксон. Входные сигналы, поступающие через дендриты, преобразуются нейроном в выходной сигнал, который распространяется по аксону с использованием трех функциональных блоков: 1) локальной памяти; 2) суммирования; 3) нелинейного преобразования.

Блок локальной памяти содержит информацию о весовых множителях, являющихся аналогом чувствительности пластических синаптических контактов. Выбором весов достигается та или иная интегральная функция нейрона.

Блок суммирования обеспечивает интеграцию синаптических влияний.

Блок нелинейного преобразования генерирует потенциал действия, то есть функцию с определенными параметрами, в том случае если параметры синаптических входов содержат необходимые данные.

Интегративная функция на уровне нервных центров. Нервный центр представляет собой совокупность образований различных уровней ЦНС, интегрированная деятельность которых обеспечивает осуществление той или иной функции органов систем или целостного организма. В составе нервного центра имеет место относительно небольшое количество жестких, генетически детерминированных связей и очень большое количество гибких связей, которые формируются в процессе той или иной деятельности целостного организма. Генетические связи в большей степени характерны для ядра нервного центра, а гибкие - для периферии, хотя и в ядре и на периферии встречаются связи обоих типов. Поскольку активность организма проявляется несколькими функциями, сочетание которых постоянно меняется, то это требует выключения одних центров и включения других. Вследствие этого в ЦНС в каждый момент времени формируется определенный ансамбль нервных центров.

Интегративная функция на уровне объединения нервных центров. При морфологическом анализе выявлены определенные группы нервных центров, которые объединяются в системы мозг. причем каждая из этих систем выполняет определенные функции, отвечая за те или иные проявления жизнедеятельности целостного организма. Интеграция деятельности ЦНС осуществляется по нескольким морфофункциональным структурам:

I. Координационная деятельность ЦНС.

Под координационной деятельностью ЦНС подразумевается согласованная и соподчиненная деятельность нервных центров, направленная на достижение полезного результата. В основу координационной деятельности ЦНС положено несколько принципов: · принцип общего конечного пути; · принцип проторения пути; · принцип доминанты; · принцип обратной связи; · принцип реципрокности.

II. Интегративная деятельность ЦНС

Интегративная деятельность ЦНС заключается в соподчинении и объединении всех функциональных элементов организма в целостную систему, обладающую определенной направленностью действий. В осуществлении интегративной функции принимают участие различные уровни организации ЦНС. Для осуществления интегративной деятельности необходима координированная работа различных нейронов и нервных центров. Следовательно, координация и интеграция являются двумя одновременно протекающими и тесно взаимосвязанными процессами. В интеграционных процессах выделяют: · уровень нейрона; · уровень микросистем нейронов; · уровень нервных центров; · уровень больших интегративных систем.

Общие принципы формирования функциональных систем:

1. Наличие системообразующего фактора;

2. Принцип изоморфной организации;

3. Принцип консолидации компонентов функциональной системы.

4. Принцип гетерохронной закладки и гетерохронного созревания компонентов функциональной системы;

5. Принцип минимального обеспечения;

6. Принцип фрагментации органов в процессе антенатального онтогенеза.

24. Спинной мозг, его строение. Рефлекторная и проводниковая функции спинного мозга. Рефлекторная функция. Нервные центры спинного мозга являются сегментарными, или рабочими, центрами. Их нейроны непосредственно связаны с рецепторами и рабочими органами. Кроме спинного, мозга, такие центры имеются в продолговатом и среднем мозге. Надсегментарные центры, например промежуточного мозга, коры больших полушарий, непосредственной связи с периферией не имеют.Они управляют ею посредством сегментарных центров. Двигательные нейроны спинного мозга иннервируют все мышцы туловища, конечностей, шеи, а также дыхательные мышцы - диафрагму и межреберные мышцы.Помимо двигательных центров скелетной мускулатуры, в спинном мозге находится ряд симпатических и парасимпатических вегетативных центров. В боковых рогах грудного и верхних сегментах поясничного отделов спинного мозга расположены спинальные центры симпатической нервной системы, иннервирующие сердце, сосуды, потовые железы, пищеварительный тракт, скелетные мышцы, т.е. все органы и ткани организма. Именно здесь лежат нейроны, непосредственно связанные с периферическими симпатическими ганглиями. В верхнем грудном сегменте, находится симпатический центр расширения зрачка, в пяти верхних грудных сегментах - симпатические сердечные центры. В крестцовом отделе спинного мозга заложены парасимпатические центры, иннервирующие органы малого.Спинной мозг имеет сегментарное строение. Сегментом называют такой отрезок, который дает начало двум парам корешков. Если у лягушки перерезать на одной стороне задние корешки, а на другой передние, то, лапки на стороне, где перерезаны задние корешки, лишаются чувствительности, а на противоположной стороне, где перерезаны передние корешки, окажутся парализованными. Следовательно, задние корешки спинного мозга являются чувствительными, а передние - двигательными. Проводниковая функция спинного мозга. Спинной мозг выполняет проводниковую функцию за счет восходящих и нисходящих путей, проходящих в белом веществе спинного мозга. Эти пути связывают отдельные сегменты спинного мозга друг с другом, а также с головным мозгом.

