Интенсивность работы нервной системы

Для облегчения понимания общей схемы работы нервной системы здесь я даю пошаговое описание работы нервной системы с потоками информации.

Принятие информации – это трансформация раздражения в возбуждение ( трансдукция ). Этот процесс осуществляют рецепторы.

Итак, приемниками для внешней информации в организме являются специализированные образования – сенсорные рецепторы (например, палочки, колбочки, волосковые клетки, специализированные нервные окончания и т.д.). На их мембране обычно находятся молекулярные рецепторы.


Кодирование – это перевод определенных параметров раздражителя, которые умеет снимать рецептор, в пропорциональное электрохимическое возбуждение, а затем в поток нервных импульсов определенной частоты и пространственно-временной организации.

Соблюдается топический принцип - это соответствие между характеристиками раздражения и характеристиками возбуждения.

Таким образом, параметры раздражителя передаются параметрами потока электрохимической импульсации, идущей от рецепторов. И если вдруг процесс кодирования будет нарушен, то может получиться сенсорный образ, заметно отличающийся от оригинала. Поясняющий пример представлен на картинке слева.

Одним из примеров рефлексов среднего мозга может служить старт-рефлекс. Старт-рефлекс (рефлекс четверохолмный) - это физиологический рефлекс на внезапные световые, слуховые и другие раздражители. Ответная реакция выражается в виде застывания, вздрагивания, настораживания, что в дальнейшем в зависимости от биологической и социальной значимости раздражителя для организма может завершиться бегством, обороной или носит ориентировочный характер. В его осуществлении принимают участие четверохолмие и ретикулярная формация ствола. Снижение старт-рефлекса наступает при поражении крыши среднего мозга; он может быть повышен у больных неврозами.

В зрительной системе часть нервных волокон от сетчатки идёт дополнительно ещё и в гипоталамус. Это нужно для регуляции суточных ритмов.

Таким образом, возбуждение от сенсорного органа попадает в центральную нервную систему не по одному нервному пути, а по нескольким путям к разным нервным структурам.

Перекодирование — это изменение характеристик первоначального потока сенсорного возбуждения, идущего от сенсорного органа (от рецепторов). Именнно перекодированием и занимаются нервные центры.

1. Трансформация (преобразование) входящего потока сенсорного возбуждения в другой поток - выходящий. Выходящий поток может сильно отличаться от входящего, например, если он должен управлять мышцами, а не строить нервную модель раздражения в виде сенсорного образа.

2. Разделение входящего потока сенсорного возбуждения на несколько разных выходящих потоков, которые направляются в различные нервные структуры.

3. Контрастирование границ в пространстве. Обычно достигается с помощью латерального (бокового) торможения. Оно усиливает возбуждение по контуру раздражителя и ослабляет возбуждение в центральной области.

4. Контрастирование границ во времени. Происходит за счёт преобразования тонического (постоянного) возбуждения в фазическое (отмечает начало и конец действия раздражителя).

5. Детекция. Выделяет раздражители с определёнными характеристиками за счёт срабатывания специальных нейронов-детекторов с соответствующими рецептивными полями.

Перекодирование происходит в ядрах различных отделов центральной нервной системы: в среднем мозге, таламусе. Поток нервных импульсов после прохождения переключающих ядер изменяется.

Что, например, происходит с потоком сенсорного возбуждения в таламусе?

Во-первых, он раздваивается на два потока: один идет к проекционной зоне коры головного мозга, а другой через систему неспецифических ядер подается на обширные зоны коры в виде диффузного рассеянного потока возбуждения.

Во-вторых, уменьшается частота импульсации и общее количество импульсов. Частый ритм становится более редким.

В-третьих, длительные серии импульсов перекодируются в короткие пачки. Тоническое возбуждение преобразуется в фазическое, т. е. пачки импульсов отмечают только начало и конец действия раздражителя, а не весь период его действия. Длительность возбуждения и разрядов нейрона уже не соответствуют длительности исходного стимула. Таким способом релейные образования (низшие нервные центры) делают работу нервной системы более экономной.

