Кроветворение это функция нервной ткани

Органы кроветворения и иммунной защиты образуют единую с кровью и лимфой систему, которая:

1. Обеспечивает непрерывный процесс обновления форменных элементов крови в результате постоянной пролиферации и дифференцировки клеток в соответствии с потребностями организма.

2. Создает и осуществляет комплекс защитных реакций от повреждающего действия факторов внешней и внутренней среды, иммунный надзор за деятельностью клеток своего организма.

3. Поддерживает целостность и индивидуальность организма благодаря способности клеток иммунной системы отличать структурные компоненты своего организма от чужеродного и уничтожать последние.

К органам кроветворения и иммуногенеза относятся:

1. Красный костный мозг (ККМ),

3. Лимфатические и гемолимфатические узлы,

5. Лимфоидые образования пищеварительного тракта, к которым относятся миндалины, пейеровы бляшки, аппендикс, лимфоидные образования половой, дыхательной, выделительной систем.

Все органы кроветворения и иммуногенеза подразделяются на центральные и периферические.

Кцентральным относится ККМ и тимус. В них локализованы стволовые кроветворные клетки и происходит первый этап дифференцировки лимфоцитов, называемый антигеннезависимым.

Кпериферическим органамотносятся: селезенка, лимфатические и гемолимфатические узлы, лимфоидные образования по ходу пищеварительной трубки, половой, дыхательной, выделительной систем. В этих органах осуществляется антигензависимая дифференцировка лимфоцитов.

Общий принцип строения органов кроветворения

1. Основу всех органов кроветворения формирует стромальный компонент, представленный ретикулярной тканью, исключением является лишь тимус, его стромальный компонент представлен эпителиоретикулярной тканью, имеющей эпителиальное происхождение. Клетки стромывыполняют опорную, трофическую и регуляторную функции, обладают в каждом органе характерными признаками. Они создают особое микроокружение, синтезируя гемопоэтины для правильного развития кроветворных клеток, ГАГ кислые и нейтральные, а так же белок ламинин, создающий трехмерную сеть для миграции клеток крови.

2. Все органы гемопоэза и иммуногенеза среди клеток стромы содержат большое количество макрофагов, которые участвуют в созревании и дифференцировке формирующихся форменных элементов, а также в фагоцитозе разрушенных клеток, учавствуя в их утилизации.

3. В строме органов кроветворения содержится сосудистый компонент, который представлен особыми кровеносными сосудами, синусными капиллярами, с высоким эндотелием, который, в свою очередь, обеспечивает распознавание зрелых клеток, способен сортировать их и обеспечивать миграцию форменных элементов в кровеносное русло.

4. В сети стромосоздающей ткани находятся форменные элементы крови на разных этапах созревания – гемопоэтический компонент.

Понятие о лимфоидной и миелоидной ткани, развитие органов миелоидного кроветворения

Кроветворные клетки в совокупности со стромой образуют два типа тканей миелоидную и лимфоидную:

Миелоидная ткань – это ретикулярная ткань, с находящимися там развивающимися клетками миелоидного ряда (эритропоэза, тромбоцитопоэза, гранулоцитопоэза, моноцитопоэза) и лимфоидного (В-лимфоцитопоэз). Миелоидная ткань формирует основу органов миелоидного кроветворения, к которым у человека относится красный костный мозг.

Лимфоидная ткань - это ретикулярная или эпителиоретикулярная ткань (тимус), в которой находятся клетки лимфоидного ряда (лимфоцитопоэза) на разных стадиях развития. Лимфоидная ткань формирует органы лимфоидного кроветворения, к которым относятся: тимус, селезенка, лимфатические и гемолимфатические узлы и лимфоидные элементы в стенке различных органов и систем.

Развитие миелоидного кроветворения:

В развитии выделяют три периода:

Мезобластический

Гепатолиенальный

Медуллярный

Мезобластический (2 недель – 4 месяцев): первые клетки крови обнаруживаются у 13-19 суточного эмбриона в мезодерме желточного мешка. Интраваскулярно часть стволовых клеток крови дифференцируются в эритробласты (крупные клетки имеющие ядро). Экстраваскулярно образуются гранулоциты: нейтрофилы и эозинофилы. Активность мезобластического кроветворения снижается на 6 неделе и заканчивается на 4 месяце эмбриогенеза.

