Незрелая нервная клетка это

Сложность и многообразие нервной системы зависит от взаимодействия между нейронами, которые, в свою очередь, представляют собой набор различных сигналов, передаваемых в рамках взаимодействия нейронов с другими нейронами или мышцами и железами. Сигналы испускаются и распространяются с помощью ионов, генерирующих электрический заряд, который движется вдоль нейрона.

Строение

Различается антероградный (от тела) и ретроградный (к телу) аксонный транспорт.

Аксон обычно — длинный отросток, приспособленный для проведения возбуждения от тела нейрона. Дендриты — как правило, короткие и сильно разветвлённые отростки, служащие главным местом образования влияющих на нейрон возбуждающих и тормозных синапсов (разные нейроны имеют различное соотношение длины аксона и дендритов). Нейрон может иметь несколько дендритов и обычно только один аксон. Один нейрон может иметь связи со многими (до 20-и тысяч) другими нейронами.

Дендриты делятся дихотомически, аксоны же дают коллатерали. В узлах ветвления обычно сосредоточены митохондрии.

Дендриты не имеют миелиновой оболочки, аксоны же могут её иметь. Местом генерации возбуждения у большинства нейронов является аксонный холмик — образование в месте отхождения аксона от тела. У всех нейронов эта зона называется триггерной.

Си́напс — место контакта между двумя нейронами или между нейроном и получающей сигнал эффекторной клеткой. Служит для передачи нервного импульса между двумя клетками, причём в ходе синаптической передачи амплитуда и частота сигнала могут регулироваться. Одни синапсы вызывают деполяризацию нейрона, другие — гиперполяризацию; первые являются возбуждающими, вторые — тормозящими. Обычно для возбуждения нейрона необходимо раздражение от нескольких возбуждающих синапсов.

Классификация

На основании числа и расположения дейндритов и аксона нейроны делятся на безаксонные, униполярные нейроны, псевдоуниполярные нейроны, биполярные нейроны и мультиполярные (много дендритных стволов, обычно эфферентные) нейроны.

Безаксонные нейроны - небольшие клетки, сгруппированы вблизи спинного мозга в межпозвоночных ганглиях, не имеющие анатомических признаков разделения отростков на дендриты и аксоны. Все отростки у клетки очень похожи. Функциональное назначение безаксонных нейронов слабо изучено.

Униполярные нейроны - нейроны с одним отростком, присутствуют, например в сенсорном ядре тройничного нерва в среднем мозге.

Биполярные нейроны - нейроны, имеющие один аксон и один дендрит, расположенные в специализированных сенсорных органах - сетчатке глаза, обонятельном эпителии и луковице, слуховом и вестибулярном ганглиях;

Мультиполярные нейроны - Нейроны с одним аксоном и несколькими дендритами. Данный вид нервных клеток преобладает в центральной нервной системе

Псевдоуниполярные нейроны - являются уникальными в своём роде. От тела отходит один остросток, который сразу же Т-образно делится. Весь этот единый тракт покрыт миелиновой оболочкой и структурно представляет собой аксон, хотя по одной из ветвей возбуждение идёт не от, а к телу нейрона. Структурно дендритами являются разветвления на конце этого (периферического) отростка. Триггерной зоной является начало этого разветвления (т. е. находится вне тела клетки).

По положению в рефлекторной дуге различают афферентные нейроны (чувствительные нейроны), эфферентные нейроны (часть из них называется двигательными нейронами, иногда это не очень точное название распространяется на всю группу эфферентов) и интернейроны (вставочные нейроны).

Афферентные нейроны (чувствительный, сенсорный или рецепторный). К нейронам данного типа относятся первичные клетки органов чувств и псевдоуниполярные клетки, у которых дендриты имеют свободные окончания.

Эфферентные нейроны (эффекторный, двигательный или моторный). К нейронам данного типа относятся конечные нейроны - ультиматные и предпоследние – неультиматные.

Ассоциативные нейроны (вставочные или интернейроны) - эта группа нейронов осуществляет связь между эфферентными и афферентными, их делят на комисуральные и проекционные (головной мозг).

Нервные клетки бывают звездчатые и веретенообразные, пирамидальные, зернистые, грушевидные и т.д.