Можно сказать, что в низших нервных центрах за счёт перекодирования происходит удаление избыточной информации. Релейные ядра производят фильтрацию поступающей информации и ее перекодировку.

Высшим нервным центром для каждой сенсорной системы является центральный отдел анализатора - проекционная зона коры. Полное название звучит довольно длинно, но зато внушительно. Например, ЗППЗКБПГМ — зрительная первичная проекционная зона коры больших полушарий головного мозга (поле № 17 по Бродману), или СППЗКБПГМ — слуховая первичная проекционная зона коры больших полушарий головного мозга (поле № 41 по Бродману).

В проекционных зонах коры происходит перцепция - построение сенсорного образа раздражителя. Это уже как бы "вторичное" восприятие по сравнени ю с "первичным" восприятием, которое осуществляют сенсорные рецепторы и которое называется трансдукцией.

Информация (сенсорное возбуждение) доставляется в эти проекционные зоны коры тремя путями:

Прямой специфический путь.

Диффузный неспецифический путь.

Опосредованный путь через корковые связи от других зон коры. Это помогает сличать поступивший сигнал с памятью.

Первичные проекционные зоны коры имеют в своём составе сложные нейроны-детекторы со сложными рецептивными полями, которые выделяют отдельные параметры раздражителя. Сенсорная кора имеет колончатое строение, каждая колонка работает как нейронный ансамбль из взаимосвязанных нейронов. Разные колонки проводят анализ разных параметров приходящего возбуждения и, следовательно, разных параметров исходного раздражения. В первичных проекционных сенсорных зонах коры больших полушарий головного мозга строится первичный сенсорный образ раздражителя в виде нервной модели из возбуждённых нейронов. Этот образ стоит ближе всего к реальности. Он существует несколько мгновений, а затем сменяется вторичным сенсорным образом, уже более субъективным.

Возбуждение от нейронов первичной проекционной коры передается во вторичные и в ассоциативные зоны коры, которые интегрируют его в сложный синтетический образ, включающий в себя разные сенсорные модальности. Например, визуально-аудиальный образ, в котором совмещается зрительная и слуховая информация.

Работа нервной системы, труд и физические упражнения


Мозг человека, его нервная система издавна привлекали умы ученых. Работе мозга посвящены тысячи исследований, так как именно мозг во многом, если не во всем, определяет деятельность нашего организма, его поведение и приспособление к окружающей среде.

Рис. Схема движения сигнала от воспринимающего аппарата — до исполнительного (рефлекторная дуга).

Работа нервной системы представляет собой миллиарды клеток, имеющих многочисленные, порой очень длинные ответвления (корешки), которые протянулись ко всем органам и системам организма. К нервной системе относятся и те образования (рецепторы), которые в процессе развития животных и человека обрели способность воспринимать внешние и внутренние раздражения, например, аппарат слуха или зрения, температурной или тактильной чувствительности, мышечно-суставного чувства (проприоцепторы) и др.

С клетками нервной системы связана наша работоспособность, периодизация и жизненные ритмы функционирования всех органов и систем человека.

Именно нервные клетки на протяжении всей нашей жизни работают с большим напряжением. Они легко ранимы и бы стро истощаются. Поврежденные же клетки практически не восстанавливаются. Все это и заставляет относиться к ним с большой бережливостью, искать, путей сохранения оптимальной работоспособности нервных клеток и расширения функ циональных возможностей нервной системы в целом.

Из рецепторного (воспринимающего) аппарата, нервного проводящего пути и определенных групп мозговых клеток состоит анализатор, через который поступает в центральную нервную систему информация о состоянии наших органов, положении тела в пространстве, окружающих нас предметах, температуре воздуха, атмосферном давлении и т. п.

А — кора головного мозга; Б —подкорковые образования; В — гормональная система; Г — мышечная система.

Многочисленные преемники замечательных отечественных физиологов И. М. Сеченова, И. П. Павлова, Н. Е. Веденского, А.А. Ухтомского в своих исследованиях показали многообразие и сложную архитектуру взаимосвязей организма с внешней и внутренней средой, основанную на условно-рефлектор ных реакциях. Последние способны совершенствоваться и закрепляться.

