Нервная клетка состоящая из тела и отходящих от него отростков

(от греч. néuron — нерв)

неврон, нервная клетка, основная функциональная и структурная единица нервной системы (См. Нервная система); принимает сигналы, поступающие от рецепторов и др. Н., перерабатывает их и в форме нервных импульсов передаёт к эффекторным нервным окончаниям (См. Нервные окончания), контролирующим деятельность исполнительных органов (мышцы, клетки железы или др. Н.). Образование Н. происходит при эмбриональном развитии нервной системы: на стадии нервной трубки развиваются Нейробласты, которые затем дифференцируются в Н. (рис. 1). В процессе дифференцировки формируются специализированные части Н. (рис. 2), которые обеспечивают выполнение его функций. Для восприятия информации развились ветвящиеся отростки — дендриты, обладающие избирательной чувствительностью к определённым сигналам и имеющие на поверхности т. н. рецепторную мембрану. Процессы местного возбуждения и торможения с рецепторной мембраны, суммируясь, воздействуют на триггерную (пусковую) область — наиболее возбудимый участок поверхностной мембраны Н., служащий местом возникновения (генерации) распространяющихся биоэлектрических потенциалов (См. Биоэлектрические потенциалы). Для их передачи служит длинный отросток — Аксон, или осевой цилиндр, покрытый электровозбудимой проводящей мембраной. Достигнув концевых участков аксона, Импульс нервный возбуждает секреторную мембрану, вследствие чего из нервных окончаний секретируется физиологически активное вещество — Медиатор или нейрогормон (См. Нейрогормоны). Кроме структур, связанных с выполнением специфических функций, каждый Н., подобно др. живым клеткам, имеет ядро, которое вместе с околоядерной цитоплазмой образует тело клетки, или перикарион. Здесь происходит синтез макромолекул, часть которых транспортируется по аксоплазме (цитоплазме аксона) к нервным окончаниям.

Структура, размеры и форма Н. сильно варьируют. Сложное строение имеют Н. коры больших полушарий головного мозга (См. Кора больших полушарий головного мозга), мозжечка (См. Мозжечок), некоторых др. отделов центральной нервной системы. Для мозга позвоночных характерны мультиполярные Н. В таком Н. от клеточного тела отходят несколько дендритов и аксон, начальный участок которого служит триггерной областью. На клеточном теле мультиполярного Н. и его дендритах имеются многочисленные нервные окончания, образованные отростками др. Н. (рис. 3; см. Синапс (См. Синапсы)). В ганглиях беспозвоночных чаще встречаются униполярные Н., в которых клеточное тело несёт лишь торфическую функцию и имеет единственный, т. н. вставочный, отросток, соединяющий его с аксоном. У такого Н., по-видимому, может не быть настоящих дендритов и рецепцию синаптических сигналов осуществляют специализированные участки на поверхности аксона. Н. с двумя отростками называемыми биполярными; такими чаще всего бывают периферические чувствительные Н., имеющие один направленный наружу дендрит и один аксон. В зависимости от места, которое Н. занимает в рефлекторной дуге (См. Рефлекторная дуга), различают чувствительные (афферентные, сенсорные, или рецепторные) Н., получающие информацию из внешней среды или от рецепторных клеток; вставочные Н. (или интернейроны), которые связывают один Н. с другим; эффекторные (или эфферентные) Н., посылающие свои импульсы к исполнительным органам (например, мотонейроны, иннервирующие мышцы). Н. классифицируют также в зависимости от их химической специфичности, т. е. от природы физиологически активного вещества, которое выделяется нервными окончаниями данного Н. (например, холинергический Н. секретирует Ацетилхолин, пептидергический — то или иное вещество пептидной природы и т. д.). Разнообразие и сложность функций нервной системы зависят от числа составляющих её Н. (около 10 2 у коловратки и более чем 10 10 у человека). См. также Нейронная теория.

Лит.: Экклс Дж., Физиология нервных клеток, пер. с англ., М., 1959; Хиден Х., Нейрон, пер. с англ., в сборнике: функциональная морфология клетки, М., 1963; Механизмы деятельности центрального нейрона, М. — Л., 1966; Нервная клетка. Сб. ст., под ред. Н. В. Голикова, Л., 1966.