Гепатолиенальный (2 месяцев – 7 месяцев): в печени кроветворение начинается на 5-6 неделе, достигая максимума к 5 месяцу эмбриогенеза. Все форменные элементы - это эритроциты и тромбоциты в этот период образуются экстраваскулярно. К моменту рождения в печени могут сохраняться единичные очаги кроветворения. В селезенке очаги миелоидного кроветворения обнаруживаются с 20 недель эмбриогенеза, несколько позднее появляются очаги лимфоидного кроветворения, а с 8-го месяца эмбриогенеза в ней остается только лимфоидное кроветворение.

Медуллярный или костномозговой: начинается параллельно развитию костного скелета и продолжается всю жизнь. В полость первичной кость начинают врастать и дифференцироваться клетки двух типов: с 2-х месяцев механобласты (формируют ретикулярную ткань, которая заполняет все полости кости) и с 3-х месяцев - стволовые клетки крови, формируя островки гемопоэза. К 4-му месяцу эмбриогенеза ККМ становится главным органом кроветворения и заполняет полости плоских и трубчатых костей. У ребенка 7 лет ККМ в диафизах трубчатых костей бледнеет, появляется и начинает разрастаться желтый костный мозг. У взрослого человека ККМ сохраняется лишь в эпифизах трубчатых костей и в плоских костях. В старческом возрасте костный мозг (как красный, так и желтый) приобретает слизистую консистенцию и носит название желатинозный костный мозг.

Всеми процессами в организме людей управляет нервная ткань. Именно строением ее клеток, их функциональными возможностями человек и отличается от животных. Однако, далеко не все знают, что головной мозг состоит из разных элементов, которые объединены в структурные единицы, несущие ответственность за регуляцию двигательной и чувствительной сферы организма. Подобная информация помогает специалистам лучше понимать неврологические и психиатрические болезни людей.

Строение и морфологические характеристики ткани

Основная составляющая головного мозга – нервная ткань, имеет клеточное строение. В ее основе нейроны, а также нейроглия – межклеточное вещество. Подобным строением нервной ткани обеспечены ее физиологические параметры – тканевое раздражение, последующее возбуждение, а также вырабатывание и передача сигналов.

Нейроны являются крупными функциональными единицами. Они состоят из следующих элементов:

  • ядро;
  • дендриты;
  • тело;
  • аксон.

В нейроглии присутствуют вспомогательные клетки – к примеру, астроциты плазматические, олигодендриты, шванновские клетки. Нейрон, как основная морфо-функциональная единица, как правило, состоит из нескольких дендритов, но всегда одного аксона – по нему перемещается потенциал действия от одной клетки к соседним. Именно с помощью этих окончаний в организме людей осуществляется связь между внутренними органами и головным мозгом.


В своей массе отростки нейронов образуют волокна, в которых осевой цилиндр распадается на чувствительные окончания и двигательные. Сверху они окружены множеством миелиновых и безмиелиновых клеток защитной оболочки.

Классификация

Среди существующих нервных клеток, специалисты традиционно выделяют следующие единицы, по количеству отростков и функциональной предназначенности:

Исходя из количества окончаний:

  • униполярные – с единичным отростком;
  • псевдоуниполярные – из двух ветвей одного и того же дендрита;
  • биполярные – имеется 1 дендрит и 1аксон;
  • мультиполярные – несколько дендритов, но 1 аксон.

По функциональным обязанностям:

  • воспринимающие – для принятия и передачи сигналов извне, а также от внутренних тканей;
  • контактные – промежуточные, которые обеспечивают обработку и проведение информации к двигательным нейронам;
  • двигательные – формируют управляющие сигналы, а затем передают их к остальным органам.

Дополнительные единицы периферической нерворегулирующей системы – леммоциты. Они обволакивают отростки нейронов и формируют безмиелиновую/ миелиновую оболочку. Их еще именую шванновскими клетками в честь первооткрывателя. Именно мембрана шванновской клетки, по мере обхвата аксона и формирования оболочки, способствует улучшению проводимости нервного импульса.


Специалисты обязательно выделяют в ткани мозга особые контакты нейронов, их синапсы, классификация которых зависит от формы передачи сигнала:

  • электрические – имеют значение в эмбриональном периоде развитии человека для процесса межнейронных взаимодействий;
  • химические – широко представлены у взрослых людей, они для передачи нервного импульса прибегают к помощи медиаторов, к примеру, в двигательных клетках для однонаправленности возбуждения по волокну.

Подобная классификация дает полное представление о сложном строении ткани головного мозга людей, как представителей подкласса млекопитающих.

Функции ткани

Особенности нейронов таковы, что физиологическими свойствами нервной ткани обеспечиваются сразу несколько функций. Так, она принимает участие в формировании основных структур мозга – центральной и периферической его части. В частности – от мелких узлов до коры полушарий. При этом образуется сложнейшая система с гармоничным взаимодействием.

