Из чего образуется нервная система и кожа животных


В ЕГЭ по биологии часто упоминаются cтруктуры и зародышевые листки. Что это такое? Какую информацию об необходимо помнить, чтобы ответить на эти вопросы без труда? Давайте разбираться!

Не забывайте, что лето — отличная возможность восполнить пробелы в знаниях. Используйте промокод BLOG0720 до 31 июля 2020 и получите скидку 5% на первый месяц обучения в MAXIMUM Education для подготовки к ОГЭ и ЕГЭ, а также на курсах английского языка, профориентации и программирования. Промокод можно передавать друзьям 🙂


Теоретическая часть

После того, как сперматозоид оплодотворяет яйцеклетку, их генетическая информация сливается и образуется диплоидная зигота. После этого события клетка начинает многократно делиться и со временем образует трехслойную нейрулу. Вот эти слои и называются зародышевыми листками.


После того, как мы вспомнили, где именно расположен каждый из зародышевых листков, важно осознать какие ткани, органы и системы органов образуются из каждого из них.

  1. нервная система – нервная ткань, которая образует головной и спинной мозг, нервы и некоторые клетки разных анализаторов (например, хрусталик глаза).
  2. эпителий и его производные (кожа, ногти, когти, рога), а также кожные железы. Все эти структуры образованы эпителиальной тканью.
  3. зубная эмаль

Лайфхак для запоминания. Вы можете потрогать свой глаз? Или почувствуете ли прикосновение к нервным окончаниям на коже? А потрогать кожу или волосы? Да. Проведите параллель, эктодерма – наружный слой и то, к чему вы можете прикоснуться, в основном, закладывается из эктодермы.

  1. пищеварительная система
  2. дыхательная система
  3. выделительная система
  4. эндокринные железы

Лайфхак для запоминания. Эти системы органов мы называем внутренними органами. Энтодерма – внутренний слой и из нее образуются внутренние органы.

  1. мышцы
  2. скелет – хрящи и кости
  3. почки
  4. сердечно – сосудистая система – сердце, сосуды и клетки крови
  5. половая система — семенники и яичники

Лайфхак для запоминания. Все эти структуры состоят из мышечной и соединительной ткани, именно эти типы ткани закладываются из мезодермы.


Структуры и зародышевые листки: практическая часть

Давайте решим задания, где упоминаются cтруктуры и зародышевые листки. Обращаю ваше внимание, что эта тема встречается в заданиях на 2 и на 3 балла.

Пример 1. Установите соответствие между структурой организма человека и зародышевым листком, из которого она сформировалась.

СТРУКТУРА ОРГАНИЗМА ЗАРОДЫШЕВЫЙ ЛИСТОК
A) болевые рецепторы
Б) волосы
B) лимфа
Г) кровь
Д) ногтевые пластинки
1) мезодерма
2) эктодерма

Ответ: 22112

Пример 2. Назовите за­ро­ды­ше­вый ли­сток по­зво­ноч­но­го животного, обо­зна­чен­ный на ри­сун­ке цифрой 2. Какие типы тка­ней и си­сте­мы ор­га­нов фор­ми­ру­ют­ся из него?


Рисунок, похожий на этот, мы сегодня уже рассматривали. Цифрой 2 отмечен зародышевый листок, который находится между двумя другими, а значит – мезодерма. Из мезодермы образуются соединительная и мышечная ткань, сердечно-сосудистая и опорно-двигательная системы.

Желаем удачи! Если хотите быстро и эффективно подготовиться к ЕГЭ по биологии, обратите внимание на наши курсы, почитайте отзывы о них. И следите за блогом, чтобы не пропустить разборы других заданий!


Нервная система

Раздражимость или чувствительность – характерная черта всех живых организмов, означающая их способность реагировать на сигналы или раздражители.

Сигнал воспринимается рецептором и передается с помощью нервов и (или) гормонов к эффектору, который осуществляет специфическую реакцию или ответ.

Животные имеют две взаимосвязанные системы координации функций – нервную и гуморальную (см. таблицу).