Рис. 1. Превращения нейробласта в нейрон в стенке нервной трубки (схема): а — деление зародышевой клетки; б — униполярный нейробласт; в — мультиполярный нейробласт; г, д — образование у аксона миелиновой оболочки.


Рис. 2. Схематическое изображение нейрона: 1 — дендриты; 2 — тело клетки; 3 — аксонный холмик (триггерная область); 4 — аксон; 5 — миелиновая оболочка; 6 — ядро шванновской клетки; 7 — перехват Ранвье; 8 — эффекторные нервные окончания. Пропорции между размерами частей нейрона изменены.


Рис. 3. Расположение синапсов на теле нейрона и его дендритах.

Сложность и многообразие функций нервной системы определяются взаимодействием между нейронами, которое, в свою очередь, представляет собой набор различных сигналов, передаваемых в рамках взаимодействия нейронов с другими нейронами или мышцами и железами. Сигналы испускаются и распространяются с помощью ионов, генерирующих электрический заряд (потенциал действия), который движется по телу нейрона.

Строение

Тело нервной клетки состоит из протоплазмы (цитоплазмы и ядра), снаружи ограничена мембраной из двойного слоя липидов (билипидный слой). Липиды состоят из гидрофильных головок и гидрофобных хвостов, расположены гидрофобными хвостами друг к другу, образуя гидрофобный слой, который пропускает только жирорастворимые вещества (напр. кислород и углекислый газ). На мембране находятся белки: на поверхности (в форме глобул), на которых можно наблюдать наросты полисахаридов (гликокаликс), благодаря которым клетка воспринимает внешнее раздражение, и интегральные белки, пронизывающие мембрану насквозь, в которых находятся ионные каналы.

Различается антероградный (от тела) и ретроградный (к телу) аксонный транспорт.


Аксон — обычно длинный отросток, приспособленный для проведения возбуждения и информации от тела нейрона или от нейрона к исполнительному органу. Дендриты — как правило, короткие и сильно разветвлённые отростки, служащие главным местом образования влияющих на нейрон возбуждающих и тормозных синапсов (разные нейроны имеют различное соотношение длины аксона и дендритов), и которые передают возбуждение к телу нейрона. Нейрон может иметь несколько дендритов и обычно только один аксон. Один нейрон может иметь связи со многими (до 20-и тысяч) другими нейронами.

Дендриты делятся дихотомически, аксоны же дают коллатерали. В узлах ветвления обычно сосредоточены митохондрии.

Дендриты не имеют миелиновой оболочки, аксоны же могут её иметь. Местом генерации возбуждения у большинства нейронов является аксонный холмик — образование в месте отхождения аксона от тела. У всех нейронов эта зона называется триггерной.

Си́напс (греч. σύναψις , от συνάπτειν — обнимать, обхватывать, пожимать руку) — место контакта между двумя нейронами или между нейроном и получающей сигнал эффекторной клеткой. Служит для передачи нервного импульса между двумя клетками, причём в ходе синаптической передачи амплитуда и частота сигнала могут регулироваться. Одни синапсы вызывают деполяризацию нейрона, другие — гиперполяризацию; первые являются возбуждающими, вторые — тормозными. Обычно для возбуждения нейрона необходимо раздражение от нескольких возбуждающих синапсов.


Термин был введён в 1897 г. английским физиологом Чарльзом Шеррингтоном.

Классификация

На основании числа и расположения дендритов и аксона нейроны делятся на безаксонные, униполярные нейроны, псевдоуниполярные нейроны, биполярные нейроны и мультиполярные (много дендритных стволов, обычно эфферентные) нейроны.

Безаксонные нейроны — небольшие клетки, сгруппированы вблизи спинного мозга в межпозвоночных ганглиях, не имеющие анатомических признаков разделения отростков на дендриты и аксоны. Все отростки у клетки очень похожи. Функциональное назначение безаксонных нейронов слабо изучено.

Униполярные нейроны — нейроны с одним отростком, присутствуют, например в сенсорном ядре тройничного нерва в среднем мозге.

