Лейкопоэз его нервная и гуморальная регуляция

Нервная регуляция кроветворения. Количество образующихся эритроцитов, лейкоцитов и тромбоцитов соответствует количеству разрушающихся клеток, так что общее их число остается постоянным. Органы системы крови (костный мозг, селезенка, печень, лимфатические узлы) содержат большое количество рецепторов, раздражение которых вызывает различные физиологические реакции. Таким образом, имеется двусторонняя связь этих органов с нервной системой: они получают сигналы из центральной нервной системы (которые регулируют их состояние) и в свою очередь являются источником рефлексов, изменяющих состояние их самих и организма в целом.

Гуморальная регуляция эритропоэза. При кислородном голодании, вызванном любыми причинами, число эритроцитов в крови возрастает. При кислородном голодании, вызванном потерей крови, значительным разрушением эритроцитов в результате отравления некоторыми ядами, вдыханием газовых смесей с низким содержанием кислорода, продолжительным пребыванием на больших высотах, в организме возникают стимулирующие кроветворение вещества — эритропоэтины, представляющие собой гликопротеиды небольшой молекулярной массы. Регуляция выработки эритропоэтинов, а значит, и количества эритроцитов в крови осуществляется с помощью механизмов обратной связи. Гипоксия стимулирует выработку зритропоэтинов в почках (возможно, и в других тканях). Они, воздействуя на костный мозг, стимулируют эритропоэз. Увеличение числа эритроцитов улучшает транспортировку кислорода и тем самым уменьшает состояние гипоксии, что, в свою очередь, тормозит выработку эритропоэтинов. В стимуляции зритропоэза определенную роль играет нервная система. При раздражении нервов, идущих к костному мозгу, увеличивается содержание эритроцитов в крови.

Гуморальная регуляция лейкопоэза. Продукция лейкоцитов стимулируется лейкопоэтинами, появляющимися после быстрого удаления из крови большого количества лейкоцитов. Химическая природа и место образования в организме лейкопоэтинов еще не изучены. На лейкопоэз оказывают стимулирующее влияние нуклеиновые кислоты, продукты распада тканей, возникающие при их повреждении и воспалении, и некоторые гормоны. Так, под действием гормонов гипофиза — адренокортикотропного гормона и гормона роста — повышается количество нейтрофилов и уменьшается число эозинофилов в крови. Механизм действия лейкопоэтинов аналогичен влиянию эритропоэтинов, т.е. они стимулируют дифференциацию основных клеток костного мозга в сторону гранулоцитопоэза. Химический состав лейкопоэтинов не изучен.

В стимуляции лейкопоэза большую роль играет нервная система. Раздражение симпатических нервов вызывает увеличение нейтрофильных лейкоцитов в крови. Длительное раздражение блуждающего нерва вызывает перераспределение лейкоцитов в крови: их содержание нарастает в крови мезентериальных сосудов и убывает в крови периферических сосудов; раздражение и эмоциональное возбуждение увеличивают количество лейкоцитов в крови. После еды увеличивается содержание лейкоцитов в крови, циркулирующей в сосудах. В этих условиях, а также при мышечной работе и болевых раздражениях в кровь поступают лейкоциты, находящиеся в селезенке и синусах костного мозга.

Регуляция тромбоцитопоэза. Установлено также, что продукция тромбоцитов стимулируется тромбоцитопоэтинами. Они появляются в крови после кровотечения. В результате их действия через несколько часов после значительной острой кровопотери число кровяных пластинок может увеличиться вдвое. Тромбоцитопоэтины обнаружены в плазме крови здоровых людей и при отсутствии кровопотери. Химическая природа и место образования в организме тромбоцитопоэтинов еще не изучены.