Нервная регуляция

Гуморальная регуляция

Электрическое и химическое проведение (нервные импульсы и нейромедиаторы в синапсах)

Химическое проведение (гормоны) по КС

Быстрое проведение и ответ

Более медленное проведение и отстроченный ответ (исключение - адреналин)

В основном кратковременные изменения

В основном долговременные изменения

Специфический путь распространения сигнала

Неспецифический путь сигнала (с кровью по всему телу)к специфической мишени

Ответ часто узко локализован (например, один мускул)

Ответ может быть крайне генерализованным (например, рост)

Нервная система состоит из высокоспециализированных клеток со следующими функциями:

- восприятие сигналов – рецепторы;

- преобразование сигналов в электрические импульсы (трансдукция);

- проведение импульсов к другим специализированным клеткам – эффекторам, которые получив сигнал, дают ответ;

Связь между рецепторами и эффекторами осуществляют нейроны .

Нейрон – это структурно – функциональная единица НС.


Нейрон — электрически возбудимая клетка, которая обрабатывает, хранит и передает информацию с помощью электрических и химических сигналов. Нейрон имеет сложное строение и узкую специализацию. Нервная клетка содержит ядро, тело клетки и отростки (аксоны и дендриты).

В головном мозге человека насчитывается около 90—95 миллиардов нейронов. Нейроны могут соединяться друг с другом, образуя биологические нейронные сети.

Нейроны разделяют на рецепторные, эффекторные и вставочные.

Тело нейрона: ядро (с большим количеством ядерных пор) и органеллы (ЭПС, рибосомы, аппарат Гольджи, микротрубочки), а также из отростков (дендриты и аксоны).

Нейроглия – совокупность вспомогательных клеток НС; составляет 40% общего объема ЦНС.

  • Аксон – длинный отросток нейрона; проводит импульс от тела клетки; покрыт миелиновой оболочкой (образует белое вещество мозга)
  • Дендриты - короткие и сильно разветвлённые отростки нейрона; проводит импульс к телу клетки; не имеют оболочки


Важно! Нейрон может иметь несколько дендритов и обычно только один аксон.

Важно! Один нейрон может иметь связи со многими (до 20 тысяч) другими нейронами.

  • чувствительные – передают возбуждение от органов чувств в спинной и головной мозг
  • двигательные – передают возбуждение от головного и спинного мозга к мышцам и внутренним органам
  • вставочные – осуществляют связь между чувствительными и двигательным нейронами, в спинном и головном мозге

Нервные отростки образуют нервные волокна.

Пучки нервных волокон образуют нервы.

Нервы – чувствительные (образованы дендритами), двигательные (образованы аксонами), смешанные (большинство нервов).

Синапс – это специализированный функциональный контакт между двумя возбудимыми клетками, служащий для передачи возбуждения


У нейронов синапс находится между аксоном одной клетки и дендритом другой; при этом физического контакта не происходит – они разделены пространством - синаптической щель.

Нервная система:

  • периферическая (нервы и нервные узлы) – соматическая и автономная
  • центральная (головной и спинной мозг)

В зависимости от характера иннервации НС:

  • Соматическая – управляет деятельностью скелетной мускулатуры, подчиняется воле человека
  • Вегетативная (автономная) – управляет деятельностью внутренних органов, желез, гладкой мускулатуры, не подчиняется воле человека

Соматическая нервная система часть нервной системы человека, представляющая собой совокупность чувствительных и двигательных нервных волокон, иннервирующих мышцы (у позвоночных — скелетные), кожу, суставы.

Она представляет часть периферической нервной системы, которая занимается доставкой моторной (двигательной) и сенсорной (чувственной) информации до центральной нервной системы и обратно. Эта система состоит из нервов, прикрепленных к коже, органам чувств и всем мышцам скелета.