В повседневной жизни человека: в труде, быту, при занятиях спортом, — центральным вопросом остается возможность срочной переработки обильной информации, поступающей с рецепторного аппарата, и тех путей решения, которые возникают перед организмом (его нервной системой) в связи со складывающейся ситуацией в его деятельности.

Современному культурному человеку хорошо известно, что его поведение, деятельность, черты характера обусловлены особенностями функционирования нервной системы, ее био логическими свойствами.

Еще Гиппократ делил всех людей на сангвиников, холериков, меланхоликов и флегматиков, имея в виду, что одни горячи, как кровь, другие легко возбудимы, третьи, наоборот, трудно возбудимы, а четвертым присуща уравновешенность характера.

Один из основоположников современного учения о нервизме И. П. Павлов считал, что свойства нервной системы обусловлены такими качествами, как сила нервного процесса, его подвижность и соотношение возбудительных и тормозных процессов.

Работа нервной системы, сила нервного процесса, или степень истощаемости нервной системы, имеет общебиологическое значение и опреде ляет предел работоспособности нервных клеток. Сила нервно го процесса определяет способность человека выполнять боль шой объем работы с сохранением заданного ритма и темпа. Наоборот, при слабости нервного процесса наступает быстрое истощение деятельности, она становится неустойчивой, затухающей, аритмичной.

Второе свойство — подвижность нервных процессов — проявляется в быстроте замыкательных реакций, в скорости смены возбуждения торможением и возврата к первоначальному состоянию. Это скорость распространения (иррадиация) возбудительного процесса по нервной системе, его концентраций; в тех или иных отделах, группах клеток. Функциональная подвижность нервных процессов определяет скорость ответной реакции человека или его различных систем на поступающие сигналы раздражения. Она характеризует перестройку и приспособление организма к меняющимся условиям деятельности быта. От подвижности нервных процессов зависит диапазон устойчивости организма, широта его приспособительных реакций.

Э. Б. Коссовская видит проявление подвижности нервных процессов в том, как быстро человек, его органы и системы могут перестроить свое функционирование от уровня покоя к рабочему состоянию. Или, наоборот, от рабочего уровня перейти к состоянию покоя. Скорость протекания восстановительных процессов в период отдыха также определяется подвижностью нервных процессов.

Человек с высокой подвижностью нервных процессов быстро приспосабливается к новой обстановке, легко овладевает навыками.

Что касается соотношения тормозно-возбудительных процессов, то они могут быть уравновешенными или представлены преобладанием возбуждения над торможением.

По мнению И. П. Павлова, обратного соотношения у бодрствующего организма не может существовать, оно не является биологически оправданным. Вместе с тем в последнее время отдельные исследователи, в частности С. Д. Амром, выделяют лиц с преобладанием именно торможения над возбуждением.

Все эти качества (сила, подвижность и возбудительно-тормозные соотношения) взаимосвязаны, взаимообусловлены и имеют самое прямое отношение к пластическим свойствам нервной системы. Их можно сравнить со скульптором или художником и материалом, из которого создается произведение искусства.

Могут быть прекрасные руки ваятеля и совершенно негодный к творению материал или, наоборот, замечательные краски, глина, камень, но отсутствие таланта у художника. И в том и другом случае возможности к созданию произведения искусства остаются весьма и весьма ограниченными, а могут быть и обреченными на неудачу. Всегда торжествует лишь соединение этих двух факторов. Так и с человеком. Когда его нервная система характеризуется высокими пластическими свойствами (строительный материал!) и большой подвижностью нервных процессов (ваятель!), он быстро ориентируется в окружающей обстановке, легко и хорошо приспосабливается к условиям работы, в короткий промежуток времени и четко переключается с одной деятельности на другую. В организме такого человека быстрее развиваются механизмы защиты против переохлаждения и перегревания, вредного действия различных микробов и т. п.