6. Тромбоциты: их строение, количество, функции

Тромбоциты - форменные элементы крови, участвующие в обеспечении гемостаза. Тромбоциты - мелкие безъядерные клетки, овальной или округлой формы; их диаметр 2-4 мкм. Образуются тромбоциты в костном мозге из мегакариоцитов. В спокойном состоянии (в кровотоке) тромбоциты имеют дисковидную форму. При активации тромбоциты приобретают сферическую форму и образуют специальные выросты (псевдоподии). С помощью подобных выростов кровяные пластинки могут соединяться друг с другом (агрегировать) и прилипать к поврежденной сосудистой стенке (способность к адгезии).Тромбоциты обладают свойством выбрасывать при стимуляции содержимое своих гранул, в которых содержатся факторы свертывания, фермент пероксидаза, серотонин, ионы кальция - Са2*, аденозиндифосфат (АДФ), фактор Виллебранда, тромбоцитарный фибриноген, фактор роста тромбоцитов. Некоторые факторы свертывания, антикоагулянты и другие вещества тромбоциты могут переносить на своей поверхности. Свойства тромбоцитов, взаимодействующих с компонентами стенок сосудов, позволяют образовывать временный сгусток и обеспечивать остановку кровотечения в мелких сосудах (тромбоцитарно-сосудистый гемостаз).Главная функция тромбоцитов - участие в процессе свёртывания крови (гемостазе) - важной защитной реакции организма, предотвращающей большую кровопотерю при ранении сосудов. Оно характеризуется следующими процессами:адгезия, агрегация, секреция, ретракция, спазм мелких сосудов и вязкий метаморфоз, образование белого тромбоцитарного тромба в сосудах микроциркуляции с диаметром до 100 нм. Другая функция тромбоцитов ангиотрофическая - питание эндотелия кровеносных сосудов. Относительно недавно установлено также, что тромбоциты играют важнейшую роль в заживлении и регенерации поврежденных тканей, освобождая из себя в раневые ткани факторы роста, которые стимулируют деление и рост поврежденных клеток. Факторы роста представляют собой полипептидные молекулы различного строения и назначения.К важнейшим факторам роста относятся тромбоцитарный фактор роста (PDGF), трансформирующий фактор роста (TGF-β), фактор роста эндотелия сосудов (VEGF), фактор роста эпителия (EGF), фактор роста фибробластов (FGF), инсулиноподобный фактор роста (IGF). Уровень тромбоцитов подвержен естественным колебаниям во время менструального цикла, поднимаясь после овуляции и снижаясь после начала менструации. Он зависит также от питания больного, понижаясь при тяжелом дефиците железа, дефиците фолиевой кислоты и дефиците витамина В12.Тромбоциты входят в число показателей острой фазы воспаления; при сепсисе, опухолях, кровотечениях, легком дефиците железа может возникать вторичный тромбоцитоз. Предполагается, что выработка тромбоцитов при этом неопасном состоянии стимулируется ИЛ-3, ИЛ-6 и ИЛ-11. Напротив, тромбоцитоз при хронических миелопролиферативных заболеваниях (эритремия, хронический миелолейкоз, сублейкемический миелоз, тромбоцитемия) может приводить к тяжелым кровотечениям или тромбозам. Бесконтрольная выработка тромбоцитов у этих больных связана с клональной патологией стволовой кроветворной клетки, затрагивающей все клетки-предшественники.Временное повышение количества тромбоцитов можно наблюдать после интенсивной физической нагрузки. Небольшое физиологическое снижение уровня тромбоцитов отмечается у женщин во время менструации. Умеренное снижение количества тромбоцитов может иногда наблюдаться у практически здоровых беременных женщин. Клинические признаки снижения количества тромбоцитов - тромбоцитопении (повышенная склонность к внутрикожным кровоизлияниям, кровоточивость десен, меноррагии и т.п.) - обычно имеют место только в том случае, когда количество тромбоцитов снижается ниже 50х103 клеток/мкл.Патологическое снижение количества тромбоцитов происходит вследствие их недостаточного образования при ряде заболеваний системы крови, а также при повышенном потреблении или разрушении тромбоцитов (аутоиммунные процессы). После массивных кровотечений с последующими внутривенными вливаниями плазмозаменителей количество тромбоцитов может снизиться до 20-25% от исходной величины вследствие разведения.Повышение количества тромбоцитов (тромбоцитозы) может быть реактивным, сопровождающим определенные патологические состояния (как результат продукции иммуномодуляторов, стимулирующих образование тромбоцитов) или первичным (вследствие дефектов в системе гемопоэза).

Дата публикования: 2015-09-17 ; Прочитано: 13915 | Нарушение авторского права страницы

Лейкопоэз – продукция лейкоцитов в органах кроветворения. Различают миелопоэз – созревание гранулоцитов и моноцитов и лимфопоэз – процесс образования лимфоцитов.

Физиология лейкопоэза. Стволовая кроветворная клетка (пСКК, или КРКМ) в процессе разви­тия, деления и дифференцировки через ряд стадий переходит в колониеобразующую единицу смешанной КОЕс, или ГЭММ-КОЕ (КОЕ миелоидного ряда - смешанные колонии из гранулоцитов, эритроцитов, макрофагов и мегакариоцитов), которая дает начало полипотентным КОЕ. Из них мо­гут образовываться КОЕ всех лейкоцитов, кроме лимфоцитов. ГЭММ-КОЕ в процессе деления и дифференцировки приводит к образованию клетки-предшественницы миелопоэза, которая явл. родонача­льницей нейтрофильных гранулоцитов и моноцитов (КОЕ-ГМ).

Пре-Т-лимфоцит в своем развитии проходит стадии Т-лимфобласта и Т-пролимфоцита, из которого формируется зрелый Т-лимфоцит, способ­ный под воздействием антигена переходить в иммунобласт, а затем в активный Т-лимфоцит, принимающий участие в иммунном ответе. Формирование В-лимфоцитов: родоначальная клетка пре-В-лимфоцит в процессе деления и дифференцировки превращ. в В-лимфобласт, затем в В-пролимфоцит, который, созревая, становится зрелым В-лимфоцитом. При действии антигена В-лимфоцит активируется и через стадии В-иммунобласта, плазмобласта и проплазмоцита переходит в плазмоцит, способный синтезировать строго специфические антитела или иммуноглобулины.

Гуморальная регуляция. Все стадии лейкопоэза регулируются гуморальными факторами, относящимися к цитокинам. Главными из них являются колониестимулирующие (КСФ) и гемопоэтические факторы. Все они поддерживают дифференцировку различных кроветворных колоний, начиная с полипотентной стволовой клетки. Важная роль в регуляции лейкопоэза отводится интерлейкинам. В частности, ИЛ-3 не только стимулирует гемопоэз, но и является фактором роста и развития базофилов. ИЛ-5 необходим для роста и развития эозинофилов. Многие интерлейкины (ИЛ-2, ИЛ-4, ИЛ-6, ИЛ-7, ИЛ-10 и др.) служат факторами роста и дифференцировки Т- и В-лимфоцитов.