  • спинномозговые нервы – 31 пара; связаны со спинным мозгом; содержат как двигательные, так и сенсорные нейроны, поэтому смешанные;
  • черепномозговые нервы – 12 пар; отходят от головного мозга, иннервируют рецепторы головы (за исключением блуждающего нерва – иннервирует сердце, дыхание, пищеварительный тракт); бывают сенсорными, моторными (двигательными) и смешанными

Рефлекс – это быстрый автоматический ответ на раздражитель, осуществляемый без осознанного контроля головного мозга.

Рефлекторная дуга – путь, проходимый нервными импульсами от рецептора до рабочего органа.

  • в ЦНС – по чувствительному пути;
  • от ЦНС – к рабочему органу – по двигательному пути

- рецептор (окончание дендрита чувствительного нейрона) – воспринимает раздражение

- чувствительное (центростремительное) нервное волокно – передает возбуждение от рецептора к ЦНС

- нервный центр – группа вставочных нейронов, расположены на разных уровнях ЦНС; передает нервные импульсы с чувствительных нейронов на двигательные

- двигательное (центробежное) нервное волокно – передает возбуждение от ЦНС к исполнительному органу


Простая рефлекторная дуга: два нейрона – чувствительный и двигательный (пример – коленный рефлекс)

Сложная рефлекторная дуга: три нейрона – чувствительный, вставочный, двигательный (благодаря вставочным нейронам происходит обратная связь между рабочим органом и ЦНС, что позволяет вносить изменения в работу исполнительных органов)

Вегетативная (автономная) нервная система – управляет деятельностью внутренних органов, желез, гладкой мускулатуры, не подчиняется воле человека.

Делится на симпатическую и парасимпатическую.


Обе состоят из вегетативных ядер (скопления нейронов, лежащих в спинном и головном мозге), вегетативных узлов (скопления нейронов, нейронов, за пределами НС), нервных окончаний (в стенках рабочих органов)

Путь от центра до иннервируемого органа состоит из двух нейронов (в соматической - один).

Место выхода из ЦНС

От спинного мозга – в шейный, поясничный, грудной отделы

От ствола головного мозга и ствола крестцового отдела спинного мозга

Местоположение нервного узла (ганглия)

По обе стороны спинного мозга, за исключением нервных сплетений (непосредственно в этих сплетениях)

В иннервируемых органах или вблизи них

Медиаторы рефлекторной дуги

В предузловом волокне –

в послеузловом - норадреналин

В обоих волокнах - ацетилхолин

Названия основных узлов или нервов

Солнечное, легочное, сердечное сплетения, брыжеечный узел

Общие эффекты симпатической и парасимпатической НС на органы:

  • Симпатическая НС – расширяет зрачки, угнетает слюноотделение, повышает частоту сокращений, расширяет сосуды сердца, расширяет бронхи, усиливает вентиляцию легких, угнетает перистальтику кишечника, угнетает секрецию пищеварительных соков усиливает потоотделение, удаляет с мочой лишний сахар; общий эффект – возбуждающий, повышает интенсивность обмена, снижает порог чувствительности; активизирует во время опасности, стресса, контролирует реакции на стресс
  • Парасимпатическая НС – сужает зрачки, стимулирует слезотечение, уменьшает частоту сердечных сокращений, поддерживает тонус артериол кишечника, скелетных мышц, снижает кровяное давление, уменьшает вентиляцию легких, усиливает перистальтику кишечника, расширяет артериолы в коже лица, увеличивает выделение с мочой хлоридов; общий эффект – тормозящий, снижает или не влияет на интенсивность обмена, восстанавливает порог чувствительности; доминирует в состоянии покоя, контролирует функции в повседневных условиях

Центральная нервная система (ЦНС) – обеспечивает взаимосвязь всех частей НС и их координированную работу

У позвоночных ЦНС развивается из эктодермы (наружного зародышевого листка)

ЦНС – 3 оболочки:

- твердая мозговая (dura mater) - снаружи;

- мягкая мозговая оболочка (pia mater) – прилегает непосредственно к мозгу.

Головной мозг расположен в мозговом отделе черепа; содержит

- белое вещество - проводящие пути между головным мозгом и спинным, между отделами головного мозга

- серое вещество - в виде ядер внутри белого вещества; кора покрывающая большие полушария и мозжечок

Масса головного мозга – 1400-1600 грамм.


