Ретикулярная формация лимбическая нервная система


Ретикулярная формация – это особое образование сетчатых нервных клеток с густо переплетенными отростками. Она характерна практически для всех отделов ствола мозга.

Физиологическая особенность нейронов ретикулярной формации:

1) самопроизвольная биоэлектрическая активность. Ее причины — гуморальное раздражение (повышение уровня углекислого газа, биологически активных веществ);

2) достаточно высокая возбудимость нейронов;

3) высокая чувствительность к биологически активным веществам.

Ретикулярная формация имеет широкие двусторонние связисо всеми отделами нервной системы, по функциональному значению и морфологии делится на два отдела:

1) растральный (восходящий) отдел — ретикулярная формация промежуточного мозга;

2) каудальный (нисходящий) — ретикулярная формация заднего, среднего мозга, моста.

Ретикулярная формация оказывает активизирующее и тормозящее воздействие на кору больших полушарий мозга. Специфичность ретикулярной формации состоит в том, что она формирует многие поведенческие рефлексы: половые, пищевые и другие. Многие функции этой части мозга до сих пор непонятны.

Лимбическая система— совокупность ядер и нервных трактов.

Структурные единицы лимбической системы:

1) обонятельная луковица;

2) обонятельный бугорок;

3) прозрачная перегородка;

5) парагиппокамповая извилина;

6) миндалевидные ядра;

7) грушевидная извилина;

8) зубчатая фасция;

9) поясная извилина.

Основные функции лимбической системы:

1) участие в формировании пищевого, полового, оборонительного инстинктов;

2) регуляция вегетативно-висцеральных функций;

3) формирование социального поведения;

4) участие в формировании механизмов долговременной и кратковременной памяти;

5) выполнение обонятельной функции;

6) торможение условных рефлексов, усиление безусловных;

Значимыми образованиями лимбической системы являются:

1) гиппокамп. Его повреждение ведет к нарушению процессазапоминания, обработки информации, снижению эмоциональной активности, инициативности, замедлению скорости нервных процессов, раздражение — к повышению агрессии, оборонительных реакций, двигательной функции. Нейроныгиппокампа отличаютсявысокой фоновой активностью. В ответ на сенсорное раздражение реагируют до 60 % нейронов,генерация возбуждения выражается в длительной реакции наоднократный короткий импульс;

2) миндалевидные ядра. Их повреждение ведет к исчезновению страха, неспособности к агрессии, гиперсексуальности,реакций ухода за потомством, раздражение — к парасимпатическому эффекту на дыхательную и сердечно-сосудистую, пищеварительную системы. Нейроны миндалевидных ядер имеют выраженную спонтанную активность, которая тормозитсяили усиливается сенсорными раздражителями;

3) обонятельная луковица, обонятельный бугорок.

Лимбическая система оказывает регулирующее влияние на кору головного мозга.

Физиология эмоций

Как и другие психические процессы, эмоции имеют рефлекторную природу, возникая в ответ на внешние или внутренние (исходящие из внутренней среды организма) раздражения. Эмоции представляют собой центральную часть рефлекса.

Эмоции – это выражение реакций возбуждения, которые являются отражением мозгом потребностей организма и вероятности их удовлетворения.

Различают эмоции положительные и отрицательные.

1. Отрицательные эмоции связаны с неудовлетворением потребностей. Различают отрицательные эмоции 2 типов:

a. стенические - отражения опасности - ярость, негодование, гнев. Если это не дает результата, то им на смену приходят астенические эмоции

b. астенические - страх, тоска, ужас. Астенические эмоции возникают вследствие того, что предельное напряжение не приносит результата, цель не достигнута.

Известно, что эмоции у человека регулируются на сознательном и подсознательном уровне. За сознательное регулирование эмоций отвечает кора больших полушарий.

Механизмы возникновения эмоций представляют собой сложную картину. Они состоят как из более древних процессов, протекающих в подкорковых центрах и в вегетативной нервной системе, так и из процессов высшей нервной деятельности в коре головного мозга, при господстве последних.

Эти механизмы могут быть представлены в следующем виде:

1. Сигналы, попадающие из внешней среды, оцениваются с точки зрения вероятности их удовлетворения; нервные возбуждения, вызванные в коре головного мозга и гипокампе теми или другими внешними и внутренними раздражителями (а также остаточные возбуждения, лежащие в основе воспоминании).