1) Регуляция миелопоэза. Стимуляторами миелопоэза явл. лейкопоэтины (КСФ). Источники образования КФС у человека – моноцитарно-макрофагальные клетки крови и костного мозга, клетки плаценты, лимфоциты, клетки стромы кроветворных органов и сосудистой стенки. Действие КСФ строго специфично и направлено на стимуляцию гранулоцитопоэза и моноцитопоэза. Для стимуляции продукции моноцитов достаточно низких конц. КСФ, а для активации гранулоцитарного ряда - высокие конц. КСФ.

Ингибиторы миелопоэзалактоферрин, содер­жащийся в мембране макрофагов, кислый изоферритин, а также гранулоцитарные кейлоны. Кейлоны являются пептидами с Mr около 1000 Да. Гранулоцитарные кейлоны избирательно тормозят пролиферативную активность миелобластов и промиелоцитов. В физиолог. условиях тем­пы гранулоцитопоэза определяются равновесием КСФ и кейлонов.

На кинетику лейкоцитов в условиях стрессорных ситуаций существенное влияние оказывают гормоны адаптации — АКТГ, глюкокортикоиды, катехола­мины. Катехоламины увеличивают выход лейкоцитов из физиолог. депо крови. Однако глюкокор­тикоиды тормозят митотическую активность гранулоцитов в костном мозге и ускоряют процессы старения и созревания гранулоцитов. Важнейшими стимуляторами лейкопоэза явля­ются андрогены, воздействующие на стволовые клетки. Однако учитывая анаболические эффекты андрогенов, предполагают их влияние и на пролифе­ративную активность всех клеточных элементов ми­тотического пула костного мозга.

2) Регуляция лимфопоэза. Известно несколько ме­ханизмов регуляции, в частности за счет лимфокинов, интенсивно продуцируемых на фоне антигенной сти­муляции организма. Следует также отметить роль тканевоспецифических ингибиторов клеточного деле­ния — лимфоцитарных кейлонов, продуцируемых се­лезенкой, тимусом, лимфобластами. Иммунодепрессивное действие кейлонов связано с подавлением синтеза ДНК и пролиферации лимфоцитарных клеток. Процессы дифференцировки лимфоцитов, начи­ная от стволовых клеток до зрелых Т- и В-лимфоцитов регулируют лимфопоэтинами.

Выявлена определенная избирательность гормо­нальных и гуморальных влияний на отдельные субпопуляции лимфоцитов. Так, простагландин Е1 усили­вает пролиферацию и дифференцировку Т-лимфоцитов в стимулированных антигеном культурах клеток тимуса и селезенки, ингибируя при этом активность В-лимфоцитов. Простагландин Е2 подавляет мито­генный ответ Т-клеток, но не В-лимфоцитов.

Под влиянием избыточных концентраций глюко­кортикоидов органы лимфоидной ткани (тимус, селезенка, лимфат. узлы) умен. в разме­рах и весе. Механизмы лимфопенического действия глюкокортикоидов вкл. уменьшение поступле­ния лимфоцитов в кровь из депо, уменьшение кол-ва незрелых предшественников лимфоцитов. Глюкокортикоиды задерживают деление средних и малых лимфоцитов, ускоряют созревание больших лимфоцитов; некоторые фракции лимфоцитов не за­висят от глюкокортикоидов.

Лимфопеническое и иммунодепрессорное дей­ствие оказывают α2-глобулин, липопротеины с низкой плотностью (α2-липопротеин, β2-фетопротеин), ненасыщенные жирные кислоты, С- реактивный белок.

Нервная регуляция. Нервные напряжения, эмоциональные состояния вызывают увеличение кол-ва лейкоцитов. Раздражение симпатических нервов увеличивает количество нейтрофилов в крови. Раздражение блуждающего нерва ведет к уменьшению количества лейкоцитов.

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим.


Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ - конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой.

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций.


Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰).

У взрослых процесс образования эритроцитов – эритропоэз, происходит в красном костном мозге плоских костей. Они образуются из ядерных стволовых клеток, проходя стадии проэритробласта, эритробласта, нормобласта, ретикулоцитов II, III, IV. Этот процесс происходит в эритробластических островках, содержащих эритроидные клетки и макрофаги костного мозга. Макрофаги выполняют следующие функции:

Фагоцитируют вышедшие из нормобластов ядра.

Обеспечивают эритробласты ферритином, содержащим железо.

Создают благоприятные условия для развития эритробластов.

Созревание эритроцитов занимает около 5 дней. Из костного мозга в кровь поступают ретикулоциты, дозревающие до эритроцитов в течение суток. По их количеству в крови судят об интенсивности эритропоэза. В сутки образуется 60-80 тысяч эритроцитов на каждый микролитр крови. Т.е. ежесуточно обновляется около 1,5% эритроцитов.