Развитие и рост нейрона


Нейрон развивается из небольшой клетки — предшественницы, которая перестаёт делиться ещё до того, как выпустит свои отростки. (Однако, вопрос о делении нейронов в настоящее время остаётся дискуссионным. [1] (рус.) ) Как правило, первым начинает расти аксон, а дендриты образуются позже. На конце развивающегося отростка нервной клетки появляется утолщение неправильной формы, которое, видимо, и прокладывает путь через окружающую ткань. Это утолщение называется конусом роста нервной клетки. Он состоит из уплощенной части отростка нервной клетки с множеством тонких шипиков. Микрошипики имеют толщину от 0,1 до 0,2 мкм и могут достигать 50 мкм в длину, широкая и плоская область конуса роста имеет ширину и длину около 5 мкм, хотя форма её может изменяться. Промежутки между микрошипиками конуса роста покрыты складчатой мембраной. Микрошипики находятся в постоянном движении — некоторые втягиваются в конус роста, другие удлиняются, отклоняются в разные стороны, прикасаются к субстрату и могут прилипать к нему.

Конус роста заполнен мелкими, иногда соединёнными друг с другом, мембранными пузырьками неправильной формы. Непосредственно под складчатыми участками мембраны и в шипиках находится плотная масса перепутанных актиновых филаментов. Конус роста содержит также митохондрии, микротрубочки и нейрофиламенты, имеющиеся в теле нейрона.

Вероятно, микротрубочки и нейрофиламенты удлиняются главным образом за счёт добавления вновь синтезированных субъединиц у основания отростка нейрона. Они продвигаются со скоростью около миллиметра в сутки, что соответствует скорости медленного аксонного транспорта в зрелом нейроне. Поскольку примерно такова и средняя скорость продвижения конуса роста, возможно, что во время роста отростка нейрона в его дальнем конце не происходит ни сборки, ни разрушения микротрубочек и нейрофиламентов. Новый мембранный материал добавляется, видимо, у окончания. Конус роста — это область быстрого экзоцитоза и эндоцитоза, о чём свидетельствует множество находящихся здесь пузырьков. Мелкие мембранные пузырьки переносятся по отростку нейрона от тела клетки к конусу роста с потоком быстрого аксонного транспорта. Мембранный материал, видимо, синтезируется в теле нейрона, переносится к конусу роста в виде пузырьков и включается здесь в плазматическую мембрану путём экзоцитоза, удлиняя таким образом отросток нервной клетки.

Росту аксонов и дендритов обычно предшествует фаза миграции нейронов, когда незрелые нейроны расселяются и находят себе постоянное место.

См. также

  • Нервные волокна
  • Аксон
  • Дендрит
  • Синапс
  • Компьютер
  • Искусственный нейрон
  • Нейронная сеть

Сома · Аксон (Аксонный холмик, Терминаль аксона, Аксоплазма, Аксолемма, Нейрофиламенты)

О чем шумим?

Полученные срезы нервной ткани окрасили флуоресцирующими (светящимися) антителами, выявляющими наличие двух веществ — даблкортина (DCX) и нейральных молекул клеточной адгезии (PSA-NCAM) — маркеров незрелых нейронов. Клетка считалась вновь образованной только в том случае, если после такой окраски она флуоресцировала смесью двух цветов — от антител к обоим соединениям. Те нейроны, которые вырабатывали только один из названных маркеров, не учитывали.


Такие данные резко расходятся с результатами, полученными другими исследовательскими коллективами ранее. Но иными методами: либо с помощью радиоактивного углерода, который может встроиться только в делящиеся молекулы ДНК, либо с использованием бромдезоксиуридина (BrdU), вещества, обладающего сходными свойствами. И хотя сравнивать результаты, полученные с помощью различных методик, нелегко, некоторые ученые, работающие в области взрослого нейрогенеза, уже высказали ряд претензий к новой статье.

Нападение и защита

Первая претензия к калифорнийцам: не надо было использовать образцы мозга от умерших людей. Наверняка за то время, пока их мозг был внутри уже безжизненного тела, маркеры делящихся клеток в нем успели повредиться или даже разложиться. Потому-то ни у одного взрослого новых нейронов в гиппокампе не нашли. Более того, в ряде случаев смерть наступила из-за инсульта или отказа мотонейронов, а следовательно, нервная ткань была повреждена.