В работах М. М. Кольцовой, В. Я. Кряжева, А. А. Логинова, В. М. Минаевой, И. Н. Филимонова, Минковского и др. показано, что у человека в первые дни и месяцы его жизни начинают развиваться и дифференцироваться те корковые отделы, которые обеспечивают соответствующее функционирование двигательного и кожного анализаторов. Это лишний раз подтверждает роль функции в развитии нервной системы.

Совершенствование условно рефлекторной деятельности идет по пути развития и шлифовки отдельных качеств, лежащих в основе поведения человека, силы, подвижности и уравновешенности нервных процессов, усиления значения второй сигнальной системы (слова, мышления) и уточнения взаимо действия ее с первой. Для процесса старения организма характерно нарушение деятельности нервной системы. При этом происходящие изменения обусловлены не столько анатомическими, сколько функциональными изменениями основных нервных процессов. С возрастом, когда в силу специфики работы, условий жизни, заболеваний, двигательная активность ухудшается, снижается и деятельность нервной системы: нарушается возбудительно-тормозной баланс, нервные процессы становятся более инертными, сила их падает, страдает замыкательная функция. В поведении такого человека появляется стремление к сохранению сложившихся условий быта, работы. Он менее охотно воспринимает различные реорганизации, внедрение нового, с большим трудом отказывается от привычек и переучивается.

Возрастной процесс совершенствования деятельности нервной системы и последующей ее инволюции при старении показали в своих исследованиях В, И. Великжанина, Н. Н. Заслина, Л. А. Новикова, А. Я- Кудряшова, Н. С. Мирзоянц, Хилла, Монниери и др.

Не будет преувеличением сказать, что бесконечное разнообразие связей организма со средой, непрерывное уравновешивание его функций с последней происходит посредством мышечной деятельности. Правда, в настоящее время такие связи не всегда внешне проявляются достаточно ярко. Это обусловлено эволюцией функций отдельных систем и организма в целом, развитием второй сигнальной системы. И все же работу мышц И. М. Сеченов рассматривает как определенное деятельное состояние мозга.

Единение нервных процессов и мышечных двигательных проявлений, с одной стороны, и подверженность их направленной тренировке, с другой, открывают пути к расширению функциональных возможностей центральной нервной системы.

В разное время Н. А. Грациановым, Р. В. Силлай, Джоне сом, Олсоном, Портером, Терманом и другими исследователями обращалось внимание на взаимосвязь между физическим развитием и умственными способностями.

Профессора 3. И. Бирюкова, М. Я. Горкин, В. В. Розен-блат, А. Д. Слоним, Г. Ф. Фольтборт, Матеев указывают, что определенное чередование повышения нервной деятельности с понижением ее работы, которое бывает при выполнении физических упражнений, оказывает тренирующее влияние на нервные процессы.

Возрастающая функциональная активность нервной системы неразрывно связана и с совершенствованием деятельности наших анализаторов: улучшается глазомер, ориентация в пространстве, точность движений и т. п.

Доказано также, что физические упражнения повышают эффективность последующей работы — особенно сложной, с умственным компонентом.

Физические упражнения и массаж являются эффективными средствами активного отдыха, восстановления работоспособности в первую очередь нервной системы. Влияние активного отдыха на утомленный организм человека сложно и многообразно.

Всякий труд, физический или умственный, неизбежно связан с утомлением, которое проявляется в снижении работо способности. Утомление же рассматривается физиологами как защитная реакция в первую очередь нервной системы против перегрузки. Оно носит временный характер.

Профессором В. Э. Нагорным в лаборатории здорового режима Московского университета было установлено, что под воздействием умственных перегрузок во многих случаях наблюдается значительное повышение тонуса крупных и средних артериальных сосудов головного мозга и увеличение периферического сопротивления мелких сосудов. Данное обстоятельство заставило искать пути улучшения именно мозгового кровообращения в период отдыха.

М. И. Виноградовым, А. Ф. Вербовым, 3. М. Золиной, А. В. Коробковым, И. М. Саркизовым-Серазини, В. Э. Нагорным доказано, что работа нервной системы под влиянием различных физических упражнений массажа эти состояния могут быть в определенных границах изменены в лучшую сторону. А это оказывает существенное влияние на функцию головного мозга, способствует восстановлению его работоспособности.