5 отделов:

  • продолговатый мозг– продолжение спинного мозга; центры пищеварения, дыхания, сердечной деятельности, рвота, кашель, чихание, глотание, слюноотделение, проводящая функция
  • задний мозг – состоит из варолиевого моста и мозжечка; варолиев мост связывает мозжечок и продолговатый мозг с большими полушариями; мозжечок регулирует двигательные акты (равновесие, координация движений, поддержание позы)
  • промежуточный мозг– регуляция сложных двигательных рефлексов; координация работы внутренних органов; осуществление гуморальной регуляции;
  • средний мозг – поддержание тонуса мыщц, ориентировочные, сторожевые, оборонительные рефлексы на зрительные и звуковые раздражители;
  • передний мозг (большие полушария) – осуществление психической деятельности (память, речь, мышление).

Промежуточный мозг включает таламус, гипоталамус, эпиталамус

Таламус – подкорковый центр всех видов чувствительности (кроме обонятельного), регулирует внешнее проявление эмоций (мимика, жесты, изменение пульса, дыхания)

Гипоталамус – центры вегетативной НС, обеспечивают постоянство внутренней среды, регулируют обмен веществ, температуру тела, чувство жажды, голода, насыщения, сна, бодрствования; гипоталамус контролирует работу гипофиза

Эпиталамус – участие в работе обонятельного анализатора

Передний мозг имеет два больших полушария: левое и правое

  • Серое вещество (кора) находится сверху полушарий, белое – внутри
  • Белое вещество – это проводящие пути полушарий; среди него – ядра серого вещества (подкорковые структуры)

Кора больших полушарий – слой серого вещества, 2-4 мм в толщину; имеет многочисленные складки, извилины

Каждое полушарие разделено бороздами на доли:

- лобная – вкусовая, обонятельная, двигательная, кожно- мускульная зоны;

- теменная – двигательная, кожно- мускульная зоны;

- височная – слуховая зона;

- затылочная – зрительная зона.

Важно! Каждое полушарие отвечает за противоположную сторону тела.

  • Левое полушарие – аналитическое; отвечает за абстрактное мышление, письменную и устную речь;
  • Правое полушарие – синтетическое; отвечает за образное мышление.

Спинной мозг расположен в костном позвоночном канале; имеет вид белого шнура, длина 1м; на передней и задней сторонах есть глубокие продольные борозды

В самом центре спинного мозга – центральный канал, заполненный спинномозговой жидкостью.

Канал окружен серым веществом (имеет вид бабочки), который окружен белым веществом.

  • В белом веществе – восходящие (аксоны нейронов спинного мозга) и нисходящие пути (аксоны нейронов головного мозга)
  • Серое вещество напоминает контур бабочки, имеет три вида рогов.

- передние рога – в них расположены двигательные нейроны (мотонейроны) – их аксоны иннервируют скелетные мышцы

- задние рога – содержат вставочные нейроны – связывают чувствительные и двигательные нейроны

- боковые рога – содержат вегетативные нейроны – их аксоны идут на периферию к вегетативным узлам

Спинной мозг – 31 сегмент; от каждого сегмента отходит 1 пара смешанных спинномозговых нервов, имеющих по паре корешков:

- передний (аксоны двигательных нейронов);

- задний (аксоны чувствительных нейронов.

Функции спинного мозга:

- рефлекторная – осуществление простых рефлексов (сосудодвигательных, дыхательных, дефекации, мочеиспускания, половых);

- проводниковая – проводит нервные импульсы от и к головному мозгу.


Повреждение спинного мозга приводит к нарушению проводниковых функций, вследствие чего – паралич.

- Нервы кожи, образуя интерактивную сеть, взаимодействуют с различными клетками кожи, эндокринной и иммунной системы.

- Нейродерматологическое взаимодействие влияет на целый ряд таких физиологических и патофизиологических процессов, как рост клеток, воспаление, защитные реакции, зуд и заживление ран.