2. В лобных долях формируется ответ на сигналы с высокой вероятностью удовлетворения, а в гипокампе – с низкой вероятностью. (Разрушение гипокампа приводит к тому, что человек начинает реагировать только на события с высокой степенью вероятности (нарушение работы передних долей мозга делает эмоции неуправляемыми).

3. Далее следуют соответствующие изменения вегетативных процессов: сосудо-двигательные реакции, побледнение или покраснение лица, отлив крови от внутренних органов, выделение продуктов внутренней секреции и т. д.

Подкорковые ядра


Подкорковые ядра образуются скоплением серого вещества в нижних боковых стенках больших полушарий головного мозга.

К подкорковым ядрам относятся такие структуры, как хвостатое ядро, бледный шар, скорлупа. Первые две структуры иногда объединяют общимназванием полосатое тело или стриатум.

Ретикулярная формация (лат. rete - сеть) представляет собой совокупность клеток, клеточных скоплений и нервных волокон, расположенных на всем протяжении ствола мозга (продолговатый мозг, мост, средний и промежуточный мозг) и в центральных отделах спинного мозга . Ретикулярная формация получает информацию от всехорганов чувств , внутренних и других органов , оценивает ее, фильтрует и передает в лимбическую систему и кору большого мозга. Она регулирует уровень возбудимости и тонуса различных отделов центральной нервной системы, включая кору большого мозга, играет важную роль в сознании, мышлении, памяти, восприятии, эмоциях, сне, бодрствовании, вегетативных функциях, целенаправленных движениях, а также в механизмах формирования целостных реакций организма. Ретикулярная формация прежде всего выполняет функцию фильтра, который позволяет важным для организма сенсорным сигналам активировать кору мозга, но не пропускает привычные для него или повторяющиеся сигналы.

Функции ретикулярной формации

Ретикулярная формация обладает нисходящим и восходящим влиянием.

Нисходящее влияние - на нейроны спинного мозга. Оно (влияние) может быть активирующим и тормозным.

Восходящее влияние - на нейроны коры головного мозга - тоже тормозное и активизирующее. За счет особенности своих нейронов ретикулярная формация способна изменять функциональное состояние нейронов центральной нервной системы.

Лимбическая система мозга.-функциональное объединение переднего, промежуточного и среднего мозга обеспечивающее эмоционально- мотивационное поведение человека.

Главной частью лимбической системы является гипоталамус и связанные с ним структуры. Помимо участия в регуляции поведенческих реакций эти области контролируют многие показатели внутренней среды организма, например температуру тела, осмоляльность жидкостей тела, массу тела, а также потребность в еде и жидкости

Получая информацию о внешней и внутренней среде организма, лимбическая система обрабатывает ее и запускает вегетативные, самотические и поведенческие реакции, которые приспосабливают организм к внешней среде и обеспечивает сохранение внутренней среды организма на определенном уровне

18. Большие полушария мозга. Сенсорные зоны коры. Строение полушарий головного мозга человека. Конечный, или большой, мозг состоит из правого и левого больших полушарий. У взрослого человека вес больших полушарий равен 80% веса головного мозга. Они разделены глубокой продольной бороздой. В глубине этой борозды находятся соединяющие большие полушария мозолистое тело и свод. Мозолистое тело состоит из нервных волокон и относится к новой коре. У человека оно достигает наибольшего развития. Передняя его часть называется коленом, переходящим в клюв; средняя — стволом, а задняя, постепенно утолщаясь, образует валик. Поперечные волокна мозолистого тела в каждом полушарии веерообразно расходятся, образуя лучистость. Под мозолистым телом расположен свод. Передние ножки свода направляются в сосковидные тела, а задние — в аммониев рог.


Каждое полушарие состоит из плаща, или мантии, и обонятельного мозга. Внутри полушария находятся подкорковые центры (см. выше) и боковые желудочки. Каждое полушарие имеет 3 поверхности: внутреннюю, спинно-боковую и нижнюю и делится на 4 доли: переднюю — лобную, заднюю — затылочную, среднюю — теменную и нижнюю — височную. Границей между долями являются 3 наиболее крупные основные борозды.