Рис. 4. Схема взаимного влияния двух очагов возбуждения. Заштрихова ны зоны торможения.

По мнению В. Э. Нагорного, такими упражнениями являются;

а) циклические, выполняемые в медленном и среднем темпе: ходьба, бег и т. п.;

б) вовлекающие в работу мышцы плечевого пояса. Это поднимание рук вперед, в стороны, вверх; дуговые и круговые движения руками и др.;

в) связанные с умеренным раздражением вестибулярного аппарата. Например, наклоны или повороты головы, туловища;

г) все виды упражнений с произвольным расслаблением мышц;

д) вызывающие изменение гидростатического давления крови в сосудах головы (при отсутствии противопоказаний). Имеются в виду переходы от горизонтального положения к положению сидя, стоя, наклоны и др.;

е) различные варианты дыхательных упражнений. Следует иметь в виду, что на мозговое кровообращение оказывает влияние не только характер самих упражнений, но и последовательность их выполнения в комплексе, интенсивность, объем и место их в режиме дня.

Однако было бы глубоко ошибочным думать, что стиму лирующая роль мышц для мозговой деятельности состоит в чисто механическом увеличении притока крови к мозгу. Мозг и мышцы представляют собой функциональное единство. Мышцы не могут сокращаться без нервных импульсов, а мозг, изолированный от влияния мышц, быстро теряет свою возбудимость даже при наличии достаточного кровоснабжения. По мнению М. Р. Могендовича, психический тонус в значительной мере определяется мышечным тонусом, так как у них одна основа — проприоцепция.

Физические упражнения создают мощный поток импульсов в центральную нервную систему. Возникают множественные очаги возбуждения. Отсутствие же или недостаток такой импульсации с мышц ведет к ухудшению работы мозга.

По мнению М. И. Виноградова, Н. В. Зимкина, Ю. К. Заморенова и Б. К. Заморенова, В. В. Розенблата, Г. В. Фольборта, работа нервной системы, а именно важнейшим механизмом улучшения работоспособности после выполнения физических упражнений является углубление торможения уже заторможенных нервных клеток и усиление возбудительного процесса в неработавших участках коры.

Интересно и то обстоятельство, что когда при активном отдыхе упражнения выполняются в медленном темпе, восстановительные процессы идут медленнее., чем при выполнении тех же комплексов, но в среднем или быстром темпе.

Таким образом, физические упражнения, мышечная работ а — неизменный спутник нашей жизни. Это орудие развития организма, совершенствования его функций, приспособления к условиям существования.

С понижением двигательной активности связаны многий заболевания, старение.

Упражнения помогают нам бороться с усталостью, сохранять высокий уровень работоспособности и совершенствовать интеллект.

Статья на тему Работа нервной системы

Создание эффективных и надежных методов определения силы нервной системы[30] позволило осуществить разносторонние исследования природы и проявлений этого важного параметра нервной деятельности. В целом ряде экспериментальных работ, проведенных в лаборатории Б.М. Теплова, было показано существование комплекса разнообразных качеств нервной деятельности, группирующихся вокруг параметра силы и составляющих в совокупности синдром проявлений этого свойства нервной системы.

Получившая ныне широкую известность гипотеза Б.М. Теплова о зависимости между чувствительностью, реактивностью нервной системы и ее силой была впервые выдвинута (1955) в форме чисто теоретического умозаключения, выведенного на основе анализа некоторых высказываний И.П. Павлова о функциональных качествах корковых клеток, анализа эффекта применяемых методов повышения возбудимости, а также некоторых наблюдений различных авторов над особенностями поведения животных слабого типа.

Нужно сказать, что в момент выдвижения обсуждаемой гипотезы понятия реактивности, возбудимости и чувствительности принимались как синонимические, рядоположные. Впоследствии, однако, возникла необходимость в их уточнении и определенном разграничении, поскольку (чтобы не вводить новые термины) каждое из них полезнее использовать для обозначения, по крайней мере, частично специфического круга явлений. Это особенно относится к понятию реактивности в сопоставлении с двумя другими понятиями.