Основным гуморальным регулятором эритропоэза является гормон эритропоэтин. В основном он образуется в почках. Небольшое его количество синтезируется макрофагами. Интенсивность синтеза эритропоэтина зависит от содержания кислорода в тканях почек. При их достаточной оксигенации ген, регулирующий синтез эритропоэтина, блокируется. При недостатке кислорода, он активируется ферментами. Начинается усиленный синтез эритропоэтина. Стимулируют его синтез в почках адреналин, норадреналин, глюкокортикоиды, андрогены. Поэтому количество эритроцитов в крови возрастает в горах, при кровопотерях, стрессе и т.д. Торможение эритропоэза осуществляется его ингибиторами. Они образуются при увеличении количества эритроцитов выше нормы, повышенном содержании кислорода в крови. Эстрогены также тормозят эритропоэз. Поэтому в крови женщин эритроцитов меньше, чем у мужчин. Важное значение для эритропоэза имеют витамины В6, В12 и фолиевая кислота. Витамин В12 называют внешним фактором кроветворения. Однако для его всасывания в кишечнике необходим внутренний фактор Кастла, вырабатываемый слизистой желудка. При его отсутствии развивается злокачественная анемия.

Гранулоциты и моноциты образуются из миелобластов через стадии промиелоцита, эозинофильных, нейтрофильных, базофильных миелоцитов или монобластов. Из монобластов сразу образуется моноциты, а из миелоцитовмелоцитов метамиелоциты, затем палочкоядерные гранулоциты и, наконец, сегментоядерные клетки. Гранулоцитопоэз стимулируют гранулоцитарные колониестимуцлирующие факторы (КСФ-Г), а моноцитопоэз – моноцитарный колониестимулирующий фактор (КСФ-М). Угнетают гранулоцитопоэз кейлоны, выделяющиеся зрелыми нейтрофилами. Кейлоны тормозят синтез ДНК в стволовых клетках белого ростка костного мозга. Задерживают созревание гранулоцитов и моноцитов простагландины Е, интерфероны.

Особо важную роль в регуляции эритропоэза играют специфические вещества, получившие наименование эритропоэтины обнаружены в крови здоровых людей, что позволяет считать их физиологическими регуляторами эритропоэза. Эритропоэтины оказывают действие непосредственно на клетки-предшественники эритроидного ряда (КОЕ-Э – колониеобразующая единица эритроцитарная). Функции эритропоэтинов сводятся к следующему: 1) ускорение и усиление перехода стволовых клеток костного мозга в эритробласты; 2) увеличение числа митозов клеток эритроидного ряда; 3) исключение одного или нескольких циклов митотических делений; 4) ускорение созревания неделящихся клеток — нормобластов, ретикулоцитов.

На эритропоэз действуют соединения, синтезируемые моноцитами, макрофагами, лимфоцитами и другими клетками, получившие название «интерлейкины

Своеобразные изменения претерпевают лейкоциты в разные стадии адаптационного синдрома, что обусловлено действием гормонов гипофиза (АКТГ) и надпочечника (адреналина, кортизона, дезоксигидрокортизона). Уже через несколько часов после стрессорного воздействия развивается лейкоцитоз, который обусловлен выбросом нейтрофилов, моноцитов и лимфоцитов из депо крови. При этом число лейкоцитов не превышает 16—18 тыс. в 1 мкл. В стадии резистентности число и состав лейкоцитов мало отличаются от нормы. В стадии истощения развивается лейкоцитоз, сопровождающийся увеличением числа нейтрофилов и снижением числа лимфоцитов и эозинофилов.

Нервная регуляция кроветворения. Количество образующихся эритроцитов, лейкоцитов и тромбоцитов соответствует количеству разрушающихся клеток, так что общее их число остается постоянным. Органы системы крови (костный мозг, селезенка, печень, лимфатические узлы) содержат большое количество рецепторов, раздражение которых вызывает различные физиологические реакции. Таким образом, имеется двусторонняя связь этих органов с нервной системой: они получают сигналы из центральной нервной системы (которые регулируют их состояние) и в свою очередь являются источником рефлексов, изменяющих состояние их самих и организма в целом.

Гуморальная регуляция эритропоэза. При кислородном голодании, вызванном любыми причинами, число эритроцитов в крови возрастает. При кислородном голодании, вызванном потерей крови, значительным разрушением эритроцитов в результате отравления некоторыми ядами, вдыханием газовых смесей с низким содержанием кислорода, продолжительным пребыванием на больших высотах, в организме возникают стимулирующие кроветворение вещества — эритропоэтины, представляющие собой гликопротеиды небольшой молекулярной массы. Регуляция выработки эритропоэтинов, а значит, и количества эритроцитов в крови осуществляется с помощью механизмов обратной связи. Гипоксия стимулирует выработку зритропоэтинов в почках (возможно, и в других тканях). Они, воздействуя на костный мозг, стимулируют эритропоэз. Увеличение числа эритроцитов улучшает транспортировку кислорода и тем самым уменьшает состояние гипоксии, что, в свою очередь, тормозит выработку эритропоэтинов. В стимуляции зритропоэза определенную роль играет нервная система. При раздражении нервов, идущих к костному мозгу, увеличивается содержание эритроцитов в крови.