При повреждениях коры более грубо страдают функции дистальных отделов конечностей, особенно рук.

Зрительная система представлена в затылочной доле мозга: поля 17, 18, 19. Центральный зрительный путь заканчивается в поле 17; он информирует о наличии и интенсивности зрительного сигнала. В полях 18 и 19 анализируются цвет, форма, размеры, качества предметов. Поражение поля 19 коры большого мозга при водит к тому, что больной видит, но не узнает предмет (зрительная агнозия, при этом утрачивается также цветовая память).

Слуховая система проецируется в поперечных височных извилинах (извилины Гешля), в глубине задних отделов латеральной (сильвиевой) борозды (поля 41, 42, 52). Именно здесь заканчиваются аксоны задних бугров четверохолмий и латеральных коленчатых тел.

Обонятельная система проецируется в области переднего конца гиппокампальной извилины (поле 34). Кора этой области имеет не шести-, а трехслойное строение. При раздражении этой области отмечаются обонятельные галлюцинации, повреждение ее ведет к аносмии (потеря обоняния).

Вкусовая система проецируется в гиппокампальной извилине по соседству с обонятельной областью коры.

1. Структуры лимбической системы

2. Ретикулярная формация мозга

Вопрос_1

Структуры лимбической системы

Название лимбическая система получила от латинского слова limbus

край или граница.

Определение_1

Лимбическая система представляет собой совокупность подкорковых и корковых структур головного мозга, которая охватывает верхнюю часть ствола головного мозга.

Обонятельный мозг – филогенетически самая древняя часть переднего мозга, которая возникла в связи с развитием обоняния. Так, например, у рыб обонятельный мозг практически полностью составляет передний мозг. У млекопитающих эта область переднего мозга переходит в подчинение коре полушарий, и вытесняется на нижнюю и медиальную поверхность полушарий переднего мозга. В обонятельном мозге условно выделяют периферический и центральный отделы.

К периферическому отделу относятся структуры древней коры (палеокертекс):

  • обонятельную луковицу(bulbus olfactorius)
  • обонятельный тракт (tractus olfactorius)
  • обонятельный треугольник (trigonum olfactorium)
  • переднее продырявленное вещество (substantia perforata anterior)

К центральному отделу относятся структуры старой коры (архиокортекса):

  • сводчатая извилина (gyrus fornicatus)
  • зубчатая извилина(gyrus dentatus)
  • гиппокамп(hippocampus)
  • миндалевидное тело (corpus amygdaloideum)
  • мамиллярные тела (corpus mamillare)

Сводчатая извилина имеет кольцевидную форму, огибает мозолистое тело и расположена на медиальной поверхности полушарий мозга. Сводчатая извилина состоит из трех частей: поясной извилина, перешейка и парагиппокампальной извилины. Сверху поясную извилину ограничивает поясная борозда, а снизу борозда мозолистого тела. Сзади, на уровне теменно-затылочной борозды поясная борозда переходит в перешеек свода, переходящий в извилину гиппокампа. Извилина гиппокампа, или парагиппокампальная извилина у переднего продырявленного вещества загибается в виде крючка (корковый центр обонятельного анализатора).


Рисунок 1 – Основные структуры лимбической системы

Гиппокамп (аммонов рог) – это парное образование в головном мозге позвоночных, которое является основной частью архиокортекса – старой коры и лимбической системы млекопитающих. Впервые гиппокамп появился у двоякодышащих рыб и безногих амфибий. Гиппокамп земноводных надстраивался над гипоталамусом, у пресмыкающихся появились связи между гиппокампом и гипоталамусом, а у млекопитающих возникли связи с амигдалярным комплексом базальных ганглиев головного мозга. В результате развития архиокортекса и возникла лимбическая система.

Зубчатая извилина представляет скрученную часть коры височной доли, которая примыкает к гиппокампальной борозде. Миндалевидное тело – это группа ядер, которые расположены внутри височной доли мозга, и относящейся одновременно к базальным ганглиям и лимбической системе. Мамиллярные тела – это система толстых миелинизированных волокон и ядерных образований, которые входят в состав гипоталамуса промежуточного мозга и лимбической системы. Мамилярные тела принимают волокна от коры больших полушарий и мозжечка и оказывают тормозящее влияние на структуры лимбической системы.