Помимо строительных функций нервной ткани присуща обработка всей информации, поступающей изнутри, а также извне. Нейроны воспринимают, перерабатывают и анализируют данные, которые затем трансформируют в особые импульсы. Они по окончаниям аксонов поступают в кору мозга. При этом, от скорости проведения возбуждения напрямую зависит реакция человека на изменение в окружающей среде.

Мозг, в свою очередь, использует природные свойства нейронов для регулирования, а также согласования деятельности всех внутренних систем организма – с помощью синаптического контакта и рецепторов. Это позволяет человеку адаптироваться к изменившимся условиям, сохраняя целостность системы жизнедеятельности – благодаря коррекции передачи импульса.

Химический состав ткани

Специфика гистологии паренхимы мозга заключается в присутствии гематоэнцефалического барьера. Именно он обеспечивает избирательную проницаемость химических метаболитов, а также способствует накоплению отдельных компонентов в межклеточном веществе.

Поскольку структура нервной ткани состоит из серого вещества – тел нейронов, и белого – аксонов, то их внутренняя среда имеет отличия по химическому составу. Так, больше воды присутствует в сером веществе – на долю сухого остатка не более 16%. При этом половину занимают белки, а еще треть – липиды. Тогда как особенности строения нервных клеток белого вещества – нейроны структур центральной части мозга, предусматривают меньшее количество воды, и больший процент сухого остатка. Его насчитывают до 30%. К тому же и липидов вдвое больше, чем белков.

Белковые вещества в главных и вспомогательных клетках ткани мозга представлены альбуминами и нейроглобулинами. Реже присутствует нейрокератин – в оболочках нервных волокон и аксонных отростках. Множество белковых соединений свойственно медиаторам – мальтаза либо фосфатаза, а также амилаза. Медиатор поступает в синапс и этим ускоряет импульсы.

Присутствует в химическом составе углеводы – глюкоза, пентаза, а также гликоген. Имеются и жиры в минимальном объеме – холестерол, фосфолипиды, либо цереброзиды. Не менее важны микроэлементы, передающие нервный импульс по нервному волокну – магний, калий, натрий и железо. Они принимают участие в продуктивной интеллектуальной деятельности людей, регулируют функционирование мозга в целом.

Свойства ткани

В организме людей основными свойствами нервной ткани специалисты указывают:


  1. Возбудимость – способность клетки иметь ответную реакцию на раздражители. Свойство проявляется непосредственно в двух видах – возбуждение нервной реакции либо ее торможение. Если первое может свободно перемещаться от клетки к клетке и даже внутрь ее, то торможение ослабляет либо даже препятствует деятельности нейронов. В этом взаимодействии и заключается гармоничность функционирования структур головного мозга человека.
  2. Проводимость – обусловлено природной способностью нейроцитов перемещать импульсы. Процесс можно представить следующим образом – в единичной клетке возник импульс, он перемещается на соседние участки, а при переходе в отдаленные зоны меняет в них концентрацию ионов.
  3. Раздражимость – переход клеток из состояния покоя в прямо ему противоположное, их активность. Для этого требуются провоцирующие факторы, которые поступают из окружающей ткань среды. Так, рецепты глаз реагируют на яркий свет, тогда как клетки височной доли мозга – на громкий звук.

Если одно из свойств нервной ткани нарушено, то люди утрачивают сознание, а психические процессы вовсе прекращают свою деятельность. Подобное происходит при использовании наркоза дл оперативного вмешательств – нервные импульсы полностью отсутствуют.

Специалисты на протяжении столетий изучают строение, функции, состав и свойства нервной ткани. Однако, они и в настоящее время знают о ней далеко не все. Природа преподносит людям все новые загадки, разгадать которые пытаются великие умы человечества.

Многие не представляют, откуда берётся кровь, что такое иммунитет и где он, собственно, находится. Реклама говорит нам, что иммунитет находится в кишечнике, но это не совсем верно. Чтобы развеять подобные заблуждения, а также чтобы дать вам, уважаемые читатели, чёткую и ясную картину того, как выглядит система органов кроветворения, я и задумал цикл статей про основы гематологии.

Важная оговорка: каждый компонент кроветворной системы я буду описывать очень упрощённо. Эта статья не является пособием для занятий по анатомии, она не подходит для подготовки к зачетам. Я старался писать в научно-популярном формате для примерного знакомства с кроветворной системой.