Авторы статьи в Nature возражают: да, в случае с погибшими взрослыми отсутствие делящихся предшественников нейронов в гиппокампе можно списать на посмертные биохимические процессы. Но к результатам, полученным для эпилептиков, такое объяснение не годится. Выходит, что независимо от источника происхождения биоматериала в гиппокампе людей старше 13 лет новых нейронов так мало, что найти их не получается. С другой стороны, остается довольно спорным, насколько данные по срезам мозга людей, страдающих эпилепсией, можно перенести на вполне здоровых испытуемых.

На это авторы статьи об отсутствующем нейрогенезе отвечают, что в других исследованиях взрослого нейрогенеза у людей тоже ничего не сказано про психическое состояние участников экспериментов. Поэтому такие претензии попахивают двойными стандартами.


Ищем ключи под фонарем

Гиппокамп — это, безусловно, важная часть головного мозга. Он нужен и для запоминания нового, и для ориентации в пространстве. Кроме того, именно в этой структуре впервые обнаружили долговременную потенциацию — усиление и облегчение передачи сигналов между нейронами, длящееся несколько часов или даже суток — основу памяти. Гиппокамп человека хорошо изучен, потому что его нередко приходится вырезать у больных височной эпилепсией, которым лекарства уже не помогают снизить частоту и интенсивность припадков. После такой процедуры врачам волей-неволей приходится наблюдать, как удаление этой области мозга влияет на интеллект и характер пациентов.

К тому же с гиппокампом очень удобно экспериментировать на грызунах. Он у них весьма крупный, к нему легко дотянуться электродами и другими приспособлениями. Вероятно, это одна из причин, почему новые нейроны у взрослых животных ищут именно там, — это проще всего.

Однако люди далеко не грызуны, кроме гиппокампа у нас в мозге есть еще кое-что поважнее — кора больших полушарий. Она у нас развита хорошо, пожалуй лучше, чем у всех остальных млекопитающих. Именно кора обеспечивает способность говорить, думать, планировать, мастерить и творить. Кора больших полушарий относится к неокортексу, или новой коре. У примитивных млекопитающих ее, считай, и нет, а у множества грызунов, в том числе мышей и крыс, она развита слабо: косвенно об этом можно судить по числу извилин, которые у этих животных почти отсутствуют. А гиппокамп — это и вовсе древняя кора, самая старая и самая примитивная из существующих. Он есть и у рептилий.


Логично предположить, что чем более продвинуто в плане строения нервной системы животное, тем меньшую роль в его деятельности играет гиппокамп и тем большую — новая кора. Раз так, то смысла обновлять клетки древней коры становится меньше, а добавлять нейроны к коре больших полушарий, наоборот, выгоднее (и у людей это, кстати, происходит). Зачем менять ручку двери ванной, если в квартире обваливается потолок?

Мозги различных видов млекопитающих вполне следуют этой логике. У кошек, кроликов и морских свинок незрелые нейроны находят далеко не только в гиппокампе, но и в новой коре, а вот у крыс и мышей большие полушария не обновляются: видимо, размер этих животных маловат. А у дельфинов — животных еще более крупных, дольше живущих, а главное, умных — ко всему прочему скорость взрослого нейрогенеза в гиппокампе с возрастом падает практически до нуля. Люди, как можно заметить, во многом умнее дельфинов, да и не всегда сильно мельче. Так что сильно удивляться отсутствию нейрогенеза в гиппокампе взрослых Homo sapiens нелогично.

Но эксперименты на людях ставить нельзя. Им можно только делать операции, в ходе которых часть тканей головного мозга удаляется. Значит, для детального изучения нейрогенеза у взрослых нужны какие-то другие крупные млекопитающие. Дельфины подошли бы, но есть две проблемы. Во-первых, они живут в воде и в неволе содержать их трудно. Во-вторых, комитеты по биоэтике постоянно сужают круг допустимых манипуляций над ними: обижать умных считается делом нехорошим. С обезьянами та же беда: они слишком похожи на нас, и каждый год приматологи находят новые черты их интеллектуального сходства с нами, так что эксперименты на приматах тоже постепенно сворачивают. Поэтому авторы статьи, вышедшей в конце января в The Journal of Neuroscience, на роль объекта изучения выбрали овец. Они и крупные, и живут долго (в неволе до 30 лет, как и макаки), и извилин у них гораздо больше, чем у грызунов (то есть площадь новой коры настолько велика, что она умещается в череп, лишь если ее несколько раз сложить). А значит, овцы по строению и ходу развития головного мозга почти наверняка ближе к человеку, чем мыши и крысы. Ученые сделали срезы головного мозга новорожденных и подросших ягнят, а также половозрелых особей. Проверив их на содержание все того же даблкортина, биологи выяснили, где какие клетки появляются у животных этого вида.