- Как первичные афферентные, так вегетативные нервные волокна выделяют нейромедиаторы, активирующие специфические рецепторы на многих клетках кожи.

- Клетки кожи экспрессируют ряд специфических рецепторов, которые строго контролируются стимулирующими и подавляющими их активацию сигналами, пептидазами или соседними рецепторами.

- Многочисленные медиаторы (пептиды, протеазы, цитокины, кинины, простаноиды, опиоиды, каннабиноиды, нейтрофины и т.д.), активирующие нейрональные рецепторы, играют важную роль в физиологических и патофизиологических состояниях кожи.

- В спинном мозге и ЦНС осуществляется модуляция сигналов, передаваемых от периферических нервов и относящихся к болевой модальности и зуду; кроме того, происходит обратный процесс—модуляция сигналов, регулирующих кожные функции.

- В настоящее время разрабатываются новые направления лечения различных заболеваний кожи, при которых задействованы нейро-иммуно-эндокринные механизмы.

Эта информация обрабатывается на разных уровнях, в том числе в головном и спинном мозге, дорсальных корневых ганглиях (ДКГ), окончаниях периферических сенсорных нервов, на уровне вегетативных нервов и нейронов и т.д., а также посредством специализированных структур, таких как тельца Пачини, или специализированных клеток, в частности клеток Меркеля.

Эта группа тесно переплетающихся структур и их молекул в итоге играет важнейшую роль в биологии кожи и кожных болезней. Во взаимодействии со спинным и головным мозгом периферические сенсорные нервы выполняют афферентные функции; их окончания воспринимают физические стимулы, такие как прикосновение, тепло или холод, они также выделяют в кожу химические медиаторы и осуществляют эфферентные функции.

Эти сенсорные нервы в значительной мере способствуют развитию кожи до рождения, а также защите и гомеостазу кожи после рождения. Кроме того, вегетативные нервы модулируют как физиологические, так и патофизиологические функции в составе стрессового ответа на экзогенные или эндогенные раздражители и образуют важнейшее звено коммуникации с сосудистой, эндокринной и иммунной системами.

а) Периферические нервы кожи. Сенсорные, а также вегетативные (в коже преимущественно холинергические симпатические) нервы влияют на целый ряд физиологических и патофизиологических функций кожи, таких как эмбриогенез, сужение и расширение сосудов, температура тела, движение мышц, поднимающих волосы; регулировка функции сально-волосяного аппарата, ощущение физических, химических и биологических раздражителей на поверхности кожи; модулирование барьерной функции эпидермиса, клеточная секреция, рост и дифференциация, а также питание и апоптоз клеток; рост нервной ткани, воспаление, иммунная защита и заживление ран.

При отсутствии стимуляции нервов нейромедиаторы в коже практически не определяются. При прямом физическом воздействии — температурном, ультрафиолетовом (УФ), механическом, электрическом, при химической или химико-биологической стимуляции, например, под влиянием аллергенов, гаптенов, микроорганизмов, травмы или воспаления как в условиях in vitro, так и in vivo наблюдается значительное повышение уровня регуляторных нейропептидов, нейротрофинов, нейротрансмиттеров или продуктов окисления (например, оксида озота).

Таким образом, медиаторы, выделяемые сенсорными или вегетативными нервными окончаниями играют в коже важную регуляторную роль при многих физиологических и патологических процессах. Однако наряду с периферической нейромодуляцией, существует сложная, обеспечивающая взаимодействие между спинным мозгом, ЦНС и иммунно-эндокринной системой, сеть, которая также регулирует функции кожи.

Кроме того, нейропептиды и нейтрофины (НТ) могут активироваться и высвобождаться ненейрональными клетками в определенных обстоятельствах, усиливающих или ослабляющих действие нейрогенного раздражителя. В то время как одни нейропептиды [например, вещество Р (SP)] оказывают в ходе воспаления четко выраженное провоспалительное действие, другие нейропептиды, такие как кальцитонин-ген-связанный пептид (CGRP), могут выделяться остро, и, индуцируя (провоспалительное) расширение сосудов, способны одновременно подавлять воспалительные реакции, как при представлении антигенов и иммуносупрессии, чтобы восстановить гомеостаз кожи на более поздней стадии воспаления.

