Нервный аппарат пищеварительной системы

Эстрогены ® окситоцин ® блуждающий нерв

Переваривание пищи

à Ротовая полость и желудок. a -Амилаза расщепляет крахмал до дисахарида — мальтозы. За короткое время пребывания пищи в ротовой полости переваривается не более 5% всех углеводов. В желудке углеводы продолжают перевариваться в течение часа, прежде чем пища полностью перемешается с желудочным соком. За этот период до 30% крахмалов гидролизуется до мальтозы.

à Тонкая кишка. a -Амилаза панкреатического сока заканчивает расщепление крахмалов до мальтозы и других дисахаридов. Содержащиеся в щёточной каёмке энтероцитов лактаза, сахараза, мальтаза и a -декстриназа гидролизуют дисахариды. Мальтоза расщепляется до глюкозы; лактоза — до галактозы и глюкозы; сахароза — до фруктозы и глюкозы. Образовавшиеся моносахариды всасываются в кровь.

à Желудок. Пепсин, активный при pH от 2,0 до 3,0, превращает 10–20% белков в пептоны и некоторое количество полипептидов.

à Тонкая кишка (рис. 22–8)

Ú Ферменты поджелудочной железы трипсин и химотрипсин в просвете кишки расщепляют полипептиды на ди– и трипептиды, карбоксипептидаза отщепляет аминокислоты от карбоксильного конца полипептидов. Эластаза переваривает эластин. В целом образуется немного свободных аминокислот.

Ú На поверхности микроворсинок каёмчатых энтероцитов в двенадцатиперстной и тощей кишке находится трёхмерная густая сеть — гликокаликс, в котором расположены многочисленные пептидазы. Именно здесь эти ферменты осуществляют так называемое пристеночное пищеварение. Аминополипептидазы и дипептидазы расщепляют полипептиды на ди- и трипептиды, а ди- и трипептиды превращают в аминокислоты. Затем аминокислоты, дипептиды и трипептиды легко транспортируются внутрь энтероцитов через мембрану микроворсинок.

Ú В каёмчатых энтероцитах имеется множество пептидаз, специфичных для связей между конкретными аминокислотами; в течение нескольких минут все оставшиеся ди- и трипептиды превращают в отдельные аминокислоты. В норме более 99% продуктов переваривания белков всасывается в виде отдельных аминокислот. Очень редко всасываются пептиды.


Рис . 22–8 . Ворсинка и крипта тонкого кишечника [11]. Слизистая оболочка покрыта однослойным цилиндрическим эпителием. Каёмчатые клетки (энтероциты) участвуют в пристеночном пищеварении и всасывании. Панкреатические протеазы в просвете тонкого кишечника расщепляют поступающие из желудка полипептиды на короткие пептидные фрагменты и аминокислоты с последующим их транспортом внутрь энтероцитов. Расщепление коротких пептидных фрагментов до аминокислот происходит в энтероцитах. Энтероциты передают аминокислоты в собственный слой слизистой оболочки, откуда аминокислоты поступают в кровеносные капилляры. Связанные с гликокаликсом щеточной каёмки дисахаридазы расщепляют сахара до моносахаридов (главным образом, глюкозы, галактозы и фруктозы), которые всасываются энтероцитами с последующим выходом в собственный слой и поступлением в кровеносные капилляры. Продукты пищеварения (кроме триглицеридов) после всасывания через капиллярную сеть в слизистой оболочке направляются в воротную вену и далее в печень. Триглицериды в просвете пищеварительной трубки эмульгируются жёлчью и расщепляются панкреатическим ферментом липазой. Образовавшиеся свободные жирные кислоты и глицерин поглощают энтероциты, в гладкой эндоплазматической сети которых происходит ресинтез триглицеридов, а в комплексе Гольджи — формирование хиломикронов — комплекса триглицеридов и белков. Хиломикроны подвергаются экзоцитозу на боковой поверхности клетки, проходят через базальную мембрану и поступают в лимфатические капилляры. В результате сокращения ГМК, расположенных в соединительной ткани ворсинки, лимфа продвигается в лимфатическое сплетение подслизистой оболочки. Кроме энтероцитов, в каёмчатом эпителии присутствуют бокаловидные клетки, вырабатывающие слизь. Их количество нарастает от двенадцатиперстной к подвздошной кишке. В криптах, особенно в области их дна, расположены энтероэндокринные клетки, вырабатывающие гастрин, холецистокинин, желудочный ингибирующий пептид, мотилин и другие гормоны.

à Желудок. Липазы расщепляют менее 10% триглицеридов.