Биполярные нейроны — нейроны, имеющие один аксон и один дендрит, расположенные в специализированных сенсорных органах — сетчатке глаза, обонятельном эпителии и луковице, слуховом и вестибулярном ганглиях.

Мультиполярные нейроны — нейроны с одним аксоном и несколькими дендритами. Данный вид нервных клеток преобладает в центральной нервной системе.

Псевдоуниполярные нейроны — являются уникальными в своём роде. От тела отходит один отросток, который сразу же Т-образно делится. Весь этот единый тракт покрыт миелиновой оболочкой и структурно представляет собой аксон, хотя по одной из ветвей возбуждение идёт не от, а к телу нейрона. Структурно дендритами являются разветвления на конце этого (периферического) отростка. Триггерной зоной является начало этого разветвления (то есть находится вне тела клетки). Такие нейроны встречаются в спинальных ганглиях.

По положению в рефлекторной дуге различают афферентные нейроны (чувствительные нейроны), эфферентные нейроны (часть из них называется двигательными нейронами, иногда это не очень точное название распространяется на всю группу эфферентов) и интернейроны (вставочные нейроны).

Афферентные нейроны (чувствительный, сенсорный, рецепторный или центростремительный). К нейронам данного типа относятся первичные клетки органов чувств и псевдоуниполярные клетки, у которых дендриты имеют свободные окончания.

Эфферентные нейроны (эффекторный, двигательный, моторный или центробежный). К нейронам данного типа относятся конечные нейроны — ультиматные и предпоследние — не ультиматные.

Ассоциативные нейроны (вставочные или интернейроны) — группа нейронов осуществляет связь между эфферентными и афферентными, их делят на интризитные, комиссуральные и проекционные.

Секреторные нейроны — нейроны, секретирующие высокоактивные вещества (нейрогормоны). У них хорошо развит комплекс Гольджи, аксон заканчивается аксовазальными синапсами.

Морфологическое строение нейронов многообразно. В связи с этим при классификации нейронов применяют несколько принципов:

  • учитывают размеры и форму тела нейрона;
  • количество и характер ветвления отростков;
  • длину нейрона и наличие специализированных оболочек.

По форме клетки, нейроны могут быть сферическими, зернистыми, звездчатыми, пирамидными, грушевидными, веретеновидными, неправильными и т. д. Размер тела нейрона варьирует от 5 мкм у малых зернистых клеток до 120—150 мкм у гигантских пирамидных нейронов. Длина нейрона у человека составляет около 150 мкм.

По количеству отростков выделяют следующие морфологические типы нейронов [1] :

  • униполярные (с одним отростком) нейроциты, присутствующие, например, в сенсорном ядре тройничного нерва в среднем мозге;
  • псевдоуниполярные клетки, сгруппированные вблизи спинного мозга в межпозвоночных ганглиях;
  • биполярные нейроны (имеют один аксон и один дендрит), расположенные в специализированных сенсорных органах — сетчатке глаза, обонятельном эпителии и луковице, слуховом и вестибулярном ганглиях;
  • мультиполярные нейроны (имеют один аксон и несколько дендритов), преобладающие в ЦНС.

Развитие и рост нейрона



Нейрон развивается из небольшой клетки-предшественницы, которая перестаёт делиться ещё до того, как выпустит свои отростки. (Однако, вопрос о делении нейронов в настоящее время остаётся дискуссионным.) Как правило, первым начинает расти аксон, а дендриты образуются позже. На конце развивающегося отростка нервной клетки появляется утолщение неправильной формы, которое, видимо, и прокладывает путь через окружающую ткань. Это утолщение называется конусом роста нервной клетки. Он состоит из уплощенной части отростка нервной клетки с множеством тонких шипиков. Микрошипики имеют толщину от 0,1 до 0,2 мкм и могут достигать 50 мкм в длину, широкая и плоская область конуса роста имеет ширину и длину около 5 мкм, хотя форма её может изменяться. Промежутки между микрошипиками конуса роста покрыты складчатой мембраной. Микрошипики находятся в постоянном движении — некоторые втягиваются в конус роста, другие удлиняются, отклоняются в разные стороны, прикасаются к субстрату и могут прилипать к нему.