В коже экспрессируется множество рецепторов к этим медиаторам. Большинство из них сопряжены с G-белком. Взаимодействие нейромедиаторов с рецепторами находится под контролем эндопептидазнейтральной эндопептидазы (НЭП), ангиотензинпревращающего фермента (АПФ) и эндотелинпревращающего фермента (ЭПФ), блокирующих индуцированные нейропептидами воспалительные и иммунные реакции. Тесное разнонаправленное взаимодействие между нейромедиаторами, их высокоафинными рецепторами и регуляторными протеазами играет значительную роль в поддержании тканевого гомеостаза и в регуляции патофизиологических процессов в коже.

Ионные каналы неспецифичны и могут быть активированы физическими воздействиями (тепло, холод), химическими веществами (например, капсаицином, ментолом, протонами), а также липидными метаболитами, например простогландинами. Недавно также описана активация ионных каналов каннабиоидами (СВ).

Исходя из этого, очевидно, что чем более разработанной будет сложная проблема нервной системы в коже, тем более доступны окажутся новые перспективные терапевтические подходы к целому ряду дерматологических заболеваний.

Таким образом, доступные данные со всей отчетливостью демонстрируют ключевую роль нейрональной кожной сети как субстрата, влияющего на такие различные физиологические и патофизиологические явления, как защитные реакции, воспаление, зуд, боль, жжение, регенерация и возможно, онкогенез (например, за счет модулирования образования сосудов).

б) Ось головной мозг-кожа. Центральная нервная система соединена с кожей либо прямо, через эфферентные нервы или через производимые в ЦНС медиаторы, либо косвенно, через надпочечники или иммунные клетки. Кожные нервы реагируют также на внутренние стимулы из системного кровообращения (такие как изменения pH, осмотические изменения, брадикинин, цитокины) или на саму кожу и эмоции (внутренние триггерные факторы).

В нормальных условиях сенсорная и вегетативная нервная системы модулируют важные биологические функции, такие как температура тела, кровоток, и рост клеток. Механически индуцированные нервные импульсы передают в ЦНС информацию о давлении. Реагирующие на химические или тепловые стимулы афферентные нервные волокна участвуют в распознании сигналов опасности. Таким образом, в нормальных условиях иннервированная кожа является ключевым барьером, защищающим организм от опасностей во внешней среде. Подтверждением этому служит также факт обильной иннервации не только дермы, но и эпидермиса.

Взаимодействия между центральной и периферической нервной системой играют определенную роль в терморегуляции и патофизиологии различных кожных заболеваний, таких как псориаз, атопический дерматит, акне, заживление ран, а также выпадение волос и возобновление их роста.

в) Спинной мозг и кожа. Наши знания об участии спинного мозга в регулировке специфических ощущений хронической боли в коже человека, о его роли в модулировании зуда или воспалительных стимулов, передаваемых с периферии в головной мозг, очень ограничены. Нам известно, что μ-опиоиды, такие как морфин, могут индуцировать зуд, оказывая обезболивающее действие при интратекальном введении. В отличие от этого, κ-опиоиды оказывают противозудный эффект, вероятно ингибируя рецептор μ-опиоидов. Эти результаты настойчиво указывают на роль опиоидов в регулировке боли и зуда на уровне спинного мозга.

Более того, гастрин-высвобождающий пептид (бомбезин), выделяясь в центральные нервные окончания в спинном мозге, активирует рецептор гастрин-высвобождающего пептида (GRPR) на постсинаптических спинальных нейронах и таким образом селективно регулирует передачу зуда, но не боли. Совокупность этих данных указывает на спинной мозг как на важный регулятор взаимодействий между кожей и нервной системой при воспалении, зудящих заболеваниях и боли, который может стать мишенью для будущих терапевтических модальностей.