Что такое кроветворная система?

Наша кровь состоит из форменных элементов и плазмы. Плазма — это жидкая часть крови, она состоит из воды (более 95%) и сухого остатка (белки, витамины, углеводы, липопротеидные комплексы, неорганические вещества). К форменным элементам крови относят эритроциты, тромбоциты и лейкоциты.

Кроветворная система — это система органов, в которых создаются и созревают форменные элементы крови. Механизм образования белков плазмы или поддержания необходимого количества воды в плазме рассматривается за пределами кроветворной системы.

Кроветворную систему также иногда называют иммунной системой и это весьма верно, ведь главные клетки нашего иммунитета — лейкоциты — создаются в кроветворной системе. Особенно часто это название встречается в учебниках по гистологии.

Классификация кроветворной системы

Кроветворная система делится на центральную и периферическую. К центральной кроветворной системе относят красный костный мозг и тимус. К периферической кроветворной системе относят селезёнку, лимфатические узлы и скопления лимфатической ткани — миндалины, аппендикс, Пейеровы бляшки, лимфатическую ткань на стенке бронхов.

Органы кроветворения (центральные)

Прежде всего, давайте договоримся: красный костный мозг не имеет никакого отношения к головному мозгу или к спинному мозгу. Этот орган называется мозгом потому, что он является центром кроветворения, то есть самым главным компонентом кроветворной системы.

Красный костный мозг (medulla ossium rubra) — это скопление клеток крови и их предшественников разной степени зрелости. Красный костный мозг — это множество стволовых клеток, то есть совершенно незрелых, из которых может получится любая клетка. Также в красном костном мозге имеются более зрелые клетки-предшественники форменных элементов крови.

Вы наверняка видели множество картинок, подобных этой:

Так вот, представьте, что таких клеток, как стволовая клетка в верхней части схемы, очень много. И клеток, в которые они дифференцируются (вторая и следующие ступени) тоже очень много. Все эти клетки разной степени зрелости (кроме Т-лимфоцитов, они отправляются в тимус), которые собраны в одном месте. Это и есть красный костный мозг.

Возьмём обычную плоскую кость, например, грудину (sternum), я её обозначил цифрой 1. Распилим её поперёк и в центре разреза (2) мы увидим тёмно-малиновую мякоть — это и будет красный костный мозг, в котором находятся стволовые клетки и все их дозревающие потомки.

Посмотрите на отличную иллюстрацию из гистологического атласа В.Г. Елисеева. Это красный костный мозг под микроскопом. Не точь-в-точь с реальным изображением, но здесь очень наглядно показана структура. По сути, мы видим табличку, которую мы рассматривали парой абзацев выше, только в естественных условиях.

Гистологический препарат красного костного мозга примечателен разнообразием клеток. Здесь находится много клеток разной степени зрелости, разной формы и размера. Давайте рассмотрим иллюстрацию препарата красного костного мозга поподробнее:

  1. Зрелый эритроцит;
  2. Мегакариоцит. Огромная незрелая клетка, которая дозреет до тромбоцита;
  3. Лимфобласт. Предшественник зрелого лимфоцита, 4-й уровень зрелости. Обратите внимание на очень крупное ядро — это очень характерно для всех незрелых клеток;
  4. Базофильный метамиелоцит. Клетка 5-го уровня зрелости (то есть 5-я строчка в кроветворной таблице). Всего уровней зрелости 6, так что ей остался один шаг до зрелого базофила.

Макроскопически красный костный мозг — это тёмно-красная полужидкая масса.

Красный костный мозг находится, преимущественно, в плоских костях. Прежде всего, это таз (pelvis), грудина и череп (cranium), точнее, кости черепа. Красный костный мозг располагается ещё и в эпифизах трубчатых костей, но там его значительно меньше.

На этой картинке красным цветом выделены те участки костей, внутри которых содержится красный костный мозг.

Внутри кости располагаются синусы — небольшие углубления, через которые свежеприготовленные зрелые форменные элементы крови попадают в общий кровоток. В нормальном, здоровом организме через эти синусы проходят только зрелые эритроциты, тромбоциты и лейкоциты.

Тимус

Многие люди не знают, где находится тимус и что это вообще такое. Давайте попробуем разобраться.