à Тонкая кишка

Ú Переваривание жиров в тонкой кишке начинается с превращения крупных жировых частиц (глобул) в мельчайшие глобулы — эмульгирование жиров (рис. 22–9А). Этот процесс начинается в желудке под влиянием перемешивания жиров с желудочным содержимым. В двенадцатиперстной кишке жёлчные кислоты и фосфолипид лецитин эмульгируют жиры до размеров частиц в 1 мкм, увеличивая общую поверхность жиров в 1000 раз.

Ú Панкреатическая липаза расщепляет триглицериды на свободные жирные кислоты и 2-моноглицериды и способна в течение 1 минуты переварить все триглицериды химуса, если они находятся в эмульгированном состоянии. Роль кишечной липазы в переваривании жиров невелика. Накопление моноглицеридов и жирных кислот в местах переваривания жиров останавливает процесс гидролиза, но этого не происходит, потому что мицеллы, состоящие из нескольких десятков молекул жёлчных кислот, удаляют моноглицериды и жирные кислоты в момент их образования (рис. 22–9А). Мицеллы холатов транспортируют моноглицериды и жирные кислоты к микроворсинкам энтероцитов, где они всасываются.

Ú Фосфолипиды содержат жирные кислоты. Эфиры холестерола и фосфолипиды расщепляются специальными липазами поджелудочного сока: холестерол–эстераза гидролизует эфиры холестерола, а фосфолипаза A 2 расщепляет фосфолипиды.

Всасывание в пищеварительном тракте

à Микроворсинки образуют всасывательную, или щёточную каёмку на апикальной поверхности энтероцитов. Через всасывательную поверхность происходит активный и избирательный транспорт из просвета тонкого кишечника через каёмчатые клетки, через базальную мембрану эпителия, через межклеточное вещество собственного слоя слизистой оболочки, через стенку кровеносных капилляров в кровь, а через стенку лимфатических капилляров (тканевые щели) — в лимфу.


Рис . 22 – 9 . ВСАСЫВАНИЕ В ТОНКОМ КИШЕЧНИКЕ . I — Эмульгация , расщепление и поступление жиров в энтероцит . II — Поступление и выход жиров из энтероцита . 1 — липаза, 2 — микроворсинки. 3 — эмульсия, 4 — мицеллы, 5 — соли жёлчных кислот, 6 — моноглицериды, 7 — свободные жирные кислоты, 8 — триглицериды, 9 — белок, 10 — фосфолипиды, 11 — хиломикрон. III — Механизм секреции HCO3 – эпителиальными клетками слизистой оболочки желудка и двенадцатиперстной кишки : А — выход HCO3 – в обмен на Cl – стимулируют некоторые гормоны (например, глюкагон), и подавляет блокатор транспорта Cl – фуросемид. Б — активный транспорт HCO3 – , не зависящий от транспорта Cl – . В и Г — транспорт HCO3 – через мембрану базальной части клетки внутрь клетки и по межклеточным пространствам (зависит от гидростатического давления в подэпителиальной соединительной ткани слизистой оболочки). [11].

Таблица 22–5 . Ежедневный оборот воды (мл) в пищеварительном тракте

Д ыхательная система человека выполняет жизненно важную функцию газообмена, доставки в организм кислорода и выведения углекислого газа.


Она состоит из полости носа, глотки, гортани, трахеи и бронхов.

В районе глотки происходит соединение ротовой и носовой полостей. Функции глотки: продвижение пищи из полости рта в пищевод и проведение воздуха из полости носа (или рта) в гортань. В глотке пересекаются дыхательные и пищеварительные пути.

Гортань соединяет глотку с трахеей и содержит голосовой аппарат.

Трахея – хрящевая трубка длиной около 10-15 см. Для того чтобы пища не попадала в трахею при ее входе располагается так называемая небная завеса. Ее назначение перекрывать путь в трахею каждый раз при проглатывании пищи.

Легкие состоят из бронхов, бронхиол и альвеол, окруженных плевральным мешком.

Каким образом происходит газообмен?

Во время вдоха воздух втягивается в нос, в полости носа воздух очищается и увлажняется, далее идет вниз через гортань в трахею. Трахея разделяется на две трубочки – бронхи. По ним воздух попадает в правое и левое легкие. Бронхи разветвляются на множество мельчайших бронхиол, которые заканчиваются альвеолами. Через тонкие стенки альвеол кислород попадает в кровеносные сосуды. Здесь начинается малый круг кровообращения. Кислород подхватывает гемоглобин, который содержится в эритроцитах и насыщенная кислородом кровь отправляется из легких в левую часть сердца. Сердце выталкивает кровь в кровеносные сосуды, начинается большой круг кровообращения, откуда по артериям кислород распределяется по телу. Как только кислород из крови израсходуется, кровь по венам поступает в правую часть сердца, заканчивается большой круг кровообращения, и оттуда – обратно в легкие, заканчивается малый круг кровообращения. При выдохе углекислый газ удаляется из организма.