Если понятиями чувствительности и возбудимости подчеркивается содержание, относящееся к порогу реакции, к минимальной величине стимула, вызывающей состояние возбуждения, то в понятии реактивности, видимо, основным является момент величины самой реакции, на основе которой судят о наличии раздражения. Но по величине реакции не во всех случаях можно судить о величине раздражения. Вмешательство некоторых факторов, относящихся как к общим, так и к индивидуальным особенностям работы нервной системы, может привести к тому, что характеристика по реактивности не будет совпадать с характеристикой по чувствительности, возбудимости; так, оказывается, что меньший по интенсивности (пороговый) сигнал вызывает большую по величине реакцию некоторых вегетативных компонентов ориентировочного рефлекса, чем сверхпороговый раздражитель (О.С. Виноградова, Е.Н. Соколов, 1955), и может также оказаться, что менее чувствительная система явится более реактивной, т. е. даст большую величину реакции, чем более чувствительная (равно как и наоборот). Отсюда следует, что при характеристике функции порога предпочтительнее пользоваться понятиями чувствительности или возбудимости, чем понятием реактивности.

Следует специально подчеркнуть, что речь идет именно об абсолютной чувствительности, т. е. величине, обратной абсолютному порогу ощущения, а не о различительной (дискриминативной, дифференциальной) чувствительности – величине, обратной порогу различения двух объектов или качеств. Об этом приходится говорить потому, что иногда в дискуссиях о связи между силой нервной системы и чувствительностью два указанных – совершенно различных – содержания последнего термина смешиваются, что ведет к утрате предмета обсуждения, к неточным аргументам и к неправильным заключениям.

Но вернемся к гипотезе Б.М. Теплова. Она была впервые высказана в печати в 1955 г. В то время эта исключительно плодотворная 'идея действительно оставалась лишь гипотезой, хотя и опиралась на некоторые приводимые разными авторами (И.В. Виноградов, 1933; М.С. Колесников, 1953) наблюдения, указывавшие на повышенную интенсивность и чрезвычайно трудное угашение ориентировочных рефлексов у собак слабого типа нервной системы (возможно, однако, что эти особенности ориентировочного поведения обусловлены не чувствительностью слабого типа, а недостаточной динамичностью тормозного процесса у изученных животных).

Однако за 10 лет, прошедших с этого момента, было накоплено достаточное количество данных, чтобы считать взаимосвязь между абсолютной чувствительностью и силой нервной системы экспе-риментально установленным фактом. Эти данные добыты как в лабо-ратории Б.М. Теплова на людях, так и в некоторых других научных учреждениях на животных. Изложим сначала материалы работ пер-вой группы, а затем остановимся на сообщениях авторов, работавших с животными.

Ни в одной из упомянутых работ – кроме разве работы Р.И. Левиной – не делается попытки объяснить или хотя бы как-то связать действие кофеина с особенностями высшей нервной деятельности. Между тем основанием для подобной попытки могло бы служить хотя бы то, что в павловских лабораториях кофеиновая проба при использовании условнорефлекторного метода явилась в конечном счете самым надежным и самым удобным индикатором силы нервной системы.

Техническая сторона описываемой методики очень проста. После установления фонового уровня чувствительности испытуемый получал чистый кофеин в растворе; в первом опыте доза составляла 0,05, во втором – 0,1, в третьем – 0,3 г.

После 20‑минутного перерыва измерение порогов возобновлялось и продолжалось в зависимости от характера изменений чувствительности 30 – 50 мин, с интервалами 2 мин.

Опыты с применением кофеина проводились через день.

Обоснованием валидности этой методики служило сопоставление ее результатов с данными, получаемыми при помощи референтных методик – индукционной и угашения с подкреплением. Первоначально (В.Д. Небылицын, 1956) индикатором силы по этой методике была принята величина сдвигов чувствительности в сторону повышения последней, а именно: отсутствие изменений чувствительности или небольшие ее сдвиги, лежащие в пределах 30 % от фона, были квалифицированы как признак силы нервных клеток, большие же сдвиги чувствительности – до 300 % и более от фона – были истолкованы как проявление слабости нервных клеток.