Конус роста заполнен мелкими, иногда соединёнными друг с другом, мембранными пузырьками неправильной формы. Непосредственно под складчатыми участками мембраны и в шипиках находится плотная масса перепутанных актиновых филаментов. Конус роста содержит также митохондрии, микротрубочки и нейрофиламенты, имеющиеся в теле нейрона.

Вероятно, микротрубочки и нейрофиламенты удлиняются главным образом за счёт добавления вновь синтезированных субъединиц у основания отростка нейрона. Они продвигаются со скоростью около миллиметра в сутки, что соответствует скорости медленного аксонного транспорта в зрелом нейроне. Поскольку примерно такова и средняя скорость продвижения конуса роста, возможно, что во время роста отростка нейрона в его дальнем конце не происходит ни сборки, ни разрушения микротрубочек и нейрофиламентов. Новый мембранный материал добавляется, видимо, у окончания. Конус роста — это область быстрого экзоцитоза и эндоцитоза, о чём свидетельствует множество находящихся здесь пузырьков. Мелкие мембранные пузырьки переносятся по отростку нейрона от тела клетки к конусу роста с потоком быстрого аксонного транспорта. Мембранный материал, видимо, синтезируется в теле нейрона, переносится к конусу роста в виде пузырьков и включается здесь в плазматическую мембрану путём экзоцитоза, удлиняя таким образом отросток нервной клетки.

Росту аксонов и дендритов обычно предшествует фаза миграции нейронов, когда незрелые нейроны расселяются и находят себе постоянное место.

Литература

Сома · Аксон (Аксонный холмик, Терминаль аксона, Аксоплазма, Аксолемма, Нейрофиламенты)

Содержание:

  • Назначение и архитектура нервной системы человека
  • Нервные клетки и ткани
    Периферическая нервная система
  • Черепные нервы
  • Спинномозговые нервы
  • Вегетативная нервная система

Нервная система является важнейшей частью организма.
На сегодняшний день топология нервной системы представляется следующими основными разделами - периферическая (ПНС) и центральная (ЦНС) нервная система. Эти два основных отдела, в свою очередь имеют подразделы, отражённые в приведённой ниже схеме.



Рецепторы чувствительной нервной клетки располагаются в покровных тканях и тканях внутренних органов. Сигналы от раздражителей (нервные импульсы), полученные рецепторами, передаются в тело нервной клетки, где обрабатываются и передаются через аксоны другим нервным клеткам, например эффекторным.

Эффекторные нервные клетки выполняют функцию обратную чувствительным нервным клеткам, они передают нервные импульсы от нервной системы к тканям и органам организма, например импульс сокращения мышцы.


Вставочные нейроны, нервные клетки, выполняющие промежуточную роль, организуя как бы мост между различными типами нервных клеток.


Например, при термическом ожоге руки, сигнал полученный рецепторами кожи чувствительной нервной клетки передаётся вставочному нейрону. Тело вставочного нейрона обрабатывает сигнал и далее сигнал распространяется в сторону эффекторов, которые возбуждают мышечную ткань, которая, в свою очередь, отдёргивает руку от источника огня (так называемая рефлекторная дуга). Так же, ожоговый нервный импульс, от вставочного нйврона передаётся в центральную нервную систему. В ЦНС этот импульс анализируется на предмет степени ожога, положения руки в пространстве и тому подобное. Сформированный в ЦНС ответный импульс регулирует положение руки в пространстве, а так же включает механизмы внутренних органов нейтрализующих последствия ожога. Вставочный нейрон можно рассматривать как коммутатор нервных сигналов. Наибольшее количество вставочных нейронов находится в спинном и головном мозге.
Нервные импульсы распространяются в виде электрохимического тока в виде движения ионов калия К или натрия Na. Скорость распространения нервных импульсов невелика и равна примерно 0,5 - 120 м/сек. Для ускорения передачи импульсов по проводящим путям нервных клеток, проводящие пути покрыты шванновскими клетками в миелиновой оболочке - леммоцитами.