С каждым вдохом в легкие попадает не только кислород, но и пыль, микробы и другие инородные объекты. На стенках бронхов располагаются крохотные ворсинки, которые задерживают пыль и микробы. В стенках дыхательных путей специальные клетки производят слизь, которая помогает очищать и смазывать эти ворсинки. Загрязненная слизь выводится через бронхи наружу и откашливается.

Пищеварительная система.


Основные отделы пищеварительного канала: ротовая полость, глотка, пищевод, желудок, тонкая кишка и толстая кишка, печень и поджелудочная железа.

Пищеварительная система выполняет функции механической и химической обработки пищи, всасывания переваренных белков, жиров и углеводов в кровь и лимфу и выделения непереваренных веществ из организма.

Можно описать этот процесс по-другому: пищеварение - это потребление энергии содержащейся в продуктах с целью увеличения или скорее поддержание своей собственной постоянно уменьшающейся энергии на определенном уровне. Освобождение энергии из продуктов происходит в процессе расщепления пищи. Вспоминаем лекции Марвы Вагаршаковны Оганян, понятие фитокалорий, в каких продуктах содержится энергия, в каких отсутствует.

Вернемся к биологическому процессу. В ротовой полости пища размельчается, смачивается слюной, и затем поступает в глотку. Через глотку и пищевод, который проходит через грудную клетку и диафрагму измельченная пища попадает в желудок.

В желудке пища смешивается с желудочным соком, активными компонентами которого является соляная кислота и пищеварительные ферменты. Пептин расщепляет белки до аминокислот, которые сразу через стенки желудка всасываются в кровь. В желудке пища находится 1,5-2 часа, где под действием кислой среды размягчается и растворяется.

Следующий этап: частично переваренная пища попадает в отдел тонкого кишечника – двенадцатиперстную кишку. Здесь, напротив среда щелочная, пригодная для переваривания и расщепления углеводов. В двенадцатиперстную кишку проходит проток от поджелудочной железы, которая выбрасывает панкреатический сок, и проток от печени, которая выбрасывает желчь. Именно в этом отделе пищеварительной системы под воздействием панкреатического сока и желчи происходит переваривание пищи, а не в желудке как многие думают. В тонкой кишке происходит основной объём всасывания питательных веществ через кишечную стенку в кровь и в лимфу.

Печень. Барьерная функция печени очищать кровь из тонкого кишечника, так вместе с полезными для организма веществами всасываются и не полезные, такие как: алкоголь, лекарственные препараты, токсины, аллергены и т.д., или более опасные: вирусы, бактерии, микробы.

Нервная система


К нервной системе относятся головной и спинной мозг, а также нервы, нервные узлы, сплетения. Все выше перечисленное преимущественно состоит из нервной ткани, которая:

Головной мозг - часть центральной системы, находящаяся внутри черепа. Состоит из ряда органов: большого мозга, мозжечка, ствола и продолговатого мозга. У каждого отдела мозга свои функции.

Спинной мозг – образует распределительную сеть центральной нервной системы. Лежит внутри позвоночного столба, и от него отходят все нервы, образующие периферическую нервную систему.

Периферические нервы - представляют собой пучки, или группы волокон, передающих нервные импульсы. Они могут быть восходящими, т.е. передают ощущения от всего тела в центральную нервную систему, и нисходящими, или двигательными, т.е. доводят команды нервных центров до всех участков организма.

Некоторые компоненты периферической системы имеют отдаленные связи с центральной нервной системой; они функционируют при весьма ограниченном контроле со стороны ЦНС. Эти компоненты работают самостоятельно и составляют автономную, или вегетативную нервную систему. Она управляет работой сердца, легких, кровеносных сосудов и других внутренних органов. Пищеварительный тракт имеет свою собственную внутреннюю вегетативную систему.

Анатомической и функциональной единицей нервной системы является нервная клетка - нейрон. Нейроны имеют отростки, с помощью которых соединяются между собой и с иннервируемыми образованиями (мышечными волокнами, кровеносными сосудами, железами). Отростки нервной клетки имеют разное функциональное значение: некоторые из них проводят раздражение к телу нейрона – это дендриты, и только один отросток – аксон - от тела нервной клетки к другим нейронам или органам. Отростки нейронов окружены оболочками и объединены в пучки, которые и образуют нервы. Оболочки изолируют отростки разных нейронов друг от друга и способствуют проведению возбуждения.

Раздражение воспринимается нервной системой через органы чувств: глаза, уши, органы обоняния и вкуса, и специальные чувствительные нервные окончания - рецепторы, расположенные в коже, внутренних органах, сосудах, скелетных мышцах и суставах. Они передают сигналы через нервную систему в головной мозг. Головной мозг анализирует передаваемые сигналы и формирует ответную реакцию.