Мы могли заключить отсюда, что показателем слабости нервной системы по этой методике является или сильное повышение чувствительности, или снижение ее (независимо от величины этого снижения). У лиц же с сильной нервной системой прием кофеина или не вызывает никакого изменения чувствительности, или вызывает сравнительно небольшое ее повышение.

Возвратимся теперь к первой экспериментальной работе по определению связи между чувствительностью и силой нервной системы. У всех 37 испытуемых были измерены абсолютные зрительные пороги; данные о слуховой чувствительности были получены от 25 испытуемых. К сожалению, не все испытуемые были проведены по каждой из трех методик определения силы нервной системы. Сопоставление данных о чувствительности и силе шло раздельно для двух анализаторов – зрительного и слухового[31]. У 33 испытуемых сила нервных клеток зрительного анализатора определялась, по крайней мере, двумя экспериментальными способами, а у 11 из них исследование силы было проведено при помощи всех трех методик.

Последние (по времени) штрихи в эту картину внесены коллективным исследованием по сопоставлению ряда коротких методик определения свойств нервной системы (В.Д. Небылицын и др., 1965). Здесь абсолютная зрительная чувствительность была сопоставлена с ЭЭГ вариантом угашения с подкреплением, а также с индикаторами, которые в деталях будут описаны в следующей главе: с определением КЧФ, с наклоном кривой времени реакции как функции интенсивности звукового стимула и с временем реакции на слабые звуковые раздражители.

Результаты (табл. 27) были в определенном смысле парадоксальными, так как зрительные пороги коррелировали положительно, хотя значимо только в одном случае, с силовыми индикаторами, относящимися к слуховому анализатору, и не коррелировали с применявшимся ранее показателем методики КЧФ (суммой ординат кривой), адресующейся к зрительному анализатору. Однако первый факт не противоречит высказанному выше предположению о том, что зрительные пороги в силу самой природы зрительного анализатора фактически уже с самого начала, с рецепторного аппарата, являющегося частью центральной нервной системы, должны достаточно хорошо коррелировать с любыми адекватными индикаторами силы нервной системы, независимо от их модальности. Отсутствие же корреляции между зрительными порогами и суммой ординат кривой КЧФ, как мы полагаем, имеет своей причиной моменты главным образом методического характера. Если пренебречь этим несовпадением, то оказывается, что и в этом исследовании, особенностью которого была раздельная работа экспериментаторов, определяющих чувствительность и силу, и отсутствие в ходе работы взаимной информации о получаемых результатах, выявилось существование определенной связи между показателями чувствительности и индикаторами силы нервной системы.

Коэффициенты корреляции между зрительными порогами и некоторыми индикаторами силы нервной системы (В.Д. Небылицын и др., 1965)

"Клиническая психология", Карвасарский
Вопрос о существовании индивидуально-типологических свойств нервной системы впервые в физиологии был поставлен Павловым. Наблюдая поведение собак, переживших затопление во время наводнения, заметил, что у одних животных сохранились ранее выработанные условные рефлексы, а у других - разрушились, и у животных появился невроз. Павлов решил, что первая группа животных обладает сильной НС, а вторая - слабой. Для слабого типа, как писал Павлов "прямо невыносима как индивидуальная, так и социальная жизнь с ее наиболее резкими кризисами". Психологи и клиницисты сегодня с выводами Павлова не согласны, см текст ниже

В результате исследований Павлов открыл такие свойства НС, как подвижность нервных процессов и их уравновешенность, то есть баланс возбуждения и торможения.
В настоящее время наиболее изученными являются такие свойства НС как: сила, подвижность и лабильность.