г) Анатомия нервной системы кожи:

1. Чувствительные нервы. Большинство нервных структур находится в среднем и в сосочковом слое дермы. Местноспецифические различия наблюдаются на границе слизистых и кожи, в гладкой коже, а также в коже с волосистым покровом. В эпидермисе сенсорные нервные волокна связаны с кератиноцитами, меланоцитами, клетками Лангерганса и Меркеля. Кожные нервы в основном сенсорные, с небольшим включением вегетативных волокон. В отличие от сенсорных вегетативные нервные волокна у млекопитающих никогда не встречаются в эпидермисе. Сенсорные нервы, напротив, иннервируют эпидермис, дерму, а также подкожную жировую клетчатку.

Волокна А-β и А-δ — это в большинстве механочувствительные афференты (типа I) с длительным латентным периодом для теплового раздражения, локализованные на гладкой и имеющей волосяной покров коже. Субпопуляция волокон А-δ на имеющей волосяной покров коже не чувствительна к механическому раздражению (тип II). Около 80% первичных сенсорных нервов кожи представлены А-δ волокнами, распространяющимися из ганглиев дорзальных корешков, тогда как остальные 20% первичных афферентов — это С-волокна.

С-волокна являются либо полимодальными ноцицепторами, которые могут реагировать на химические изменения (с + ), колебания температуры (h + ) или механические стимулы (m + ), либо действуют более специализированно, реагируя только на комбинацию (C-c + h + m + ) или на единственный раздражитель (C-c - h - m + ). Среди периферических нервов человека 45% кожных афферентов относятся к подтипу сенсорных нервов, состоящих из С-волокон, которые одновременно реагируют на механические и термические раздражители (C-m + h + ).

Однако оказалось, что 13% этих нервов являются чувствительными к механическим стимулам (С-m+), 6% — к термическому воздействию (C-h+), 24% — не восприимчивы ни к термическим, ни к механическим стимулам (C-m-h-) и около 12% относятся к вегетативной порции. Среди волокон C-m+h+ 58% реагируют на горчичное масло, в то время как среди С-m + или (С-m - - ) таким свойством обладают лишь 30% волокон, что указывает на существование среди других подтипов также хемо-чувствительных волокон.

Сенсорные нервы воспринимают такие раздражители кожи как тепло, холод или прикосновение. Нервы, воспринимающие тепло, представляют собой преимущественно немиелинизированные С-волокна, субпопуляция волокон А-δ реагирует на легкое охлаждение, в то время как селективные С-волокна активируются при повреждающем холоде. Многие подтипы клеток реагируют на прикосновение и играют важную роль в индукции боли вследствие механического раздражения. Таким образом, система нашего тела имеет как высокоспециализированные, так и менее избирательные ноцицепторы для обеспечения целостности и выживания организма.

Специфическое распределение рецепторов этих разных подтипов сенсорных нервов имеет существенное значение для различных функций (температурной, химической, механической) и воспринимаемых при этом ощущений (пощипывания, покалывания, жжения, боли, зуда). Например, механорецепторы в ганглиях дорзальных корешков (волосяные рецепторы D-типа) экспрессируют исключительно кальциевые каналы Т-типа Ca(v)3.2. Натриевые каналы Nav1.8 (SNS/PN3) и Nav1.9 (SNS/SNS2) экспрессируются как иептидэргическими, так и непептидэргическими нейронами IВ4+(изолектин В4 из Griffonia simplicifolia) и играют решающую роль в определенных подтипах боли. Только первичные афференты небольшого диаметра экспрессируют ванилоидные рецепторы первого типа с транзиторным потенциалом.

Только непептидэргические (слабо пептидэргические) сенсорные волокна экспрессируют пруринергический рецептор Р2х3. Экзогенные факторы, например травма, УФ-излучение, изменения температуры, микробные возбудители, токсины или аллергены, а также эндогенные триггеры воспаления, такие как изменения pH или стрессовые гормональные реакции, способны стимулировать активацию и/или сенситизацию определенных сенсорных нервов. Клеточные процессы, происходящие при передаче действия раздражителя (например, УФ-излучения) до наступления определенной реакции (жгучая боль) в ходе активизации соответствующего механизма (активизация волокон боли, но не волокон зуда, и наоборот) пока еще слабо изучены.