Функции отделов желудочно-кишечного тракта следующие (рис. 1.9).


Рис. 1.9. Строение пищеварительной системы человека

  • 1. Ротовая полость — начинается расщепление углеводов, бактерицидная обработка пищи.
  • 2. Желудок — расщепление сложных белков до простых, частичное расщепление жиров, уничтожение бактерий.
  • 3. Тонкая кишка — около 90% питательных веществ всасывается кровью через ее стенки.
  • 4. Толстая кишка — всасывание воды, расщепление сложных углеводов клетчатки растительной нищи, образование ядовитых веществ, часть которых попадает в кровь и нейтрализуется печенью.

В состав нервной системы входят центральный (головной и спинной мозг) и периферический (сеть более мелких нервов, распространенных по всему телу) отделы.

Важнейшими функциями нервной системы в организме человека являются управление деятельностью целостного организма и координирование процессов, протекающих в организме, в зависимости от состояния внешней и внутренней среды. Нервная система обеспечивает связь всех частей организма в единое целое.

Центральная нервная система — лежит глубоко в организме, окруженная и защищенная костями (рис. 1.10).

Головной мозг — является частью центральной нервной системы и находится внутри черепной коробки. Он состоит


Рис. 1.10. Строение нервной системы человека

из нескольких компонентов: большого мозга, мозжечка, ствола мозга и продолговатого мозга.

Спинной мозг — это распределительная сеть центральной нервной системы. Спинной мозг находится внутри позвоночного столба и взаимосвязан со всеми нервами периферической нервной системы.

Периферическая нервная система — представлена нервами, отходящими от головного и спинного мозга.

Вегетативная (автономная) — регулирует активность внутренних органов.

Соматическая — обеспечивает иннервацию тела — сомы, включает нервные окончания, иннервирующие кожу и мышцы.

Морфофункциональной единицей нервной системы является нервная клетка — нейрон. Нейроны могут быть различной формы и размера, но все они имеют сходную структуру и состоят из тела (сомы) и отростков. Отростки разделяются на аксоны (длинные) и дендриты (короткие — многочисленные ветвящиеся). В зависимости от выполняемой функции нейроны делятся на три основные группы: воспринимающие (чувствительные), исполнительные (эффекторные), вставочные (контактные). Нейроны классифицируют по числу их цитоплазматических отростков: с двумя отростками — биполярные нейроны, больше двух — мультиполярные. Униполярные встречаются очень редко.

Нейроны имеют только один аксон, другие отростки называют дендритами. Обычно аксоны передают импульсы от тела нейрона, а дендриты — к нему. Нейроны связаны друг с другом с помощью своих отростков. Межклеточные контакты, дающие возможность импульсам переходить от одного нейрона к другому, называются синапсами (от греч. соединение, связь). Находятся они там, где аксон одного нейрона заканчивается особой структурой на другом нейроне.

Одни нейроны переносят импульсы в глубь организма и называются афферентными (от лат. приносящие), другие проводят импульсы от более глубоко расположенных участков к мышечным клеткам и называются эфферентными (от лат. выносящие).

Каждый сегмент (структурная единица организма) содержит свои афферентные и эфферентные нейроны. Связь между сегментами осуществляется соединительными нейронами, находящимися в спинном мозге. В области головы спинной мозг расширяется, образуя головной мозг, вмещающий бесчисленные нейроны. То есть все соединительные нейроны находятся в ЦНС.

Часть афферентных и эфферентных нейронов, принадлежащих определенному сегменту, также расположена в ЦНС. Другая часть, лежащая вне ЦНС, составляет периферическую нервную систему.

Обеспечение взаимосвязи между отдельными органами и системами организма, согласование и объединение их функций, осуществление связи организма с внешней средой, приспособление к внешней среде, поведение человека и животных определяет ЦНС. Она включает головной и спинной мозг.

Головной мозг выполняет множество комплексных процессов, и за каждый из них отвечают определенные зоны (рис. 1.11).

Между нервными центрами и периферическими органами существует двусторонняя круговая связь. Любая деятельность сопровождается возникновением в рецепторах работающих органов афферентных импульсов, сигнализирующих ЦНС о результатах этой деятельности. Ответная реакция организма на раздражение с участием ЦНС называется рефлексом, а путь, но которому проходят импульсы при осуществлении рефлекса, — рефлекторной дугой.


Рис. 1.11. Функциональные зоны головного мозга

Рефлекс — ответная реакция организма на различные воздействия, осуществляемая с помощью нервной системы.

Фактором, инициирующим любой рефлекторный ответ, является стимул, который может действовать на организм как из внешней, так и из внутренней среды.