Связь между отдельными нервными клетками осуществляется при помощи синапсов. О синапсах будет подробно рассказано в разделе, описывающем структуру центральной нервной системы.
Нервные клетки, будь то рецепторные или эффекторные обслуживают очень небольшой участок тканей. Для покрытия всех тканей организма нервные клетки объединяются в волокна (аналогично электрическому многожильному кабелю), которые называются нервами.

Нервы (латинское nervus), серые волокна нервной ткани. Нервы связывают мозг и нервные узлы с другими органами и тканями тела.


От нервных клеток, находящихся в головном и спинном мозгу, отходят отростки, которые и являются нервными волокнами, идущими к периферии. Нервные волокна собираются в пучки разной толщины. Такое скопление нервных волокон называется нервом.

Нервы осуществляют связь между центральной нервной системой и отдельными органами нашего тела. По нервам возбуждение идет либо из центральной нервной системы к рабочему органу, либо от разных участков нашего тела в центральную нервную систему.

Нервы делятся на две группы в зависимости от того, в каком направлении они проводят возбуждение.

Рис. Схема распространения возбуждения при раздражении нерва

Одна группа нервов проводит возбуждение из центральной нервной системы к рабочим органам. Они называются эфферентными (центробежными, или двигательными) нервами. Другая группа проводит возбуждение с разных участков нашего тела и от разных органов в центральную нервную систему. В отличие от предыдущей группы нервов они получили название афферентных (центростремительных, или чувствительных) нервов. Оба рода нервных волокон часто идут в одном стволе, поэтому большинство нервов являются смешанными.

СТРОЕНИЕ НЕРВА

Нервная система состоит из нервных клеток, которые называются нейронами. Нейрон состоит из тела нервной клетки и ее отростков. Различают два вида отростков: а) отростки короткие, ветвистые — дендриты, и б) очень длинный отросток, который тянется от центральной нервной системы до рабочего органа,— а к с о н, который участвует в формировании нервов.

Наконец, имеются еще и особые образования на окончаниях нервов- так называемые концевые аппараты, при помощи которых осуществляется связь нервного волокна с мышцей, железой или другими органами, или рецепторы — окончания центростремительных нервов, воспринимающие раздражение.

Короткие отростки — дендриты — осуществляют связь между отдельными нервными клетками и почти не выходят за пределы центральной нервной системы.

Аксон же тянется из головного или спинного мозга до рабочего органа. Нервы, которые мы встречаем в организме, состоят из аксонов, несущих возбуждение в центральную нервную систему или, наоборот, из центральной нервной системы.

Нормальное протекание обмена веществ во всех отростках нервной клетки связано с ее целостностью. В этом можно убедиться, если перерезать нервное волокно и тем самым нарушить его связь с телом клетки. Деятельность такого волокна нарушается, и та часть, которая отрезана от клетки, отмирает. Совершенно иные явления наблюдаются в той части волокна, которая осталась связанной с телом клетки. Эта часть продолжает жить, нормально функционирует, обмен веществ не нарушен. Более того, такой отрезок растет и через некоторое, время может дойти до мышцы, чем и восстановится целость, нерва. Этим объясняется наблюдающееся иногда восстановле ние движений парализованной конечности через определенный промежуток времени, если паралич был вызван поражением нерва.

Такой особенностью пользуются и хирурги, которые часто производят сшивание нервов с целью восстановления деятельности парализованного органа.

Нервная клетка возбуждается под влиянием тех волн возбуждения, которые поступают с периферии по центростремительным нервам. Однако многие нервные клетки могут возбуждаться даже без поступления импульсов с рецепторов. В этих клетках возбуждение может возникнуть под влиянием гуморальных воздействий. Примером может служить деятельность теплового центра, на функции которого влияет температура крови, и др.

СВОЙСТВА НЕРВНОГО ВОЛОКНА

Нервное волокно обладает возбудимостью и проводимостью. В этом можно убедиться, если нанести электрическое раздражение какому-либо участку нерва нервно-мышечного препарата. Почти тотчас после нанесения раздражения мышца сокращается. Сокращение мышцы стало возможным потому, что при раздражении в нерве возникло возбуждение, которое, пройдя по нерву, поступило к мышце и обусловило ее деятельность.