Удивительная особенность тимуса — этот орган раньше всех начинает стареть. Пик развития тимуса приходится на 3-5 лет. В этом возрасте тимус очень крупный, он имеет минимальное количество жировой ткани. Практически вся масса тимуса приходится на кроветворную ткань. Вот как располагается тимус (выделен зелёным) у 8-месячного ребёнка:

К подростковому возрасту годам тимус уже заметно уменьшается, это называется инволюцией тимуса. Тимус 15-летнего молодого человека (тимус выделен зелёным, лёгкие для сравнения размеров выделены красным) выглядит так:

Дело не только в изменении размеров. Значительно сильнее изменяется структура тимуса — кроветворная, ретикулярная и эпителиальная ткани превращаются в жировую ткань. У пожилых людей в тимусе остаётся всего лишь 1-3 % процента кроветворной ткани, всё остальное представляет собой уже очень небольшой комочек жировой ткани.

Теперь рассмотрим топографию тимуса. Вилочковая железа располагается в средостении (mediastinum). Средостение — это пространство в грудной полости между лёгкими (pulmones). Наверняка анатомы и хирурги будут сейчас кидать в меня тухлыми помидорами, потому что академически, конечно же, средостение — это пространство между правой и левой плевральными полостями. Но поскольку плевра покрывает каждое лёгкое, мы будем понимать под этим термином именно пространство между лёгкими.

Тимус выглядит как несимметричный железистый орган серо-розового цвета, который слегка расширен у основания и сужен в районе верхушки. Тимус покрывает оболочка из соединительной ткани. Как я уже говорил, у взрослых людей тимус замещается жировой тканью, и постепенно он меняет структуру и приобретает тёмно-жёлтый оттенок. Тимус состоит из двух долей — правой (lobus dexter) и левой (lobus sinister). .

Если мы разрежем тимус вдоль, мы увидим, что эта же соединительная ткань разделяет его доли на более мелкие дольки. В каждой дольке имеется внешняя часть — кора (cortex thymi) и внутренняя часть — мозговое вещество (medulla thymi).

Вы можете увидеть эти составные части, если рассмотрите препарат тимуса под микроскопом в малом увеличении:

Всё очень просто:

  1. Перегородка, которая делит орган на дольки. Состоит из плотной соединительной ткани и отходит от капсулы;
  2. Корковое вещество, то есть кора тимуса. Она более тёмная, потому что она очень плотно заселена Т-лимфоцитами;
  3. Мозговое вещество, оно обычно располагается в центре дольки.

Когда мы проецируем границы органа на скелет, это называется скелетотопия. Как же показать тимус на скелете? Запомните главный ориентир — рукоятку грудины (manubrium sterni). Если вы забыли, где это находится, обязательно загляните сюда. У взрослого человека 20-40 лет тимус располагается именно за рукояткой грудины. Если мы говорим о ребёнке 2-5 лет, его тимус значительно крупнее, его нижняя граница будет доходить до хряща третьего ребра или спуститься ещё ниже.

Теперь давайте обозначим и голотопию тимуса. Голотопия — это когда мы показываем и описываем расположение органа на целом теле человека. Тимус находится вот здесь:

Лексический минимум

В каждой статье я публикую небольшую подборку терминов, которые я использовал. Это будет полезно тем, кто решил не останавливаться на моих уроках по латинскому языку и продолжает расширять свой словарный запас. Я рекомендую выписывать каждый термин в тетрадь и подписывать перевод (который вы найдёте в самой статье, то есть в тексте выше).

  • Medulla ossium rubra;
  • Sternum;
  • Pelvis;
  • Thymus;
  • Mediastinum;
  • Pulmones;
  • Lobus dexter;
  • Lobus sinister;
  • Cortex thymi;
  • Medulla thymi;
  • Manubrium sterni.

Общая гистология - кроветворение

Кроветворением, или гемопоэзом, называют развитие крови. Различают эмбриональный гемопоэз, который происходит в эмбриональный период и приводит к развитию крови как ткани, и постэмбриональный гемопоэз, который представляет собой процесс физиологической регенерации крови.

Развитие эритроцитов называют эритропоэзом, развитие гранулоцитов — гранулоцитопоэзом, тромбоцитов — тромбоцитопоэзом, моноцитов — моноцитопоэзом, развитие лимфоцитов и иммуноцитов — лимфоцито- и иммуноцитопоэзом.

Эмбриональный гемопоэз

В развитии крови как ткани в эмбриональный период можно выделить 3 основных этапа, последовательно сменяющих друг друга – мезобластический, гепатолиенальный и медуллярный.

Первый, мезобластический этап – это появление клеток крови во внезародышевых органах, а именно в мезенхиме стенки желточного мешка, мезенхиме хориона и стебля. При этом появляется первая генерация стволовых клеток крови (СКК). Мезобластический этап протекает с 3-й по 9-ю неделю развития зародыша человека.