Свод (fornix) – структура обеспечивающая соединение гиппокампа с мамиллярными телами. Она состоит из двух дугообразных тяжей, имеет столбы, тело, две ножки и спайку, соединяющую ножки свода. Каждая ножка, спускается вниз и переходит в бахрому гиппокамп.

Кроме указанных структур в лимбическую систему в настоящее время включают гипоталамус и ретикулярную формацию среднего мозга.

Лимбическая система имеет кольцевую структуру, афферентные входыосуществляются от различных областей головного мозга, через гипоталамус, ретикулярную формацию и волокна обонятельного нерва, которые считаются главными источниками ее возбуждения.Эфферентные выходыиз лимбической системы осуществляются через гипоталамус на вегетативные и соматические центры ствола мозга и спинного мозга.

Рисунок 2 – Схема основных внутренних связей лимбической системы.

А – круг Пейпеца, Б – круг Наута; ГТ/МТ – мамилярные тела гипоталамуса, СМ – средний мозг (по В.М. Смирнову)

Особенностью лимбической системы является то, что между ее структурами имеются простые двусторонние связи и сложные пути, образующие множество замкнутых кругов. Такая организация создает условия для длительного циркулирования одного и того же возбуждения в системе – реверберации возбуждения, и тем самым служит для сохранения в ней единого состояния и навязывания этого состояния другим системам мозга.

В настоящее время хорошо известны связи между структурами мозга, организующие круги, имеющие свою функциональную специфику. К ним относитсякруг Пейпеца(гиппокамп - сосцевидные тела - передние ядра таламуса - кора поясной извилины - парагиппокампова извилина - гиппокамп). Этот круг имеет отно­шение к памяти и процессам обучения. Другой круг,круг Наута(миндалевидное тело - гипоталамус - мезенцефальные структуры - миндалевидное тело) регулирует агрессивно-оборонительные, пищевые и сексуальные формы поведения.

Вопрос_2

Ретикулярная формация мозга

Ретикулярная формация(лат.reticulum– сетка,formatio– образование) – это участокствола головного мозга, состоящий из диффузного скопления нейронов с разветвлённымиаксонамиидендритами, представляющих единый комплекс. Ретикулярная формация осуществляет активациюкоры головного мозгаи контролируетрефлекторную деятельностьспинного мозга. Эта сеть нейронов располагается в самой большой части мозгового ствола. Она берет начало из нижней части продолговатого мозга и протягивается до ядер таламуса.

Рисунок 3 – Ретикулярная формация в структуре мозга

Нейроны ретикулярной формации характеризуются большим количеством афферентных связей, идущих от сенсорных образований. Их отростки направляются в кору больших полушарий, в ядра различных отделов головного мозга и мозжечка. Восходящие проекции обеспечивают активирующие влияние ретикулярной формации на высшие центры нервной системы. Нисходящие проекционные пути ретикулярной формации рассматривают как систему, угнетающую активность нижележащих центров. Важной особенностью ретикулярной формации является существование в ней большого количества ретикулярных нейронов, посылающих одновременно крупные аксоны в спинной мозг и таламус. Основной объем проекций представлен волокнами ретикулоспинального тракта, который угнетает активность мотонейронов спинного мозга. Основные медиаторы ретикулярной формации: ацетилхолин, норадренолин, дофамин, серотонин.

Открытие функцииретикулярной формации, приписывается Джузеппе Моруцци (Giuseppe Moruzzi) и Горацию Магоуну (Horace Magoun). Эти исследователи обнаружили в 1949 году, что при электрической стимуляции ретикулярной формации, у подопытных животных, находящихся под наркозом, на ЭЭГ волновые активность сна сменяется на волновую активность бодрствования.

Ретикулярная формация приписывают участие в восприятии боли агрессивном и половом поведении.



Контрольные вопросы

1. Какие принципы лежат в основе классификации нервных клеток?

2. Как классифицируют рецепторы?

3. Назовите основные звенья рефлекторной дуги.

4. Какие отделы выделяют в нервной системе?

5. Охарактеризуйте роль нервной системы в организме.

6. Что такое сегмент спинного мозга?