Для проведения возбуждения необходима анатомическая целость нервного волокна. Перерезка нерва делает невозможной передачу возбуждения. Возбуждение не проводится в случае перевязки, сдавливания или нарушения целости нерва любым иным способом. Однако не только анатомические, но и физиологические нарушения вызывают прекращение про ведения. Нерв может быть целым, но он не будет проводить возбуждения, так как его функ ции нарушены.

Нарушение проведения мож но наблюдать при охлаждении или нагревании нерва, прекращении его кровоснабжения, от равлении и т. д.

Проведение возбуждения по нерву подчиняется двух основ ным законам.

1. Закон двустороннего проведения. Нервное волокно обладает способностью проводить возбуждение по двум направлениям: центростремительно и центробежно. Независимо от того, какое это нервное волок но — центробежное или центростремительное, если ему нане сти раздражение, то возникшее возбуждение будет распространяться в обе стороны от места раздражения (рис.). Это свойство нервного волокна впервые открыл выдающийся русский ученый Р. И. Бабухин (1877).

2. Закон изолированного проведения. Периферический нерв состоит из большого числа отдельных нервных волокон, которые вместе идут в одном и том же нервном стволе. В нервном стволе одновременно могут проходить самые разнообразные центробежные и центростремительные нервные волокна. Однако возбуждение, которое передается по одному нервному волокну, не передается на соседние. Благодаря такому изолированному проведению возбуждения по нервному волокну возможны отдельные весьма тонкие движения человека. Художник может создавать свои полотна, музыкант — исполнять сложные музыкальные произведения, хирург — производить тончайшие операции потому, что каждое волокно изолированно передает импульс мышце, и тем самым центральная нервная система имеет возможность координировать мышечные сокращения. Если бы возбуждение могло переходить на другие волокна, стало бы невозможным отдельное мышечное сокращение, каждое возбуждение сопровождалось бы сокращением самых разнообразных мышц.

Статья на тему Строение нерва

Содержание:

  • Назначение и архитектура нервной системы человека
  • Нервные клетки и ткани
    Периферическая нервная система
  • Черепные нервы
  • Спинномозговые нервы
  • Вегетативная нервная система

Нервная система является важнейшей частью организма.
На сегодняшний день топология нервной системы представляется следующими основными разделами - периферическая (ПНС) и центральная (ЦНС) нервная система. Эти два основных отдела, в свою очередь имеют подразделы, отражённые в приведённой ниже схеме.



Рецепторы чувствительной нервной клетки располагаются в покровных тканях и тканях внутренних органов. Сигналы от раздражителей (нервные импульсы), полученные рецепторами, передаются в тело нервной клетки, где обрабатываются и передаются через аксоны другим нервным клеткам, например эффекторным.

Эффекторные нервные клетки выполняют функцию обратную чувствительным нервным клеткам, они передают нервные импульсы от нервной системы к тканям и органам организма, например импульс сокращения мышцы.


Вставочные нейроны, нервные клетки, выполняющие промежуточную роль, организуя как бы мост между различными типами нервных клеток.


Например, при термическом ожоге руки, сигнал полученный рецепторами кожи чувствительной нервной клетки передаётся вставочному нейрону. Тело вставочного нейрона обрабатывает сигнал и далее сигнал распространяется в сторону эффекторов, которые возбуждают мышечную ткань, которая, в свою очередь, отдёргивает руку от источника огня (так называемая рефлекторная дуга). Так же, ожоговый нервный импульс, от вставочного нйврона передаётся в центральную нервную систему. В ЦНС этот импульс анализируется на предмет степени ожога, положения руки в пространстве и тому подобное. Сформированный в ЦНС ответный импульс регулирует положение руки в пространстве, а так же включает механизмы внутренних органов нейтрализующих последствия ожога. Вставочный нейрон можно рассматривать как коммутатор нервных сигналов. Наибольшее количество вставочных нейронов находится в спинном и головном мозге.
Нервные импульсы распространяются в виде электрохимического тока в виде движения ионов калия К или натрия Na. Скорость распространения нервных импульсов невелика и равна примерно 0,5 - 120 м/сек. Для ускорения передачи импульсов по проводящим путям нервных клеток, проводящие пути покрыты шванновскими клетками в миелиновой оболочке - леммоцитами.