Торможение ЦНС.

Торможение – это особый нервный процесс, который всегда вызывает возбуждение, а внешне проявляется в предупреждении или подавлении возбуждения.

Основная функция – координирующая.

Понятие периферического торможения ввели братья Вебер; Сеченов открыл центральное торможение. В 1951 г. Экклз закончил исследование механизмов клеточного торможения.

Торможение ЦНС:

- постсинаптическое: а) латеральное (поступательное)

б) возвратное (рекуррентное)

в) реципрокное (взаимосоотнесенное).

Пресинаптическое – морфологическим субстратом является аксо-аксональный синапс, в котором выделяется медиатор и вызывает стойкую длительную деполяризацию.

1. Катодическая депрессия

2. Медленная деполяризация блокирует проницаемость мембраны для ионов натрия, усиливая работу натрий-калиевой АТФ-азы.

Пресинаптическое торможение обладает высокой избирательностью – очень точное.

Все сигналы тормозятся перед нервной клеткой, клетка не выключается из нервной деятельности.

Постсинаптическое – связано с деятельностью специфических тормозных клеток. При возбуждении тормозной клетки выделяется специфический тормозный медиатор (глицин, ГАМК). В ответ на взаимодействие тормозного медиатора с рецептором постсинаптической мембраны, на мембране развивается гиперполяризация – тормозный постсинаптический потенциал (ТПСП).

Причина ее: увеличение проницаемости мембраны для ионов калия, который выходит из клетки.

Постсинаптическое торможение менее избирательно и нейрон выключается из нервной деятельности.

При возбуждении нервного центра сгибателей импульс идет на мышцу-сгибатель, а по коллатерали на тормозную клетку Реншоу, которая в свою очередь тормозит нервный центр противоположной группы мышц. При возбуждении нервного центра разгибателей импуоьс идет на мышцу-разгибатель, а через тормозную клетку Реншоу происходит торможение нервного центра сгибателей.

Основные принципы интегративно-координационной деятельности ЦНС.

1. Взаимосвязь явлений дивергенции и конвергенции.

Дивергенция – иррадиация возбуждения (разобщение).

Морфологический субстрат – терминальное ветвление аксонов.

Диффузное возбуждение всей нервной системы лежит в основе явлений:

А) одновременное возбуждение нескольких нервных клеток от одного афферентного волокна.

Б) дивергенция лежит в основе обратной связи.

В) лежит в основе реципрокности.

Дивергенции препятствуют процессы торможения. Существуют специфические блокаторы – столбнячный токсин и стрихнин.

Дивергенция создает условия для конвергенции.

- окклюзии и облегчения

- общего конечного пути

- образования условных рефлексов.

Разобщить дивергенцию и конвергенцию нельзя, кроме стрихнина и столбнячного токсина.

Лоренто де Но нашел явление дисперсии или мультипликации.

Является одной из причин трансформации ритма.

Реверберация– циркуляция импульсов по замкнутым нейронным цепям, лежит в основе краткосрочной памяти.

Принцип общего конечного путиили принцип организации эффекторной регуляции. Многообразие входов обуславливает один выход. Многообразие раздражителей – ответная реакция одна.

Принцип обратной связи.

Принцип реципрокности.

Принцип доминанты. Открыл Ухтомский. Все реакции протекают по принципу доминант.

Характеристика доминанты:

1. Повышенная возбудимость

2. Стойкость и инертность процессов возбуждения

3. Тормозит деятельность других нервных центров

4. Доминантный очаг способен суммировать различные раздражения

Принцип окклюзии и облегчения.

Особенности проведения возбуждения в нервном центре.

1. Одностороннее проведение возбуждения.

- возбуждение возникает в рецепторе

- во время генерации потенциала действия возникает фаза абсолютной рефрактерности, ПД обратно не возвращается.

2. Задержка проведения возбуждения.

- функциональным состоянием постсинаптической мембраны.

Время ответной реакции, время рефлекса.

3. Суммация возбуждения.

- временная – по одному аксону через один синапс проходит определенное количество потенциалов действия.

- пространственная – потенциалы действия приходят к нервной клетке от многих клеток. В основе лежит принцип конвергенции.

4. Трансформация ритма возбуждения.

- функциональным состоянием постсинаптических мембран

5. Посттетаническая потенциация– усиление ответной реакции после предварительной частой стимуляции.