Рефлексы целостного организма делятся на безусловные и условные. Безусловные — это врожденные, наследственно передающиеся реакции организма. Условные — реакции, приобретенные организмом в процессе индивидуального развития на основе безусловных рефлексов. Различают экстеро- (с внешней поверхности тела), пятеро- (от внутренних органов и сосудов) и проприо- (от скелетных мышц, суставов, сухожилий) рефлексы. По характеру ответной реакции рефлексы разделяют на моторные (двигательные), где исполнителем является мышца; секреторные, которые заканчиваются секрецией желез; сосудодвигательные, регулирующие просвет сосудов.

Структурно-функциональную основу рефлекса любой сложности составляет рефлекторная дуга, включающая следующие компоненты: рецептор, афферентный путь, нервный центр, эфферентный путь и эффектор (рис. 1.12, 1.13).

Сенсорная система (анализатор) — совокупность специализированных нервных структур, осуществляющих восприятие определенных раздражений, проведение возникающих при этом возбуждений, высший их анализ. В соответствии со специфичностью действия раздражителей различают следующие анализаторы: зрительные, слуховые, вестибулярные, вкусовые, обонятельные, проприоцептивные, температурные и др.

Каждый анализатор включает три основных отдела: периферический (1), состоящий из рецепторов и специальных об-


Рис. 1.12. Образование рефлекторной дуги при действии болевого стимула


Рис. 1.13. Схема рефлекторной дуги разований (глаз, ухо и т.д.); проводниковый (2), включающий проводящие пути и подкорковые центры; корковый (3), в который адресуется информация.

Воспринимающим информацию элементом анализатора является рецептор.

Рецепторы — это конечные структуры, специально устроенные для преобразования энергии раздражителей в импульсы возбуждения нервных клеток. Для каждого вида рецепторов существуют адекватные раздражители, к действию которых они чрезвычайно чувствительны. По отношению к окружающей среде рецепторы разделяются на внутренние (интерорецепторы) и внешние (экстерорецепторы); по природе раздражителя — механо-, фото-, хемо-, термо-, электро-, болевые рецепторы; способу восприятия раздражения — контактные, дистантные, первично и вторично чувствующие.

Функция сенсорных систем (СС), т.е. анализаторов, состоит в получении информации из внешней и внутренней среды, необходимой для организации целенаправленной деятельности по удовлетворению потребностей организма.

Значение сенсорных систем при занятиях физическими упражнениями и спортом определяется следующим.

В сложнокоординационных видах спорта, где требуется точность и высочайшая надежность опенки положения тела и его звеньев в пространстве, временных пространственных и силовых параметров движений, уровень мастерства обусловливается в первую очередь возбудимостью, чувствительностью таких СС, как двигательная, кожная, вестибулярная и некоторых других.

В циклических видах спорта, где решающее значение наряду с мощностью и емкостью систем энергообеспечения имеет уменьшение удельных энерготрат на единицу дистанции, благодаря совершенствованию техники физических упражнений достигается многократная экономизация энерготрат. И это становится возможным благодаря обостренной чувствительности ряда СС, комплексное функционирование которых создает специфические ощущения взаимодействия тела со средой.

В спортивных играх следует выделить роль зрительной СС. В некоторых видах спорта положительное значение может иметь снижение чувствительности.

Во всех видах спорта наиболее велика роль двигательной СС, поскольку она дает информацию о важнейших параметрах движений и на стадии автоматизации двигательного иавыка остается единственным каналом обратной афферента- ции, которая используется для контроля за поэтапными результатами спортивных упражнений.

Механизмы регуляции функции органов пищеварения

Транзит содержимого желудочно-кишечного тракта (ЖКТ) обеспечивает­ся его мышечными элементами и находится под многоуровневой системой кон­троля, которая может нарушаться при тех или иных патологических состояниях, в том числе при травме спинного мозга.

Двигательная активность ЖКТ включает в себя два вида сокращений: непропульсивные (перемешивающие) движения и пропульсивная перистальтика (превалирование тех или иных сокращений зависит от отдела ЖКТ).

Регуляция моторики ЖКТ осуществляется:

  • водителями ритма в структуре гладкомышечных клеток ЖКТ;
  • собственной энтеральной (внутренней) нервной системой (ауэрбахово и мейсснерово сплетения);
  • вегетативной нервной системой (ВНС);
  • гормонами, регуляторными пептидами и биологически активными ве­ществами;
  • содержимым просвета пищеварительной трубки (количество, твердость, состав, калорийность, кислотность и др.).