Гуморальная регуляция лейкопоэза. Продукция лейкоцитов стимулируется лейкопоэтинами, появляющимися после быстрого удаления из крови большого количества лейкоцитов. Химическая природа и место образования в организме лейкопоэтинов еще не изучены. На лейкопоэз оказывают стимулирующее влияние нуклеиновые кислоты, продукты распада тканей, возникающие при их повреждении и воспалении, и некоторые гормоны. Так, под действием гормонов гипофиза — адренокортикотропного гормона и гормона роста — повышается количество нейтрофилов и уменьшается число эозинофилов в крови. Механизм действия лейкопоэтинов аналогичен влиянию эритропоэтинов, т.е. они стимулируют дифференциацию основных клеток костного мозга в сторону гранулоцитопоэза. Химический состав лейкопоэтинов не изучен.

В стимуляции лейкопоэза большую роль играет нервная система. Раздражение симпатических нервов вызывает увеличение нейтрофильных лейкоцитов в крови. Длительное раздражение блуждающего нерва вызывает перераспределение лейкоцитов в крови: их содержание нарастает в крови мезентериальных сосудов и убывает в крови периферических сосудов; раздражение и эмоциональное возбуждение увеличивают количество лейкоцитов в крови. После еды увеличивается содержание лейкоцитов в крови, циркулирующей в сосудах. В этих условиях, а также при мышечной работе и болевых раздражениях в кровь поступают лейкоциты, находящиеся в селезенке и синусах костного мозга.

Регуляция тромбоцитопоэза. Установлено также, что продукция тромбоцитов стимулируется тромбоцитопоэтинами. Они появляются в крови после кровотечения. В результате их действия через несколько часов после значительной острой кровопотери число кровяных пластинок может увеличиться вдвое. Тромбоцитопоэтины обнаружены в плазме крови здоровых людей и при отсутствии кровопотери. Химическая природа и место образования в организме тромбоцитопоэтинов еще не изучены.

Эритропоез –процесс образования эритроцитов в организме, который связан с эритрином. Эритрин – система красной крови, включающая периферическую кровь, органы эритропоэза и эритроциторазрушения.

Важнейшим регулятором эритропоэза является эритропоэтин. Эритропоэтин относится к группе кислых гликопротеидов. Основным органом синтеза эритропоэтина являются почки. Местом образования почечного эритропоэтина является ЮГА. В небольших концентрациях он вырабатывается печенью и слюнными железами. Эритропоэтин обнаруживается в плазме крови здоровых людей. Выделяется эритропоэтин с мочой, а также в составе слюны и желудочного сока.

Основным фактором, стимулирующим образование эритропоэтина, является гипоксия различного происхождения. Можно выделить несколько механизмов:

*прямое воздействие крови с пониженным парциальным напряжением О2 на клетки ЮГА и канальцевый аппарат, продуцирующие эритропоэтин.

*Опосредованный эффект через активацию гипоталамо - гипофизарно –надпочечниковой системы условии гипоксии, усиление выброса гормонов адаптации – глюкокортикоидов, катехоламинов, стимулирующих гуморальным путем образование эритропоэтина в почках и усиление процессов эритропоэза в костном мозге.

Важнейшими модуляторами эритропоэза являются гормоны:

1. тропные гормоны аденогипофиза (АКТГ, ТТГ, ГТГ) оказывают стимулирующее воздействие на эритропоэз.

2. соматотропин - оказывают стимулирующее воздействие на эритропоэз.

3. гипофизарный и плацентарный пролактин - оказывают стимулирующее воздействие на эритропоэз.

4. тиреоидные гормоны.

5. инсулин и его антогонист – ингибитор.

Регуляторами эритропоэза наряду с гормонами являются витамины и микроэлементы. Микроэлементы (железо, медь, марганец, и цинк) необходимы для :

А) созревания эритробластов, дифференцировки их в нормоциты.

Б) синтеза гемма и глобина.

В) стимуляции образования эритропоэтинов.

Г) повышение обмена веществ в кроветворных органах.

Велика роль в регуляции эритропоэза фолиевой кислоты и витамина В12. Суточная потребность составляет 1 – 2мг.

Фолиевая кислота стимулирует процессы биосинтеза ДНК в клетках костного мозга. При недостатке фолиевой кислоты формируется мегалобластический тип кроветворения.

Витамин В12 - кобаламин, суточная потребность его составляет около 0.003 мг для взрослого человека. Основным местом депонирования является печень. Недостаток этого витамина приводит к развитию макроцитарной, мегалобластической анемии.

Лейкопоэз - процесс клеточных превращений, которые происходит в органах кроветворения и в результате которых появляются зрелые лейкоциты периферической крови.

Различают милопоез – созревание гранулоцитов и моноцитов и лимфопоэз – процесс образования лимфоцитов.

Важную роль в регуляции миелопоэза отводится лейкопоэтинам, или так называемому колониестимулирущего фактору.

Гуморальные и клеточные ингибиторы миелопоэза:

2. кислый изоферритин

Имеет место влияние гормонов на миелопоэз:

1. АКТТ – гормоны адаптации, катехоламины, глюкокортикоиды.

2. СТГ – действие на систему кроветворения противоречиво

3. Андрогены – действуют на стволовые клетки.

Важнейшими регуляторами лимфопоэза являются антитела, способные усиливать или подавлять образование лимфоцитов. Важна роль тканеспецифических ингибиторов клеточного деления – лимфоцитарных кейлонов.