И что же оказалось? У мелкого рогатого скота в коре больших полушарий, а также в подкорковых структурах делящихся предшественников нервных клеток нет. Повод расстраиваться? Отнюдь. Ведь зато там есть нейроны, появившиеся еще в ходе эмбрионального развития и сохранившие множество структурных и биохимических признаков незрелых нервных клеток. Что самое интересное, их число с возрастом не падает!

Научные войны

Подобные заявления, как правило, в момент их написания имеют крайне незначительное отношение к реальности. До сих пор введение предшественников нервных клеток в мозг больных инсультом, паркинсонизмом и другими неврологическими заболеваниями ни разу не дало статистически значимых результатов. Да, испытуемым не становилось хуже, но и улучшений заметно не было, а ведь исследования ведутся уже не одно десятилетие.

Так что не важно, кто прав, а кто ошибся в вопросе реальности нейрогенеза у взрослых людей — авторы новой статьи или их коллеги (взгляните на число публикаций об исследованиях нейрогенеза у человека, составленном канадским нейробиологом Джейсоном Снайдером, который еще и написал синопсис обсуждаемой статьи в Nature). На нашем веку в медицине от этого ничего не изменится. Однако если для вас важнее получение нового знания как такового, а его практическая польза или светлое будущее человечества вас волнуют куда слабее, то такой расклад смущать не должен. Наличие двух противоположных точек зрения, подкрепленных эмпирическими свидетельствами, говорит о крайне плодотворной ситуации, которая неизбежно в скором времени создаст прорыв в нашем понимании развития и функционирования нервной системы.

Светлана Ястребова

(neurocytus; синоним: нейрон, неврон, нейроцит)

основной структурный и функциональный элемент нервной ткани.

Отличительными особенностями Н.к. являются высокая возбудимость и способность по своим отросткам и телу проводить Возбуждение, за счет чего реализуется главная функция Н.к. — переработка и передача сигналов от рецепторов к исполнительным органам организма (мышцам, железам). Основная масса Н.к. сосредоточена в головном мозге (Головной мозг). Всего у человека насчитывается около ста миллиардов Н.к.

Нервная клетка относится к отростчатым клеткам с четким делением на тело, ядерную часть и перикарион и отростки (рис. 1). Среди отростков выделяют аксон (нейрит) и дендриты. Аксоны отличаются от дендритов длиной. ровным контуром, ответвления от аксона начинаются, как правило, на достаточно большом расстоянии от места отхождения. Дендриты обычно более короткие и ветвистые, чем аксоны. Аксоны составляют основу организации нервных волокон (см. Нервы) и проводящих путей головного и спинного мозга (см. Нервная система). В цитоплазме тела Н.к. содержатся все основные внутриклеточные органеллы (см. Клетка). Наружная мембрана Н.к. непосредственно переходит в мембрану аксонов и дендритов, образуя единую поверхность распространения нервного импульса. При этом дендриты служат проводниками нервных импульсов к Н.к., аксоны — от Н.к. Части аксона функционально неравнозначны: аксонный холмик (конусовидное образование, отходящее от тела Н.к.) и начальный, или инициальный, сегмент аксона (отрезок между аксонным холмиком и собственно нервным волокном) являются областями, где возникает возбуждение; собственно нервное волокно проводит это возбуждение в форме нервного импульса; терминальная часть нервного волокна обеспечивает условия для передачи импульса и формирует пресинаптическую часть Синапса.

По числу отростков (рис. 2) нейроны человека и высших позвоночных животных делят на два основных типа, биполярные — (с одним аксоном и одним дендритом) и мультиполярные (с одним аксоном и несколькими дендритами). Самые многочисленные мультиполярные нейроны могут иметь два крайних варианта строения аксона: относительно короткий аксон, ветвящийся вблизи тела Н.к. (клетка типа Гольджи); очень длинный (до 90 см) неветвящийся аксон, достигающий своим окончанием исполнительного органа (клетки типа Дейтерса). Численность и расположение дендритов влияют на форму Н.к. (округлая, овальная, звездчатая, горизонтальная, грушевидная, пирамидная).