Связь между отдельными нервными клетками осуществляется при помощи синапсов. О синапсах будет подробно рассказано в разделе, описывающем структуру центральной нервной системы.
Нервные клетки, будь то рецепторные или эффекторные обслуживают очень небольшой участок тканей. Для покрытия всех тканей организма нервные клетки объединяются в волокна (аналогично электрическому многожильному кабелю), которые называются нервами.

Нервы (латинское nervus), серые волокна нервной ткани. Нервы связывают мозг и нервные узлы с другими органами и тканями тела.

"Эфферентный нейрон" в книгах

2. НЕЙРОН. ЕГО СТРОЕНИЕ И ФУНКЦИИ Мозг человека состоит из 10 12 нервных клеток. Обычная нервная клетка получает информацию от сотен и тысяч других клеток и передаёт сотням и тысячам, а количество соединений в головном мозге превышает 10 14 - 10 15 . Открытые более 150 лет тому назад

НЕЙРОН Нейрон является главной клеткой центральной нервной системы. Формы нейронов чрезвычайно многообразны, но основные части неизменны у всех типов нейронов. Нейрон состоит из следующих частей: сомы (тела) и многочисленных разветвленных отростков. У каждого нейрона

Глава 8. Нейрон или глия? Гемато-энцефалический барьер представляет собой сложную анатомическую, физиологическую и биохимическую систему, определяющую скорость проникновения отдельных веществ в мозг. На рис. 11 приведена схема сосудо-глио-нейронного комплекса, из

2. НЕЙРОН. ЕГО СТРОЕНИЕ И ФУНКЦИИ Мозг человека состоит из 10 12 нервных клеток. Обычная нервная клетка получает информацию от сотен и тысяч других клеток и передаёт сотням и тысячам, а количество соединений в головном мозге превышает 10 14 - 10 15 . Открытые более 150 лет тому назад

НЕЙРОН Нейрон является главной клеткой центральной нервной системы. Формы нейронов чрезвычайно многообразны, но основные части неизменны у всех типов нейронов. Нейрон состоит из следующих частей: сомы (тела) и многочисленных разветвленных отростков. У каждого нейрона

Глава 8. Нейрон или глия? Гемато-энцефалический барьер представляет собой сложную анатомическую, физиологическую и биохимическую систему, определяющую скорость проникновения отдельных веществ в мозг. На рис. 11 приведена схема сосудо-глио-нейронного комплекса, из

Нейрон Твой маленький друг, которым ты ленишься пользоваться. Из-за того, что каждая клетка – это часть сети мозга, отдельный нейрон ничего не знает и не умеет – прямо как в распределённых вычислительных

2. Нейрон. Оособенности строения, значение, виды Структурной и функциональной единицей нервной ткани является нервная клетка – нейрон.Нейрон – специализированная клетка, которая способна принимать, кодировать, передавать и хранить информацию, устанавливать контакты с

Нейрон Нервная клетка (нейрон) – это функциональная единица нервной системы, строение и функции которой приспособлены к передаче и обработке информации. В каждом нейроне различают четыре различные области: тело, дендриты, аксон и аксонные окончания (терминали). Все эти

Первый взгляд на нейрон Говорить о мозге и не говорить о нейронах — невозможно. Нейроны — это те клетки-кирпичики, из которых построено само здание мозга. Об устройстве нейрона написано немало трудов, однако многие свойства нейрона до сих пор спорны и остаются загадкой.

1.7. Нейрон Внешний вид нервной клетки (нейрона) показан схематически на рис. 1.6. Нейрон состоит из довольно крупного (до 0,1 мм) тела, от которого отходят несколько отростков — дендритов, дающих начало все более и более тонким отросткам, подобно ветвям дерева. Кроме дендритов,

Читайте также:

Пожалуйста, не занимайтесь самолечением!
При симпотмах заболевания - обратитесь к врачу.