Особенностью гладкомышечных клеток ЖКТ является то, что помимо соб­ственно сократительной активности они обладают способностью спонтанно ге­нерировать электрические импульсы и выступать в роли водителей ритма для других мышечных элементов желудочной и кишечной стенок. Данное свойство лежит в основе регуляции моторной и эвакуаторной функций пищеварительно­го тракта. В свою очередь, внешние нервные и гормональные воздействия инду­цируют и модулируют сокращения и определяют его силу и продолжительность.

Все отделы ЖКТ, кроме верхней трети пищевода и наружного кольца аналь­ного сфинктера, где имеются поперечнополосатые мышцы, имеют гладкомышечное строение (то есть автономную иннервацию), и человек таким образом ли­шен возможности сознательной (произвольной) регуляции их состояния.

В регуляции моторной и секреторной деятельности ЖКТ участвуют симпа­тические и парасимпатические нервные влияния (табл. 1).

Таблица 1. Влияние парасимпатического и симпатического отделов ВНС на моторику ЖКТ

Отдел ЖКТ

Парасимпатический отдел ВНС

Симпатический отдел ВНС

Уменьшает тонус нижнего пищеводного сфинктера

Замедление перистальтики. Повышение тонуса нижнего пищеводного сфинктера

Усиление перистальтики. Расслабление сфинктера привратника

Замедление перистальтики. Сокращение сфинктера привратника

Усиление перистальтики. Расслабление внутреннего сфинктера прямой кишки

Замедление перистальтики. Сокращение внутреннего сфинктера прямой кишки

Ядра парасимпатических нервов расположены в среднем и продолговатом мозге и в сером веществе боковых рогов крестцового отдела спинного мозга (SII-IV). Ядра краниальной локализации дают начало, в частности, блуждающе­му нерву (Х-пара; n. vagus), обеспечивающему парасимпатической иннервацией практически весь ЖКТ, за исключением дистальных его отделов.

Парасимпатические нервные волокна оканчиваются в ганглиях интрамуральных сплетений или в ганглиях, расположенных в стенках слюнных желез и печени. Нейромедиатором в преганглионарных и постганглионарных нервах служит ацетилхолин, хотя существует множество биологически активных пеп­тидов, также играющих роль постганглионарных медиаторов: вазоактивный интестинальный полипептид (VIР),энкефалины, вещество Р(SР), серотонин и др.

Парасимпатические волокна стимулируют перистальтику желудка и уско­ряют время эвакуации из него пищи.

Симпатические нервы берут начало в боковых рогах спинного мозга, тораколюмбального его отдела (CVIII, ThI - LIII), и оканчиваются в чревном ган­глии (для пищевода, желудка, двенадцатиперстной кишки, поджелудочной же­лезы), верхнем брыжеечном ганглии (для тонкой кишки и верхней части тол­стой кишки) и нижнем брыжеечном ганглии (для нижнего отдела толстой киш­ки и анального отверстия). Нейромедиатором в преганглионарных волокнах служит ацетилхолин, а в постганглионарных - норадреналин.

Каждый отдел ВНС содержит также висцеральные афферентные волокна, сигналы по которым поступают в центральную нервную систему (ЦНС), участ­вуя в запуске безусловных рефлексов и возникновении ощущений.

Существует разница в активации продольных и циркулярных мышц. Про­дольные мышцы иннервируются холинергическими волокнами и находятся в сокращенном состоянии до тех пор, пока действует стимул. В циркулярных мышцах в ответ на нервный импульс сначала развивается небольшое кратковре­менное напряжение и только после окончания действия стимула начинается со­кращение. Предполагают, что нейромедиатором в циркулярных мышцах служит скорее всего ВИП (вазоактивный интестинальный пептид).

К энтеральной нервной системе относится нервная сеть, состоящая из двух отделов:

— межмышечное (ауэрбахово) сплетение, лежащее между слоями продоль­ных и циркулярных мышц;
— подслизистое (мейсснерово) сплетение, находящееся между слоем цир­кулярных мышц и подслизистым мышечным слоем.

Ауэрбахово сплетение регулирует тонус гладких мышц ЖКТ и ритм их со­кращений, участвуя также в регуляции процессов секреции и всасывания. Мейс­снерово сплетение регулирует секреторную активность эпителиальных клеток. Афферентные волокна обоих сплетений передают сенсорные сигналы от распо­ложенных в органах ЖКТ рецепторов в ЦНС.

В состав внутренних сплетений ЖКТ входят три функциональных типа клеток:

— внутренние афферентные нейроны, содержащие ацетилхолин или другие нейромедиаторы, в частности SP;
— интернейроны, образующие нейронную сеть и обеспечивающие взаимо­действие между различными участками сплетения;
— мотонейроны, которые, в свою очередь, подразделяются на стимулирующие (содержащие ацетилхолин и SP) и ингибирующие (содержащие в качестве медиаторов NO и VIР).