Сила нервной системы
Определялась Павловым как способность переносить сверхсильные раздражители и понималась как выносливость нервной системы. Впоследствии была установлена обратная связь силы нервной системы и чувствительности, то есть индивиды, обладающие сильной нервной системой, характеризуются низким уровнем чувствительности анализаторов, и, наоборот, для слабой нервной системы характерной является высокая чувствительность. Сила нервной системы стала определяться по уровню активации ЭЭГ и рассматриваться как активированность нервной системы, чувствительность при этом является вторичной характеристикой, зависящей от уровня активации нервной системы в покое.

Как влияет сила нервной системы на поведение, деятельность человека?
Представители сильного и слабого типов нервной системы различаются по показателям выносливости и чувствительности. Для человека с сильной нервной системой характерным является высокая работоспособность, малая подверженность утомлению, способность в течение длительного промежутка времени помнить и заботиться о выполнении нескольких видов заданий одновременно, то есть хорошо распределять свое внимание. В ситуациях напряженной деятельности, повышенной ответственности наблюдается улучшение эффективности деятельности. Более того, в условиях обычной, повседневной деятельности у них развивается состояние монотонии, скуки, что снижает эффективность работы, поэтому лучших своих результатов они добиваются, как правило, в условиях повышенной мотивации.
Совсем по-другому характеризуется поведение человека со слабой нервной системой. Для него характерна быстрая утомляемость, необходимость в дополнительных перерывах для отдыха, резкое снижение продуктивности работы на фоне отвлекающих факторов и помех, неспособность распределить внимание между несколькими делами одновременно. В ситуациях напряженной деятельности снижается эффективность работы, возникает тревога, неуверенность. Особенно ярко это проявляется в ситуациях публичного общения. Для слабой нервной системы характерна высокая устойчивость к монотонии, поэтому представители слабого типа добиваются лучших результатов в условиях повседневной, привычной деятельности.

Подвижность нервной системы
Это свойство впервые было выделено Павловым в 1932 г. В дальнейшем оно оказалось очень многозначным и было разделено на два самостоятельных свойства: подвижность и лабильность нервной системы (Теплов).
Подвижность нервной системы понимается как легкость переделки сигнального значения раздражителей (положительного на отрицательный и наоборот). Основой этого является наличие следовых процессов и их длительность. В эксперименте при определении подвижности испытуемому предъявляют чередующиеся в случайном порядке стимулы положительные (требующие ответной реакции), отрицательные (тормозные, требующие затормозить ответную реакцию) и нейтральные. Скорость реагирования зависит от того, насколько долго следы от предшествующей реакции сохраняются и оказывают влияние на последующие реакции. Таким образом, чем больше стимулов сможет безошибочно обработать человек в этих условиях, тем выше подвижность его нервной системы. Жизненными проявлениями подвижности нервной системы является легкость включения в работу после перерыва или в начале деятельности (врабатываемость), легкость переделки стереотипов, такой человек легко переходит от одного способа выполнения деятельности к другому, разнообразит приемы и способы работы, причем это касается как двигательной, так и интеллектуальной деятельности, отмечается легкость в установлении контактов с разными людьми. Инертные характеризуются противоположными проявлениями.

Лабильность нервной системы
Быстрота возникновения и исчезновения нервного процесса. В основе этой скоростной характеристики деятельности нервной системы лежит усвоение ритма приходящих к тканям импульсов. Чем большую частоту способна воспроизвести та или иная система в своем реагировании, тем выше ее лабильность (Введенский). Показателями лабильности являются КЧСМ (критическая частота слияния мельканий), а также ЭЭГ-показатели (латентный период и длительность депрессии L-ритма после предъявления раздражителя). Одним из важнейших жизненных проявлений является скорость переработки информации, лабильность эмоциональной сферы. Лабильность положительно влияет на учебную успешность и успешность интеллектуальной деятельности.

Типологические свойства нервной системы являются основой формирования темперамента, способностей человека, влияют на развитие ряда личностных черт (например, волевых), их необходимо учитывать в профессиональном отборе и профориентации.

Комментарии отключены - этот пост облюбовали спам-боты.

Читайте также:

Пожалуйста, не занимайтесь самолечением!
При симпотмах заболевания - обратитесь к врачу.