Второй, гепатолиенальный этап начинается с 5—6-й недели развития плода, когда печень становится основным органом гемопоэза, в ней образуется вторая генерация стволовых клеток крови. Кроветворение в печени достигает максимума через 5 мес и завершается перед рождением. СКК печени заселяют тимус, селезенку и лимфатические узлы.

Третий, медуллярный (костномозговой) этап — это появление третьей генерации стволовых клеток крови в красном костном мозге, где гемопоэз начинается с 10-й недели и постепенно нарастает к рождению. После рождения костный мозг становится центральным органом гемопоэза.

Рассмотрим подробнее особенности гемопоэза в стенке желточного мешка, в печени, в тимусе, селезенке, лимфатических узлах и в костном мозге.

В мезенхиме стенки желточного мешка обособляются зачатки сосудистой крови, или кровяные островки. В них мезенхимные клетки округляются, теряют отростки и преобразуются в стволовые клетки крови. Клетки, ограничивающие кровяные островки, уплощаются, соединяются между собой и образуют эндотелиальную выстилку будущего сосуда. Часть стволовых клеток дифференцируется в первичные клетки крови (бласты). Большинство первичных кровяных клеток митотически делится и превращается в первичные эритробласты, характеризующиеся крупным размером – мегалобласты. Это превращение совершается в связи с накоплением эмбрионального гемоглобина (HbF) в цитоплазме бластов. В некоторых первичных эритробластах ядро подвергается кариорексису и удаляется из клеток, в других ядро сохраняется. В результате образуются безъядерные и ядросодержащие первичные эритроциты, отличающиеся большим размером по сравнению с нормоцитами и поэтому получившие название мегалоцитов. Такой тип кроветворения называется мегалобластическим. Он характерен для эмбрионального периода, но может появляться в постнатальном периоде при некоторых заболеваниях.

Наряду с мегалобластическим в стенке желточного мешка начинается нормобластическое кроветворение, при котором из бластов образуются вторичные эритробласты, из которых образуются вторичные эритроциты (нормоциты).

Развитие эритроцитов в стенке желточного мешка происходит внутри первичных кровеносных сосудов, т.е. интраваскулярно. Одновременно экстраваскулярно из бластов, расположенных вокруг сосудистых стенок, дифференцируется небольшое количество гранулоцитов — нейтрофилов и эозинофилов.

Часть СКК остается в недифференцированном состоянии и разносится током крови по различным органам зародыша, где происходит их дальнейшая дифференцировка в клетки крови или соединительной ткани. После редукции желточного мешка основным кроветворным органом временно становится печень.

Печень закладывается примерно на 3—4-й неделе эмбриональной жизни, а с 5-й недели она становится центром кроветворения. Кроветворение в печени происходит экстраваскулярно, - по ходу капилляров, врастающих вместе с мезенхимой внутрь печеночных долек. Источником кроветворения в печени являются стволовые клетки крови, из которых образуются бласты, дифференцирующиеся во вторичные эритроциты.

Одновременно с развитием эритроцитов в печени образуются зернистые лейкоциты, главным образом нейтрофильные и эозинофильные.

Кроме гранулоцитов, в печени формируются гигантские клетки — мегакариоциты, - предшественники тромбоцитов. К концу внутриутробного периода кроветворение в печени прекращается.

Тимус закладывается в конце 1-го месяца внутриутробного развития, и на 7—8-й неделе его эпителий начинает заселяться стволовыми клетками крови, которые дифференцируются в лимфоциты тимуса. Увеличивающееся число лимфоцитов тимуса дает начало T-лимфоцитам, заселяющим T-зоны периферических органов иммунопоэза.

Закладка селезенки также происходит в конце 1-го месяца эмбриогенеза. Из вселяющихся сюда стволовых клеток происходит экстраваскулярное образование всех видов форменных элементов крови, т.е. селезенка в эмбриональном периоде представляет собой универсальный кроветворный орган. Образование эритроцитов и гранулоцитов в селезенке достигает максимума на 5-м месяце эмбриогенеза. После этого в ней начинает преобладать лимфоцитопоэз.

Первые закладки лимфоузлов человека появляются на 7—8-й неделе эмбрионального развития. Большинство лимфатических узлов развивается на 9—10-й неделе. В этот же период начинается проникновение в лимфатические узлы стволовых клеток крови, из которых на ранних стадиях дифференцируются эритроциты, гранулоциты и мегакариоциты. Однако формирование этих элементов быстро подавляется образованием лимфоцитов, составляющих основную часть лимфатических узлов.