Важная роль в регуляции лимфопоэза отводится гуморальным факторам – лимфопоэтинам и гормонам. Выявлена определенная избирательность гормональных влияний на отдельные субпопуляции лимфоцитов. Так простогландин Е1 усиливает пролиферацию и дифференцировку Т – лимфоцитов, ингибирую при этом активность В – лимфоцитов. Простогландин Е2 подавляет митогенный ответТ – клеток, но не В – лимфоцитов.

Под влиянием избыточных концентраций глюкокортикоидов органы лимфоидной ткани : тимус, селезенка, лимфатические узлы – атрофируется.













  • Физиология
  • История физиологии
  • Методы физиологии

Гемопоэз

Гемопоэз — процесс образования форменных элементов крови: эритроцитов (эритропоэз), лейкоцитов (лейкопоэз) и тромбоцитов (тромбоцитопоэз).

У взрослых животных он совершается в красном костном мозге, где образуются эритроциты, все зернистые лейкоциты, моноциты, тромбоциты, В-лимфоциты и предшественники Т-лимфоцитов. В тимусе проходит дифференцировка Т-лимфоцитов, в селезенке и лимфатических узлах — дифференцировка В-лимфоцитов и размножение Т-лимфоцитов.

Общей родоначальной клеткой всех клеток крови является полипотентная стволовая клетка крови, которая способна к дифференцировке и может дать начало роста любым форменным элементам крови и способна к длительному самоподдержанию. Каждая стволовая кроветворная клетка при своем делении превращается в две дочерние клетки, одна из которых включается в процесс пролиферации, а вторая идет на продолжение класса полипотентных клеток. Дифференцировка стволовой кроветворной клетки происходит под влиянием гуморальных факторов. В результате развития и дифференцировки разные клетки приобретают морфологические и функциональные особенности.

Эритропоэз проходит в миелоидной ткани костного мозга. Средняя продолжительность жизни эритроцитов составляет 100-120 сут. В сутки образуется до 2 * 10 11 клеток.


Рис. Регуляция эритропоэза

Регуляция эритропоэза осуществляется эритропоэтинами, образующимися в почках. Эритропоэз стимулируется мужскими половыми гормонами, тироксином и катехоламинами. Для образования эритроцитов нужны витамин В12 и фолиевая кислота, а также внутренний фактор кроветворения, который образуется в слизистой оболочке желудка, железо, медь, кобальт, витамины. В нормальных условиях продуцируется небольшое количество эритропоэтина, который достигает клеток красного мозга и взаимодействует с рецепторами эритропоэтина, в результате чего изменяется концентрация в клетке цАМФ, что повышает синтез гемоглобина. Стимуляция эритропоэза осуществляется также под влиянием таких неспецифических факторов, как АКТГ, глюкокортикоиды, катехоламины, андрогены, а также при активации симпатической нервной системы.


Разрушаются эритроциты путем внутриклеточного гемолиза мононуклеарами в селезенке и внутри сосудов.

Лейкопоэз происходит в красном костном мозге и лимфоидной ткани. Этот процесс стимулируется специфическими ростовыми факторами, или лейкопоэтинами, которые воздействуют на определенные предшественники. Важную роль в лейкопоэзе играют интерлейкины, которые усиливают рост базофилов и эозинофилов. Лейкопоэз также стимулируется продуктами распада лейкоцитов и тканей, микроорганизмами, токсинами.

Тромбоцитопоэз регулируется тромбоцитопоэтинами, образующимися в костном мозге, селезенке, печени, а также интерлейкинами. Благодаря тромбоцитопоэтинам регулируется оптимальное соотношение между процессами разрушения и образования кровяных пластинок.

Гемоцитопоэз (гемопоэз, кроветворение) - совокупность процессов преобразования стволовых гемопоэтических клеток в разные типы зрелых клеток крови (эритроцитов — эритропоэз, лейкоцитов — лейкопоэз и тромбоцитов — тромбоцитопоэз), обеспечивающих их естественную убыль в организме.

Современные представления о гемопоэзе, включающие пути дифференциации полипотентных стволовых гемопоэтических клеток, важнейшие цитокины и гормоны, регулирующие процессы самообновления, пролиферации и дифференциации полипотентных стволовых клеток в зрелые клетки крови представлены на рис. 1.

Полипотентные стволовые гемопоэтические клетки находятся в красном костном мозге и способны к самообновлению. Они могут также циркулировать в крови вне органов кроветворения. ПСГК костного мозга при обычной дифференциации дают начало всем типам зрелых клеток крови — эритроцитам, тромбоцитам, базофилам, эозинофилам, нейтрофилам, моноцитам, В- и Т-лимфоцитам. Для поддержания клеточного состава крови на должном уровне в организме человека ежесуточно образуется в среднем 2,00 • 10 11 эритроцитов, 0,45 • 10 11 нейтрофилов, 0,01 • 10 11 моноцитов, 1,75 • 10 11 тромбоцитов. У здоровых людей эти показатели достаточно стабильны, хотя в условиях повышенной потребности (адаптация к высокогорью, острая кровопотеря, инфекция) процессы созревания костномозговых предшественников ускоряются. Высокая пролиферативная активность стволовых гемопоэтических клеток перекрывается физиологической гибелью (апоптозом) их избыточного потомства (в костном мозге, селезенке или других органах), а в случае необходимости и их самих.