Ядро обычно находится в центре тела нейрона; его величина, а также степень деконденсации хроматина зависят от величины перикариона, длины и численности отростков. Для крупных длинноотростчатых нейронов типично крупное округлое светлое ядро с деконденсированным хроматином и крупным ядрышком.

Все части Н.к. (перикарион, аксон и дендриты) находятся в непрерывной функциональной связи друг с другом, и изменения в одной из них влекут за собой изменения в других.

Нервные клетки разнообразны, поэтому существуют несколько вариантов их классификации: по размеру клеток, форме тела, длине и числу отростков, типу секреции биологически активных веществ, конфигурации и величине биоэлектрических потенциалов, месту расположения в организме, характеру связи. Н.к., аксоны которых выходят за пределы ц.н.с. и заканчиваются в эффекторных структурах или в периферических нервных узлах, получили название эфферентных (двигательных, если они иннервируют мускулатуру). Вторую группу составляют афферентные, или чувствительные, Н.к.: их тела обычно округлой формы, имеют один отросток, который затем Т-образно делится. Один из отростков после деления направляется на периферию, где образует чувствительное окончание, а другой отросток — в ц.н.с., где формирует синаптические окончания, оканчивающиеся на других Н.к. Промежуточные Н.к., или интернейроны, отличаются тем, что и их тела, и их отростки располагаются только в ц.н.с. Они различаются по форме, длине, ходу и ветвлению отростков. Окончания одной промежуточной Н.к. образуют пресинаптическую часть синаптического аппарата, а часть другой Н.к. — его постсинаптическую часть. Внутри пресинаптического окончания всегда находится большое количество митохондрий и синаптических пузырьков (везикул), содержащих те или иные Медиаторы, которые выделяются в синоптическую щель в процессе передачи возбуждения.

Разнообразие Н.к. обусловливает необходимость исследования их специализации и внутреннего взаимодействия. Например, функция сетчатки глаза, которую можно рассматривать как участок мозга, вынесенный на периферию, становится понятной только через сложную координацию разнотипных Н.к.

Различия между Н.к. могут определяться характером специфических белков, встроенных в наружную мембрану Н.к. К их числу относятся белки, образующие так называемые ионные насосы, поддерживающие разницу в содержании ионов натрия и калия внутри Н.к. по отношению к наружной среде (см. Клетка, Мембраны биологические). Большую роль играют также белки-рецепторы, имеющие сродство с определенным типом медиатора, гормона или другого биологически активного вещества. Характер ответа Н.к. определяется только типом активизированного рецептора.

Нервная клетка отличается высокой вариабельностью функционирования и восприимчивостью генетического аппарата к внешним воздействиям. Генетический аппарат Н.к. участвует в синтезе специфических веществ, восприятие которых наряду с информацией, поступающей по нервным волокнам, создает условия для того, чтобы мозг через Н.к. мог отражать и регулировать состояние внутренней среды и целенаправленной деятельности организма.

Библиогр.: Анохин П.К. Очерки по физиологии функциональных систем, с. 347, М., 1975; Немечек С. Введение в нейробиологию, пер. с чешск., Прага, 1978; Общая физиология нервной системы, под ред. П.Г. Костюка и др., с. 7, Л., 1979; Хьюбел Д. и др. Мозг, пер. с англ., с. 31, М., 1982; Хэм А. и Кормак Д. Гистология, пер. с англ., т. 3, с. 163, М., 1983.


Рис. 2. Схематическое изображение афферентных нервных клеток высших позвоночных животных: 1 — биполярная нервная клетка сетчатой оболочки глаза; 2 — мультиполярная клетка из узла автономной нервной системы; 3 — ложноуниполярная клетка из спинномозгового узла; А — аксон, Д — дендрит.


Рис. 1. Схематическое изображение двигательной нервной клетки: 1 — ядро; 2 — ядрышко; 3 — ядерная оболочка; 4 — гранулярный эндоплазматический ретикулум; 5 — комплекс Гольджи; 6 — дендриты; 7 — аксон; 8 — аксонный холмик; 9 — инициальный сегмент аксона; 10 — миелиновая оболочка; 11 — телодендрий; 12 — претерминальная и (13) терминальная части нервного волокна (аксона); 14 — пресинаптическая часть.

02 октября 2015

  • 10953
  • 9,0
  • 5
  • 7

Картина художника и дипломированного нейрофизиолога Грега Данна, изображающая одну из главных зон взрослого нейрогенеза — гиппокамп.