- увеличение выделенного и накопленного медиатора

- увеличение содержания ионов кальция в терминалях аксона (пресинаптических окончаниях).

Раздражение закончено, возбуждение продолжается. В основе лежит мультипликация, реверберация.

7. Наличие рефлекторного тонуса

Может быть повышен или снижен.

- постоянным притоком афферентных импульсов

- автоматией нервных клеток

8. Проведение возбуждения зависит от состояния соседних нервных центров.

9. Быстрая утомляемость нервных центров.

10. Высокая чувствительность к недостатку кислорода.

11. Высокая чувствительность к химическим веществам.

12. Высокая пластичность – способность к перестройке работы в зависимости от изменяющихся условий.

Теория функциональных систем П. К. Анохина.

Включает 4 стадии. Это современная схема рефлекторного акта.

1 стадия – афферентный синтез.

Это нейрофизиологический механизм (центральный, локализован в ЦНС), который предназначен для аналитической обработки всех афферентных сигналов, поступающих в организм.

Афферентный сигнал возникает в организме в результате воздействия на него пускового раздражителя, запускающего тот или иной рефлекс. Например, вид или запах пищи для голодного животного является пусковым механизмом для рефлекса слюноотделения. Возбуждение выполняет триггерную пусковую функцию в реализации рефлекса. Такое возбуждение формируется системой анализаторов и по соответствующим проводящим путям афферентные импульсы поступают в центры той или иной чувствительности в проекционных зонах коры.

Здесь и осуществляется процесс афферентного синтеза.

Афферентное возбуждение возникает при действии обстановочных раздражителей. Включаются соответствующие анализаторы, которые вызывают раздражение в различных проекционных зонах коры. Повышается энергетическая активность мозга, активируя проекционные зоны коры, повышается активность ЦНС.

Возбуждение возникает в ЦНС в специфических центрах мотивационного поведения. Мотивационное возбуждение обеспечивается центрами, расположенными в промежуточном мозге (центры голода, жажды, агрессивного, оборонительного поведения). Существует взаимодействие корковых и подкорковых центров мотивационного поведения. В каждый момент времени восприятие внешних сигналов наиболее оптимально и интенсивно только на основе соответствующей доминирующей мотивации. Например. Экспериментальному животному показывают кусочек пищи (адекватный пищевой раздражитель для изучения слюноотделительной реакции), но в одном случае данный раздражитель предъявляем голодному животному, а в другом – накормленному. С помощью фистулы можно установить различную активность слюноотделительной реакции. Следовательно, срабатывает доминирующая мотивация.

В ходе эволюции сформировались нервные механизмы хранения информация о всех предшествующих афферентных возбуждениях.

Афферентный синтез – это центральный механизм интеграции множественных афферентных сигналов, которые в комплексе запускают приспособительную рефлекторную реакцию.

Нейрофизиологическим субстратом этого механизма являются центральные отделы анализаторов восприятия информации и нейрофизиологические механизмы памяти.

2 стадия – принятие решения.

Интегративное возбуждение инициирует работу второго узлового механизма рефлекса – принятия решения. Это ключевой момент в архитектонике рефлекса. Из огромного множества эфферентных центров мозга на основе афферентного синтеза и, следовательно, на основе доминирующей в этот момент мотивации выбираются те эфферентные центры, которые избирательно и наиболее полно соответствуют выполнению необходимой наиболее целесообразной приспособительной реакции. Нейрофизиологическим субстратом этого механизма являются кортикальные и подкорковые центры двигательной деятельности и регуляции тонуса скелетных мышц, центры висцеральных реакций, дыхательной системы, кровообращения, выделительной системы.

3 стадия – эфферентный синтез.

Акцептор результата действия – он воспринимает афферентные сигналы и одновременно сопоставляет поступившую информацию с периферии о выполнении данного рефлекса с прогностически запрограммированным, т. е. ожидаемым результатом действия рефлекса. Таким образом, в данном механизме формируется информация об ожидаемом необходимом результате действия рефлекторной системы. Эта информация формируется на основе принятого решения.

Вырабатывается программа действия. Если фактическая информация не соответствует программированной, то АРД автоматически включает дополнительную программу действия, повторяется последовательность и полученный результат сопоставляется с ожидаемым.

Если эта информация полностью соответствует прогнозу, то включается механизм торможения рефлекса, включаются мотивационные центры удовольствия, рефлекс прекращается. При несовпадении прогноза действительности включаются центры неудовольствия, доминирующая мотивация усиливает свое действие на механизм памяти, принятия дополнительного решения, появляется новая дополнительная программа и наоборот.

Согласно теории П. К. Анохина рефлекс представляет собой замкнутую систему.

Читайте также:

Пожалуйста, не занимайтесь самолечением!
При симпотмах заболевания - обратитесь к врачу.