Рис. 1. Иерархическая модель гемоцитопоэза, включающая пути дифференциации (ПСГК) и важнейшие цитокины и гормоны, регулирующие процессы самообновления, пролиферации и дифференциации ПСГК в зрелые клетки крови: А — миелоидная стволовая клетка (КОЕ-ГЭММ), являющаяся предшественницей моноцитов, гранулоцитов, тромбоцитов и эротроцитов; Б — лимфоидная стволовая клетка-предшественница лимфоцитов

Подсчитано, что каждый день в организме человека теряется (2-5) • 10 11 клеток крови, которые замешаются на равное количество новых. Чтобы удовлетворить эту огромную постоянную потребность организма в новых клетках, гемоцитопоэз не прерывается в течение всей жизни. В среднем у человека за 70 лет жизни (при массе тела 70 кг) образуется: эритроцитов — 460 кг, гранулоцитов и моноцитов — 5400 кг, тромбоцитов — 40 кг, лимфоцитов — 275 кг. Поэтому кроветворные ткани рассматриваются как одни из наиболее митотически активных.

Современные представления о гемоцитопоэзе базируются на теории стволовой клетки, основы которой были заложены русским гематологом А.А. Максимовым в начале XX в. Согласно данной теории, все форменные элементы крови происходят из единой (первичной) полипотентной стволовой гемопоэтической (кроветворной) клетки (ПСГК). Эти клетки способны к длительному самообновлению и в результате дифференциации могут дать начало любому ростку форменных элементов крови (см. рис. 1.) и одновременно сохранять их жизнеспособность и свойства.

Стволовые клетки (СК) являются уникальными клетками, способными к самообновлению и дифференцировке не только в клетки крови, но и в клетки других тканей. По происхождению и источнику образования и выделения СК разделяют на три группы: эмбриональные (СК эмбриона и тканей плода); региональные, или соматические (СК взрослого организма); индуцированные (СК, полученные в результате репрограммирования зрелых соматических клеток). По способности к дифференцировке выделяют тоти-, плюри-, мульти- и унипотентные СК. Тотипотентная СК (зигота) воспроизводит все органы эмбриона и структуры, необходимые для его развития (плаценту и пуповину). Плюрипотентная СК может быть источником клеток, производных любого из трех зародышевых листков. Мульти (поли) потентная СК способна образовывать специализированные клетки нескольких типов (например клетки крови, клетки печени). Унипотентная СК в обычных условиях дифференцируется в специализированные клетки определенного типа. Эмбриональные СК являются плюрипотентными, а региональные — полипотентными или унипотентными. Частота встречаемости ПСГК составляет в среднем 1:10 000 клеток в красном костном мозге и 1:100 000 клеток в периферической крови. Плюрипотентные СК могут быть получены в результате репрограммирования соматических клеток различного типа: фибробластов, кератиноцитов, меланоцитов, лейкоцитов, β-клеток поджелудочной железы и другие, с участием факторов транскрипции генов или микроРНК.

Все СК обладают рядом общих свойств. Во-первых, они недифференцированы и не располагают структурными компонентами для выполнения специализированных функций. Во- вторых, они способны к пролиферации с образованием большого числа (десятков и сотен тысяч) клеток. В-третьих, они способны к дифференцировке, т.е. процессу специализации и образованию зрелых клеток (например, эритроцитов, лейкоцитов и тромбоцитов). В-четвертых, они способны к асимметричному делению, когда из каждой СК образуются две дочерние, одна из которых идентична родительской и остается стволовой (свойство самообновления СК), а другая дифференцируется в специализированные клетки. Наконец, в-пятых, СК могут мигрировать в очаги повреждения и дифференцироваться в зрелые формы поврежденных клеток, способствуя регенерации тканей.

Различают два периода гемоцитопоэза: эмбриональный — у эмбриона и плода и постнатальный — с момента рождения и до конца жизни. Эмбриональное кроветворение начинается в желточном мешке, затем вне его в прекардиальной мезенхиме, с 6-недельного возраста оно перемещается в печень, а с 12 — 18-недельного возраста — в селезенку и красный костный мозг. С 10-недельного возраста начинается образование Т-лимфоцитов в тимусе. С момента рождения главным органом гемоцитопоэза постепенно становится красный костный мозг. Очаги кроветворения имеются у взрослого человека в 206 костях скелета (грудине, ребрах, позвонках, эпифизах трубчатых костей и др.). В красном костном мозге происходит самообновление ПСГК и образование из них миелоидной стволовой клетки, называемой также колониеобразующей единицей гранулоцитов, эритроцитов, моноцитов, мегакариоцитов (КОЕ-ГЭММ); лимфоидную стволовую клетку. Мислоидная полиолигопотентная стволовая клетка (КОЕ-ГЭММ) может дифференцироваться: в монопотентные коммитированные клетки — предшественницы эритроцитов, называемые также бурстобразующей единицей (БОЕ-Э), мегакариоцитов (КОЕ- Мгкц); в полиолигопотентные коммитированные клетки гранулоцитов-моноцитов (КОЕ-ГМ), дифференцирующиеся в монопотентные предшественницы гранулоцитов (базофилы, нейтрофилы, эозинофилы) (КОЕ-Г), и предшественницы моноцитов (КОЕ-М). Лимфоидная стволовая клетка является предшественницей Т- и В- лимфоцитов.