  • Антон Чугунов

  • Ольга Волкова


Спонсоры конкурса: лаборатория биотехнологических исследований 3D Bioprinting Solutions и студия научной графики, анимации и моделирования Visual Science.

Пошатнуть стереотип оказалось непросто.

Еще в начале прошлого века потеря нейронов в результате травмы или старения считалась фатальной — ведь даже лучшие умы настаивали на невозможности новообразования нейронов (или нейрогенез) у взрослых особей высших позвоночных. Впервые это постулировал гениальный С. Рамон-и-Кахаль [1], у которого на тот момент просто не могло быть инструментов исследования мозга, способных фиксировать малоинтенсивные постнатальные процессы. Авторитет Рамон-и-Кахаля был огромен, к тому же было известно, что с возрастом масса мозга снижается. О наличии малого пула стволовых клеток поводов задуматься не было, а отсутствие знаний о пластичности мозга не позволяло решить проблему интеграции новых нейронов в сложнейшую систему старых.

В результате убежденность в невозможности образования нервных клеток во взрослом состоянии была настолько твердой, что стала причиной ряда драматических историй в науке. Одним из первых, кто говорил о существовании взрослого нейрогенеза, был Джозеф Альтман. Используя новый для того времени метод авторадиографии с меченым тимидином (рис. 1), он и его сотрудники выпустили в 60-х целый ряд работ, утверждавших протекание нейрогенеза в зубчатой фасции гиппокампа, обонятельных луковицах и коре головного мозга у взрослых крыс, морских свинок, а также в новой коре у кошек [2].


Рисунок 1. Первые признаки взрослого нейрогенеза. Животным вводили 3 Н-тимидин — радиоактивный аналог обычного нуклеотида тимидина, — который тоже встраивается в ДНК делящейся клетки, но который потом можно регистрировать методом авторадиографии.

. и всё же это удалось!

Одним из поворотных моментов в изучении нейрогенеза стала серия статей Фернандо Ноттебома, вышедшая в 80-х и 90-х годах. Сейчас Ноттебом — глава отдела экологии и этологии Рокфеллеровского университета, а тогда он занимался мозгом птиц, в частности — вокальным центром канареек. В ходе его работы выяснилось, что в отделах их мозга, гомологичных коре и гиппокампу приматов, помимо гибели происходит образование огромного количества новых клеток! При этом многие новые клетки являются нейронами и образуют синапсы, а активность всего этого процесса коррелирует со сложностью окружающей птицу среды. Несмотря на то, что многими эти результаты списывались на некую специфику птиц, они сильно сдвинули общественное мнение [3].

Исследование нейрогенеза продолжилось с новыми силами после введения в научную практику синтетических аналогов тимидина. Такие аналоги куда легче потом обнаружить в тканях, чем радиоактивные, которые использовал Альтман. Кроме того, были открыты маркеры клеток разных типов: нейронов различной степени зрелости, клеток глии, а также любых клеток, находящихся в фазе митоза, то есть делящихся. Это позволило еще увереннее говорить об активном нейрогенезе в зубчатой фасции гиппокампа и в стенках желудочков мозга с проекциями в обонятельные луковицы (рис. 2) [4]. Последние работы демонстрируют нейрогенез и в ряде других структур мозга: в хвостатом ядре, фронтальной коре, первичной и вторичной моторной и соматосенсорной коре (рис. 3) [5], [6]. Но недостаточно высокая активность процесса всё же не позволяет называть эти зоны нейрогенными, в отличие от двух вышеназванных.


Рисунок 2. Зоны мозга, в которых происходит нейрогенез: субвентрикулярная зона мозга (SVZ) в боковых стенках первых двух желудочков и субгранулярная зона зубчатой фасции гиппокампа (SGZ). У грызунов образующиеся в SVZ клетки потом мигрируют по ростральному миграционному тракту в обонятельные луковицы.


Рисунок 3. Зоны мозга человека, в которых происходит нейрогенез. У приматов клетки, образующиеся в субвентрикулярной области, мигрируют еще и в полосатое тело, которое представляет собой анатомическую структуру мозга, отвечающую за мышечный тонус, формирование условных рефлексов, а также регулирующую некоторые поведенческие реакции.