7. Какие тракты проходят в канатиках спинного мозга?

8. Что такое сегментарный и проводниковый аппараты?

9. Какие отделы различают в головном мозге?

10. Перечислите черепные нервы продолговатого мозга, моста и среднего мозга.

11. Охарактеризуйте функциональное предназначение мозжечка.

12. Какие структуры включает промежуточный мозг?

13. Перечислите слои коры конечного мозга.

14. Укажите динамическую локализацию функций в коре конечного мозга.

15. Перечислите желудочки головного мозга.

16. Назовите оболочки головного и спинного мозга.

17. Как классифицируют проводящие пути центральной нервной системы?

18. Перечислите проводящие пути общей чувствительности.

19. Назовите проводящие пути специальной чувствительности.

20. Чем отличаются пирамидные проводящие пути от экстрапирамидных?

Вегетативная нервная система

Вегетативная (автономная) нервная система обеспечивает иннер­вацию:

· и выполняет адаптационно-трофическую функцию.

Так же как и со­матическая нервная система, она осуществляет свою деятельность посредством рефлексов.

Например, при раздражении рецепторов желудка через блуждающий нерв к этому органу поступают импуль­сы, усиливающие секрецию его желез и активирующие моторику.

Как правило,

· вегетативные рефлексы не подконтрольны сознанию, т. е. происходят автоматически после определенных раздражений.

· Человек не может произвольно учащать или урежать частоту сердеч­ных сокращений, усиливать или угнетать секрецию желез.

Так же как и в простой соматической рефлекторной дуге, в соста­ве вегетативной рефлекторной дуги имеются три нейрона.

Тело пер­вого из них (чувствительного или рецепторного) расположено в чув­ствительном узле спинномозгового нерва или в соответствующем чувствительном узле черепного нерва.

Второй нейрон — ассоциатив­ная клетка, лежит в вегетативных ядрах головного или спинного моз­га.

Третий нейрон — эффекторный, находится за пределами цент­ральной нервной системы в паравертебральных и превертебральных — симпатических, или интрамуральных, и краниальных — па­расимпатических узлах (ганглиях).

Таким образом, дуги соматиче­ских и вегетативных рефлексов различаются между собой местопо­ложением эффекторного нейрона.

· В первом случае он лежит в пре­делах центральной нервной системы (двигательные ядра передних рогов спинного мозга или двигательные ядра черепных нервов),

· а во втором — на периферии (в вегетативных узлах).

· Для вегетативной нервной системы также характерен сегментар­ный тип иннервации.

· Центры вегетативных рефлексов имеют опре­деленную локализацию в центральной нервной системе, а импульсы к органам проходят через соответствующие нервы.

· Сложные вегетатив­ные рефлексы выполняются с участием надсегментарного аппарата.

· Надсегментарные центры локализуются в:

- гипоталамусе,

-лимбиче­ской системе,

-и в коре полуша­рий большого мозга.

О роли каждой из этих структур в вегетативной иннервации организма написано в соответствующих разделах.

В функциональном отношении выделяют:

· симпатический

· и пара­симпатический отделы вегетативной нервной системы.



Дата добавления: 2018-06-01 ; просмотров: 741 ;

4. Физиология ретикулярной формации и лимбической системы

Ретикулярная формация ствола мозга – скопление полиморфных нейронов по ходу ствола мозга.

Физиологическая особенность нейронов ретикулярной формации:

1) самопроизвольная биоэлектрическая активность. Ее причины – гуморальное раздражение (повышение уровня углекислого газа, биологически активных веществ);

2) достаточно высокая возбудимость нейронов;

3) высокая чувствительность к биологически активным веществам.

Ретикулярная формация имеет широкие двусторонние связи со всеми отделами нервной системы, по функциональному значению и морфологии делится на два отдела:

1) растральный (восходящий) отдел – ретикулярная формация промежуточного мозга;

2) каудальный (нисходящий) – ретикулярная формация заднего, среднего мозга, моста.

Физиологическая роль ретикулярной формации – активация и торможение структур мозга.

Лимбическая система – совокупность ядер и нервных трактов.

Структурные единицы лимбической системы:

1) обонятельная луковица;

2) обонятельный бугорок;

3) прозрачная перегородка;

5) парагиппокамповая извилина;

6) миндалевидные ядра;

7) грушевидная извилина;

8) зубчатая фасция;

9) поясная извилина.