Закладка костного мозга осуществляется на 2-м месяце эмбрионального развития. Первые гемопоэтические элементы появляются на 12-й неделе развития; в это время основную массу их составляют эритробласты и предшественники гранулоцитов. Из СКК в костном мозге формируются все форменные элементы крови, развитие которых происходит экстраваскулярно. Часть СКК сохраняется в костном мозге в недифференцированном состоянии. Они могут расселяться по другим органам и тканям и являться источником развития клеток крови и соединительной ткани.

Таким образом, костный мозг становится центральным органом, осуществляющим универсальный гемопоэз, и остается им в течение постнатальной жизни. Он обеспечивает стволовыми кроветворными клетками тимус и другие гемопоэтические органы.

Постэмбриональный гемопоэз

Постэмбриональный гемопоэз представляет собой процесс физиологической регенерации крови, который компенсирует физиологическое разрушение дифференцированных клеток. Он подразделяется на миелопоэз и лимфопоэз.

Миелопоэз происходит в миелоидной ткани, расположенной в эпифизах трубчатых и полостях многих губчатых костей. Здесь развиваются эритроциты, гранулоциты, моноциты, тромбоциты, а также предшественники лимфоцитов. В миелоидной ткани находятся стволовые клетки крови и соединительной ткани. Предшественники лимфоцитов постепенно мигрируют и заселяют тимус, селезенку, лимфоузлы и некоторые другие органы.

Лимфопоэз происходит в лимфоидной ткани, которая имеет несколько разновидностей, представленных в тимусе, селезенке, лимфоузлах. Она выполняет функции образования T- и B-лимфоцитов и иммуноцитов (например, плазмоцитов).

Миелоидная и лимфоидная ткани являются разновидностями соединительной ткани, т.е. относятся к тканям внутренней среды. В них представлены две основные клеточные линии — клетки ретикулярной ткани и гемопоэтические клетки.

Ретикулярные, а также жировые, тучные и остеогенные клетки вместе с межклеточным веществом формируют микроокружение для гемопоэтических элементов. Структуры микроокружения и гемопоэтические клетки функционируют в неразрывной связи друг с другом. Микроокружение оказывает воздействие на дифференцировку клеток крови (при контакте с их рецепторами или путем выделения специфических факторов).

Таким образом, для миелоидной и всех разновидностей лимфоидной ткани характерно наличие стромальных и гемопоэтических элементов, образующих единое функциональное целое.

СКК относятся к самоподдерживающейся популяции клеток. Они редко делятся. Выявление СКК стало возможным при применении метода образования клеточных колоний – потомков одной стволовой клетки.

Пролиферативную активность СКК регулируют колониестимулирующие факторы (КСФ), различные виды интерлейкинов (ИЛ-3 и др.). Каждая СКК в эксперименте или лабораторном исследовании образует одну колонию и называется колониеобразующей единицей (сокращенно КОЕ, CFU).

Исследование клеточного состава колоний позволило выявить две линии их дифференцировки. Одна линия дает начало мультипотентной клетке — родоначальнице гранулоцитарного, эритроцитарного, моноцитарного и мегакариоцитарного рядов гемопоэза (сокращенно КОЕ-ГЭММ). Вторая линия дает начало мультипотентной клетке — родоначальнице лимфопоэза (КОЕ-Л).

Из мультипотентных клеток дифференцируются олигопотентные (КОЕ-ГМ) и унипотентные родоначальные клетки. Методом колониеобразования определены родоначальные унипотентные клетки для моноцитов (КОЕ-М), нейтрофильных гранулоцитов (КОЕ-Гн), эозинофилов (КОЕ-Эо), базофилов (КОЕ-Б), эритроцитов (БОЕ-Э и КОЕ-Э), мегакариоцитов (КОЕ-МГЦ), из которых образуются клетки-предшественники. В лимфопоэтическом ряду выделяют унипотентные клетки — предшественницы для B-лимфоцитов и для T-лимфоцитов. Полипотентные (плюрипотентные и мультипотентные), олигопотентные и унипотентные клетки морфологически не различаются.

Все приведенные выше стадии развития клеток составляют четыре основных класса, или компартмента, гемопоэза:

  • I класс — СКК - стволовые клетки крови (плюрипотентные, полипотентные);
  • II класс — КОЕ-ГЭММ и КОЕ-Л - коммитированные мультипотентные клетки (миелопоэза или лимфопоэза);
  • III класс — КОЕ-М, КОЕ-Б и т.д. - коммитированные олигопотентные и унипотентные клетки;
  • IV класс — клетки-предшественники (бласты, напр.: эритробласт, мегакариобласт и т.д.).