В настоящее время в слизистой ЖКТ и в поджелудочной железе обнаруже­но по меньшей мере 18 видов клеток, вырабатывающих различные гормоны или пептиды, участвующие в регуляции функций ЖКТ (табл. 2).

Таблица 2. Основные регуляторные пептиды и их влияние на моторную функцию различных отделов ЖКТ

Регуляторные пептиды

Основные функции

Повышает давление в области верхнего пищеводного сфинктера. Замедляет эвакуацию пищи из желудка. Усиливает моторику привратника. Усиливает моторику толстой кишки

Снижает давление в области верхнего пищеводного сфинктера. Подавляет перистальтику желудка. Угнетает моторику толстой кишки

Снижает давление в области верхнего пищеводного сфинктера. Усиливает перистальтику желудка. Увеличивает эластичность желудка. Стимулирует сокращения желчного пузыря. Усиливает моторику толстой кишки

Подавляет перистальтику желудка

Повышает давление в области вехнего пищеводного сфинктера. Усиливает моторику желудка

Стимулирует сокращение ворсинок тонкой кишки

Угнетает моторику желудка

Повышает давление в области верхнего пищеводного сфинктера

Снижает давление в области верхнего пищеводного сфинктера. Подавляет перистальтику желудка. Стимулирует желчеотделение. Угнетает моторику толстой кишки

Угнетает секрецию и опорожнение желудка, вызывает сужение сосудов

Глюкозозависимый инсулинотропный пептид

Вызывает высвобождение инсулина. Снижает давление в области верхнего пищеводного сфинктера

Вазоактивный интестинальный полипептид

Снижает давление в области вехнего пищеводного сфинктера. Подавляет перистальтику желудка. Расслабляет гладкие мышцы

Стимулирует сокращение гладких мышц. Повышает давление в области верхнего пищеводного сфинктера

Угнетают сокращения гладких мышц

Регуляция образования гормоноподобных веществ в ЖКТ отличается от таковой в других эндокринных системах тем, что их секреция зависит не столько от концентрации пептидов в крови, сколько от прямого взаимодействия компо­нентов желудочного или кишечного содержимого с эндокринными клетками пищеварительного тракта.

Особые механизмы лежат в процессах перемещения пищи в начальном и конечном участках пищеварительной системы: в актах глотания и дефекации. Особенностью является участие поперечнополосатой мускулатуры и возможность осознанной регуляции указанных процессов. В то же время это различие в итоге оказывается достаточно условным, так как психическая ак­тивность может оказывать влияние не только на осознанные, но также и на неосознанные процессы, такие, как моторика кишечника, опосредованно через ВНС.

Дефекация является сложным скоординированным рефлекторным актом, в котором принимают участие кора головного мозга, ВНС, рецепторы прямой кишки, мускулатура брюшного пресса и толстой кишки. Если на первом году жизни ребенка дефекация протекает по типу безусловного рефлекса, то со второ­го года жизни начинают устанавливаться условно-рефлекторные связи на время суток (утро, вечер), место (туалетная комната, детский горшок), звук и многое др.

Важным феноменом, обеспечивающим контроль над эвакуацией кишеч­ного содержимого, является так называемое держание. Оно осуществляется функциональной системой, состоящей из промежностного отдела прямой киш­ки с внутренним сфинктером, наружного сфинктера и мышцы, поднимающей задний проход. Различают два типа держания: кишечное и анальное, представ­ляющие собой последовательные этапы единого механизма опорожнения кишечника.

Кишечное держание обеспечивает продвижение содержимого по кишке в течение более-менее длительного периода времени, чему способствуют форма толстой кишки в виде обода, гаустрация, координированные антиперистальти­ческие движения, ректосигмоидный изгиб, сдерживающий продвижение ки­шечного содержимого к прямой кишке. Данный этап держания является не­осознанным. Анальное держание осуществляется за счет рефлекторного и про­извольного сокращения запирательного аппарата прямой кишки: внутреннего и наружного сфинктеров. При этом внутренний сфинктер играет роль постоян­ного пассивного замыкателя, обеспечивая тоническое смыкание стенок задне­проходного канала, а активное сокращение замыкательного аппарата достига­ется при помощи наружного сфинктера.

Действие наружного сфинктера (по A. Shank, 1975) реализуется с по­мощью трех петель: верхней, средней и нижней. Верхнюю петлю образует так называемое аноректальное кольцо, фиксирующееся к внутренней нижней по­верхности лонной кости, среднюю — поверхностная порция наружного сфин­ктера, прикрепляющаяся к копчику, а нижнюю — подкожная порция этой мышцы, прикрепленная к перианальной коже в области срединного шва про­межности. Верхняя и нижняя петли, иннервируемые геморроидальными вет­вями полового нерва, перетягивают заднюю анальную стенку кпереди, в то время как средняя петля, иннервируемая четвертым крестцовым нервом, тянет переднюю анальную стенку кзади. Названные петли являются, по существу, отдельными сфинктерами и, взаимодействуя, обеспечивают полное держание кишечного содержимого.