2. Вегетативные (автономные) нервы. В отличие от сенсорных к вегетативным нервам относится меньшая часть кожных нервных волокон. У человека вегетативные нервные волокна кожи практически полностью принадлежат симпатической (холинергической) системе и лишь изредка относятся к парасимпатическим (также холинергическим) структурам. Распространение вегетативных нервов ограничивается дермой, где они иннервируют кровеносные сосуды, артериовенозные анастомозы, лимфатические сосуды, мышцы, подымающие волосы, эккринные и апокринные железы, волосяные фолликулы.

Постганглиарные вегетативные нейроны в коже преимущественно выделяют ацетилхолин, хотя по последним данным дополнительную роль в автономной системе кожи играют нейропептиды. Например, нейропептид Y (НП-Y-NPY) и предсердный натрийуретический пептид образуются исключительно в вегетативных нервных волокнах.

Автономная нервная система кожи регулирует функции потовых желез, регулируя, таким образом, температуру тела, а также водный и электролитный балансы различных органов. Вегетативные нервы участвуют в возникновении целого ряда патологических процессов в коже при гипер- или гипогидрозе, врожденной сенсорной невропатии IV типа, прогрессивном сегментарном гипогидрозе, диабетической нейропатии, сирингомиелии, лепре, дисфункции после симпатэктомии.

Вегетативные нервы осуществляют свое действие в основном путем высвобождения классических нейротрансмиттеров (норадреналина, ацетилхолина) или, в меньшей степени, определенных нейропептидов, таких как вазоактивный интестинальный пептид (ВИП). В отличие от этого, первичные афферентные (сенсорные) нервы выделяют различные классы молекул, в частности, нейропептиды, простаноиды или оксид азота (NO).

Вегетативные нервные волокна активно вовлечены в сосудистые реакции кожи. Симпатические нервы, иннервирующие артериолы, артериовенозные анастомозы и венозные синусоиды, выделяют норадреналин и/или НП-Y (NPY), что приводит к вазоконстрикции, тогда как парасимпатические нервы обусловливают вазодилятацию за счет действия на венозные синусоиды посредством ацетилхолина и вазоактивного интестинального пептида (ВИП)/пептид-гистидин-метионин (ПГМ). Следует отметить, что у ноцицепторов С-волокон может развиться реактивность к адренергическим нейротрансмиттерам в ходе активизации соответствующих рецепторов во время травмы или воспаления. Таким образом, сенсорная и вегетативная нервная системы коммуницируют и взаимодействуют при заболевании на молекулярном уровне.

Мелкие артерии и артериолы, а также артериовенозные анастомозы богато иннервированы норадренергическими нервными окончаниями. В ранее проведенных исследованиях высказывалось предположение, что эта система является холинергической и действует с участием котрансмиттера, вероятно, вазоинтестинального пептида (VIP). Установлено, что холинергические симпатические нервы действуют на мускариновые рецепторы эккринных потовых желез, тогда как высокие концентрации ацетилхолина индуцируют обусловленную аксон-рефлексом эритему за счет никотиновых рецепторов. В системе вазоконстрикции медиатором, скорее всего, является норадреналин и еще один или несколько котрансмиттеров. Лучше других описаны симпатические котрансмиттеры, участвующие в регуляции кровотока, — аденозин трифосфат (АТФ) и NPY.

Примечательно, что даже в отсутствие сенсорной или вегетативной иннервации кожа сохраняет вазодилятационную реакцию, на смену которой приходит неневрогенная вазоконстрикция. Механизмы неневрогенной вазоконстрикции и вазодилятации в ответ на локальное охлаждение остаются неизвестны, однако при этом, вероятно, задействованы оксид азота и сенсорные нервы.

Читайте также:

Пожалуйста, не занимайтесь самолечением!
При симпотмах заболевания - обратитесь к врачу.