Нейрогенез в желудочках мозга значительно усиливается при каком-либо обонятельном опыте, а также при беременности у грызунов, так как узнавание детенышей у них сильно связано с обонянием [7], [8]. Результаты работ по исследованию нейрогенеза в этой зоне у человека пока не приводят к окончательным выводам: часть из них свидетельствует о его протекании у человека, другая ставит под сомнение миграцию нейронов в обонятельные луковицы. Недавно было показано, что у приматов новообразованные нейроны из субвентрикулярной зоны могут мигрировать в полосатое тело (или стриатум), отвечающее за сложные двигательные реакции и формирование условных рефлексов [9]. С повреждениями стриатума связан синдром Туретта, а также более серьезные проблемы, такие как болезни Паркинсона и Хантингтона. Поэтому в будущем можно рассчитывать на появление ряда работ по связанному с этой областью нейрогенезу.

Нейрогенез оказался важным инструментом в нашем организме.

Пожалуй, для человека самой важной нейрогенной зоной всё же можно назвать зубчатую фасцию гиппокампа. Гиппокамповая формация является частью лимбической системы и участвует в исполнении таких функций мозга, как интеграция и распределение по мозгу сенсорной информации, ответ на новизну, регуляция настроения и активности организма. Будучи частью круга Пейпеца, гиппокамп удерживает информацию при бодрствовании и участвует в ее переводе в кору больших полушарий во время сна, то есть из кратковременной памяти в долговременную. Нейрогенез вовлечен в осуществление некоторых из этих функций, выполнение которых становится возможным благодаря специфическим характеристикам образующихся клеток — в частности, молодые гранулярные клетки зубчатой фасции имеют более низкий порог долговременной потенциации, чем старшие [10]. Считается, что подобная пластичность играет роль в процессах обучения и памяти [11].

Стадии нейрогенеза в зубчатой фасции подробно описаны по морфологии клеток и набору специфических клеточных маркеров (рис. 4) [15].


Рисунок 4. Схема дифференцировки нервных стволовых клеток зубчатой фасции со специфическими маркерами разных стадий. Покоящиеся нервные предшественники (quiescent neural progenitors, в ранней классификации называемые радиальной глией) после активации цитокинами, ростовыми или иными факторами начинают делиться асимметричным митозом с образованием в базальной части делящегося нервного предшественника (amplifying neural progenitor, в ранней классификации — нерадиальный предшественник). Он, в свою очередь дважды поделившись, выходит из клеточного цикла и становится постмитотическим нейробластом (neuroblast 1, ранее — промежуточный прогенитор). Именно на этой стадии погибает большинство клеток. Оставшиеся превращаются в нейробласты второго порядка (neuroblasts 2, ранее — нейробласты) и затем в незрелые нейроны, мигрирующие в гранулярный слой, где завершается их созревание. Полное превращение нервной (нейральной) стволовой клетки в функциональный нейрон занимает около месяца.


В то же время вторая модель не исключает возможности нахождения в зубчатой фасции или малых популяций самовоспроизводящихся стволовых клеток, или клеток с удлиненными G2/M-фазами, или же каких-то специфических клеток, не экспрессирующих нестин. В последнем случае их просто не удалось бы обнаружить при использованном дизайне эксперимента.

. на работу которого многое может повлиять

Хотя в целом результат воздействия многих перечисленных факторов можно предугадать, механизм их воздействия, а также влияние их комбинаций требуют изучения — как для выстраивания правильной общей профилактики, так и для лечения конкретных заболеваний. Среди так называемых позитивных факторов особенно эффективным является обогащенная среда, включающая в себя физические упражнения. По различным данным, нахождение в течение небольшого количества времени (примерно от недели до месяца) в такой среде стабильно и значимо повышает уровень нейрогенеза, причем увеличение может быть даже пятикратным — в зависимости от возраста, состояния здоровья и других параметров [17]. Несмотря на активное изучение эффектов обогащенной среды на нейрогенез, на современном этапе исследований остается открытым вопрос о том, какие именно из ее компонентов (физическая или исследовательская активность) оказывают влияние на процесс формирования новых нейронов в мозге, а также на какие этапы нейрогенеза эти эффекты распространяются. Разрешение этих вопросов важно для поиска новых терапевтических и нейропротекторных воздействий и для нахождения эффективных путей регуляции нейрогенеза во взрослом мозге. Именно поэтому интерес к этой теме лишь усиливается, и количество статей по ней будет расти еще долгое время.

Читайте также:

Пожалуйста, не занимайтесь самолечением!
При симпотмах заболевания - обратитесь к врачу.