В красном костном мозге человека гемоцитопоэз может происходить только в условиях нормального гемоцитопоэзиндуцирующего микроокружения (ГИМ). В формировании ГИМ принимают участие различные клеточные элементы, входящие в состав стромы и паренхимы костного мозга. ГИМ формируют Т-лимфоциты, макрофаги, фибробласты, адипоциты, эндотелиоциты сосудов микроциркуляторного русла, компоненты экстрацеллюлярного матрикса и нервные волокна. Элементы ГИМ осуществляют контроль за процессами кроветворения как с помощью продуцируемых ими цитокинов, факторов роста, так и благодаря непосредственным контактам с гемопоэтическими клетками. Структуры ГИМ фиксируют стволовые клетки и другие клетки-предшественницы в определенных участках кроветворной ткани, передают им регуляторные сигналы, участвуют в их метаболическом обеспечении.

Гемоцитопоэз контролируется сложными механизмами, которые могут поддерживать его относительно постоянным, ускорять или тормозить, угнетая пролиферацию и дифферен- цировку клеток вплоть до инициирования апоптоза коммитированных клеток-предшественниц и даже отдельных ПСГК.

Регуляция гемопоэза — это изменение интенсивности гемопоэза в соответствии с меняющимися потребностями организма, осуществляемое посредством его ускорения или торможения.

Для полноценного гемоцитопоэза необходимо:

  • поступление сигнальной информации (цитокинов, гормонов, нейромедиаторов) о состоянии клеточного состава крови и ее функций;
  • обеспечение этого процесса достаточным количеством энергетических и пластических веществ, витаминов, минеральных макро- и микроэлементов, воды. Регуляция гемопоэза основана на том, что все типы взрослых клеток крови образуются из гемопоэтических стволовых клеток костного мозга, направление дифференцировки которых в различные типы клеток крови определяется действием на их рецепторы локальных и системных сигнальных молекул.

Роль внешней сигнальной информации для пролиферации и апоптоза СГК выполняют цитокины, гормоны, нейромедиаторы и факторы микроокружения. Среди них выделяют раннедействующие и позднедействующие, мультилинейные и монолинейные факторы. Одни из них стимулируют гемопоэз, другие — тормозят. Роль внутренних регуляторов плюрипотентности или дифференцировки СК играют транскрипционные факторы, действующие в ядрах клеток.

Специфичность влияния на стволовые кроветворные клетки обычно достигается действием на них не одного, а сразу нескольких факторов. Эффекты действия факторов достигаются посредством стимуляции ими специфических рецепторов кроветворных клеток, набор которых изменяется на каждом этапе дифференцировки этих клеток.

Раннедействующими ростовыми факторами, способствующими выживанию, росту, созреванию и превращению стволовых и других кроветворных клеток-предшественниц нескольких линий клеток крови, являются фактор стволовых клеток (ФСК), ИЛ-3, ИЛ-6, ГМ-КСФ, ИЛ-1, ИЛ-4, ИЛ-11, ЛИФ.

Развитие и дифференцировку клеток крови преимущественно одной линии предопределяют позднедействующие ростовые факторы — Г-КСФ, М-КСФ, ЭПО, ТПО, ИЛ-5.

Факторами, ингибирующими пролиферацию гемопоэтических клеток, являются трансформирующий ростовой фактор (TRFβ), макрофагальный воспалительный белок (МIР-1β), фактор некроза опухолей (ФНОа), интерфероны (ИФН(3, ИФНу), лактоферрин.

Действие цитокинов, факторов роста, гормонов (эритропоэтина, гормона роста и др.) на клетки гемоноэтических органов чаще реализуется всего через стимуляцию 1-TMS- и реже 7-ТМS-рецепторов плазматических мембран и реже — через стимуляцию внутриклеточных рецепторов (глюкокортикоиды, Т3иТ4).

Для нормального функционирования кроветворная ткань нуждается в поступлении ряда витаминов и микроэлементов.

Витамин B12 и фолиевая кислота нужны для синтеза нуклеопротеинов, созревания и деления клеток. Для защиты от разрушения в желудке и всасывания в тонком кишечнике витамину В12 нужен гликопротеин (внутренний фактор Кастла), который вырабатывается париетальными клетками желудка. При дефиците этих витаминов в пище или отсутствии внутреннего фактора Кастла (например, после хирургического удаления желудка) у человека развивается гиперхромная макроцитарная анемия, гиперсегментация нейтрофилов и снижение их продукции, а также тромбоцитопения. Витамин В6 нужен для синтеза тема. Витамин С способствует метаболизму (родиевой кислоты и участвует в обмене железа. Витамины Е и РР защищают мембрану эритроцита и гем от окисления. Витамин В2 нужен для стимуляции окислительно-восстановительных процессов в клетках костного мозга.

Железо, медь, кобальт нужны для синтеза гема и гемоглобина, созревания эритробластов и их дифференцирования, стимуляции синтеза эритропоэтина в почках и печени, выполнения газотранспортной функции эритроцитов. В условиях их дефицита в организме развивается гипохромная, микроцитарная анемия. Селен усиливает антиоксидантное действие витаминов Е и РР, а цинк необходим для нормального функционирования фермента карбоангидразы.

Читайте также:

Пожалуйста, не занимайтесь самолечением!
При симпотмах заболевания - обратитесь к врачу.