Перистальтику и функцию запирательного аппарата прямой кишки регу­лируют главным образом три нервных центра:

1) ганглии стенки прямой кишки и нижнее подчревное сплетение (plexus hypogastricus inf.);
2) спинномозговой центр на уровне SII—IV;
3) кора головного мозга.

Регуляция функции осуще­ствляется тремя рефлекторными дугами. Первая дуга регулирует расслабление внутреннего сфинктера и перистальтические движения ректоанального сегмен­та через интрамуральный путь и тазовые сплетения, в частности подчревные. Нейроны спинномозгового центра координируют перистальтические движения и контролируют непроизвольное действие сфинктерного аппарата.

Вторую дугу образуют афферентный путь, проводящий импульсы от рек­тальных рецепторов к нейронам спинномозгового центра, и эфферентный путь, проводящий импульсы от спинномозгового центра к лонно-прямокишечной мышце и наружному сфинктеру. Этот рефлекс возникает при повышении давле­ния в прямой кишке или при растяжении ее стенки и вызывает сокращение лон­но-прямокишечной мышцы и наружного сфинктера, таким образом обеспечи­вая держание кала.

Через третью дугу кора головного мозга управляет функцией наружного сфинктера и мышц, поднимающих задний проход. Афферентные импульсы от барорецепторов леваторной мышцы через половой нерв и спинной мозг дости­гают коры головного мозга, и оттуда эфферентные импульсы через крестцовый спинномозговой центр возвращаются к наружному сфинктеру и леваторной мышце. По этой дуге чувство позыва к дефекации передается к коре головного мозга, и при помощи произвольного сокращения или расслабления наружного сфинктера и леваторной мышцы обеспечиваются условия для держания или дефекации.

Если держание кишечного содержимого — относительно пассивный про­цесс и может осуществляться непроизвольно за счет самоуправления ректально­го и спинномозгового центров, то физиологическая дефекация является актив­ным процессом и осуществляется под контролем сознания. Акт дефекации со­стоит из двух фаз. В первой, непроизвольной, кишечное содержимое поступает пропульсивной волной в прямую кишку, при растяжении которой расслабляет­ся внутренний сфинктер, давление на его уровне становится ниже, чем в прямой кишке, и кишечное содержимое продвигается дистальнее до входа в анальный канал, вступая в контакте чувствительной зоной его слизистой оболочки. Вско­ре тонус сфинктера восстанавливается, а кишечное содержимое остается выше анального канала.

В первой фазе держание обеспечивается за счет рефлекторного сокращения (по второй дуге) наружного сфинктера и лонно-прямокишечной мышцы. Пос­ледняя, перетягивая кишку кзади, закрывает вход в анальный канал. В это время перистальтика усиливается, кишечное содержимое поступает в ампулу, послед­няя еще больше растягивается; раздражаются не только рецепторы ампулы пря­мой кишки, но и леваторные мышцы. Импульсы достигают коры головного мозга по третьей рефлекторной дуге, возникает позыв к дефекации и наступает следующая, произвольная, фаза. Если условия для этого социально приемлемы, то при анализе чувства позыва кора головного мозга подает команду совершить акт дефекации. Наружный сфинктер произвольно расслабляется, увеличивает­ся аноректальный угол, внутренний сфинктер полностью раскрыт и вследствие повышения внутрибрюшного давления кал эвакуируется наружу [1].

Ключевые рецепторы для раскрытия анального канала локализуются в мышце, поднимающей задний проход. Эти рецепторы в основном контролируют непроизвольное и произвольное открытие и закрытие анального канала, их раздражение вызывает чувство позыва к дефекации.

Таким образом, на основании имеющихся представлений о функциониро­вании и регуляции моторики ЖКТ можно предположить, что при исключении нисходящей регуляции со стороны головного мозга, как это происходит при по­вреждении спинного мозга, сохраняется самостоятельная моторная активность ЖКТ, однако осознанный акт дефекации становится невозможным. Нарушает­ся и координированная регуляция со стороны ВНС. Конкретные проявления этого будут зависеть от уровня повреждения спинного мозга, однако очевидно, что в первую очередь будут снижены симпатические влияния.

Бельмер С.В. Нарушения функции органов пищеварения при спинальной травме // Реабилитация больных с травматической болезнью спинного мозга / Под общ. ред. Г.Е. Ивановой и др. - М., 2010. С. 145-152.

Читайте также:

Пожалуйста, не занимайтесь самолечением!
При симпотмах заболевания - обратитесь к врачу.