Сразу отметим, что оставшиеся два класса гемопоэза составляют созревающие клетки (V класс) и зрелые клетки крови (VI класс).

Эритропоэз у млекопитающих и человека протекает в костном мозге в особых морфофункциональных ассоциациях, получивших название эритробластических островков. Эритробластический островок состоит из макрофага, окруженного одним или несколькими кольцами эритроидных клеток, развивающихся из унипотентной КОЕ-Э, вступившей в контакт с макрофагом. КОЕ-Э и образующиеся из нее клетки (от проэритробласта до ретикулоцита) удерживаются в контакте с макрофагом его рецепторами.

У взрослого организма потребность в эритроцитах обычно обеспечивается за счет усиленного размножения эритробластов. Но всякий раз, когда потребность организма в эритроцитах возрастает (например, при потере крови), эритробласты начинают развиваться из предшественников, а последние — из стволовых клеток.

В норме из костного мозга в кровь поступают только эритроциты и ретикулоциты.

Регуляция гемопоэза

  • факторами роста, обеспечивающими пролиферацию и дифференцировку СКК и последующих стадий их развития,
  • факторами транскрипции, влияющими на экспрессию генов, определяющих направление дифференцировки гемопоэтических клеток,
  • витаминами, гормонами.

Факторы роста включают колониестимулирующие факторы (КСФ), интерлейкины и ингибирующие факторы. Они являются гликопротеинами, действующими и как циркулирующие гормоны, и как местные медиаторы, регулирующие гемопоэз и дифференцировку специфических типов клеток. Почти все факторы роста действуют на СКК, КОЕ, коммитированные и зрелые клетки. Однако отмечаются индивидуальные особенности действия этих факторов на клетки-мишени.

КСФ действуют на специфические клетки или группы клеток на различных стадиях дифференцировки. Например, фактор роста стволовых клеток влияет на пролиферацию и миграцию СКК в эмбриогенезе. В постнатальном периоде на гемопоэз оказывают влияние несколько КСФ, среди которых наиболее изучены факторы, стимулирующие развитие гранулоцитов и макрофагов (ГМ-КСФ, Г-КСФ, М-КСФ), а также интерлейкины.

Большинство указанных факторов выделено и применяется для лечения различных болезней. Для получения их используются биотехнологические методы.

Дифференцировка полипотентных клеток в унипотентные определяется действием ряда специфических факторов, поэтинов — эритропоэтинов (для эритробластов), гранулопоэтинов (для миелобластов), лимфопоэтинов (для лимфобластов), тромбопоэтинов (для мегакариобластов).

Большая часть эритропоэтина образуется в почках. Его образование регулируется содержанием в крови кислорода, которое зависит от количества циркулирующих в крови эритроцитов. Снижение числа эритроцитов и соответственно парциального давления кислорода, является сигналом для увеличения продукции эритропоэтина. Эритропоэтин действует на чувствительные к нему КОЕ-Э, стимулируя их пролиферацию и дифференцировку, что в конечном итоге приводит к повышению содержания в крови эритроцитов.

Тромбопоэтин синтезируется в печени, стимулирует пролиферацию КОЕ-МГЦ, их дифференцировку и образование тромбоцитов.

Ингибирующие факторы дают противоположный эффект, т.е. тормозят гемопоэз; их недостаток может быть одной из причин лейкемии, характеризующейся значительным увеличением числа лейкоцитов в крови. Выделен ингибирующий лейкемию фактор (ЛИФ), который тормозит пролиферацию и дифференцировку моноцитов-макрофагов.

Витамины необходимы для стимуляции пролиферации и дифференцировки гемопоэтических клеток. Витамин В12 поступает с пищей и соединяется с внутренним фактором (Касла), который синтезируется париетальными клетками желудка. Образуемый при этом комплекс, в присутствии ионов Са2+, соединяется с рецепторами эпителиоцитов подвздошной кишки и всасывается. При всасывании в эпителиоциты поступает лишь витамин В12, а внутренний фактор освобождается. Витамин В12 поступает с кровью в костный мозг, где влияет на гемопоэз, и в печень, где может депонироваться. Нарушение процесса всасывания при различных заболеваниях желудочно-кишечного тракта может служить причиной дефицита витамина В12 и нарушений в гемопоэзе.

Читайте также:

Пожалуйста, не занимайтесь самолечением!
При симпотмах заболевания - обратитесь к врачу.