Основные функции лимбической системы:

1) участие в формировании пищевого, полового, оборонительного инстинктов;

2) регуляция вегетативно-висцеральных функций;

3) формирование социального поведения;

4) участие в формировании механизмов долговременной и кратковременной памяти;

5) выполнение обонятельной функции;

6) торможение условных рефлексов, усиление безусловных;

Значимыми образованиями лимбической системы являются:

1) гиппокамп. Его повреждение ведет к нарушению процесса запоминания, обработки информации, снижению эмоциональной активности, инициативности, замедлению скорости нервных процессов, раздражение – к повышению агрессии, оборонительных реакций, двигательной функции. Нейроны гиппокампа отличаются высокой фоновой активностью. В ответ на сенсорное раздражение реагируют до 60 % нейронов, генерация возбуждения выражается в длительной реакции на однократный короткий импульс;

2) миндалевидные ядра. Их повреждение ведет к исчезновению страха, неспособности к агрессии, гиперсексуальности, реакций ухода за потомством, раздражение – к парасимпатическому эффекту на дыхательную и сердечно-сосудистую, пищеварительную системы. Нейроны миндалевидных ядер имеют выраженную спонтанную активность, которая тормозится или усиливается сенсорными раздражителями;

3) обонятельная луковица, обонятельный бугорок.

Лимбическая система оказывает регулирующее влияние на кору головного мозга.

Данный текст является ознакомительным фрагментом.

Читать книгу целиком

Похожие главы из других книг:

2. Физиология женской половой системы Женская половая система обладает четырьмя специфическими функциями: менструальной, половой, детородной и секреторной.Менструальный цикл.Менструальным циклом называются ритмически повторяющиеся сложные изменения в половой

11. Строение вегетативной и лимбической нервной системы и их функции Вегетативная нервная система регулирует все процессы, протекающие в организме (функцию всех внутренних органов, поддержание гомеостаза), а также она выполняет адаптационно-трофическую

3. Физиология женской половой системы Женская половая система обладает четырьмя специфическими функциями: менструальной, половой, детородной и секреторной.Менструальным циклом называются ритмически повторяющиеся сложные изменения в половой системе и во всем

ЛЕКЦИЯ № 6. Физиология центральной нервной системы 1. Основные принципы функционирования ЦНС. Строение, функции, методы изучения ЦНС Основным принципом функционирования ЦНС является процесс регуляции, управления физиологическими функциями, которые направлены на

ЛЕКЦИЯ № 8. Физиология вегетативной нервной системы 1. Анатомические и физиологические особенности вегетативной нервной системы Впервые понятие вегетативная нервная система было введено в 1801 г. французским врачом А. Беша. Этот отдел ЦНС обеспечивает экстраорганную и

ЛЕКЦИЯ № 9. Физиология эндокринной системы. Понятие о железах внутренней секреции и гормонах, их классификация 1. Общие представления об эндокринных железах Железы внутренней секреции – специализированные органы, не имеющие выводных протоков и выделяющие секрет в

ЛЕКЦИЯ № 20. Физиология системы пищеварения 1. Понятие о системе пищеварения. Ее функции Система пищеварения – сложная физиологическая система, обеспечивающая переваривание пищи, всасывание питательных компонентов и адаптацию этого процесса к условиям

21. Физиология ретикулярной формации и лимбической системы Ретикулярная формация ствола мозга – скопление полиморфных нейронов по ходу ствола мозга.Физиологическая особенность нейронов ретикулярной формации:1) самопроизвольная биоэлектрическая

Физиология дыхательной системы Как отмечалось в предыдущем разделе, дыхательная система состоит из трех компонентов – воздухоносных путей, легочной паренхимы и грудной клетки с дыхательными мышцами. Каждая из этих структур играет свою важную роль в осуществлении

Физиология мочевой системы Почки получают кровь из почечных артерий (см. рис. 1). В почке артерия делится на большое количество мелких сосудов – артериол[10], приносящих кровь к клубочку. Приносящая артериола входит в клубочек и распадается на капилляры, которые, сливаясь,

Глава 3. Физиология центральной нервной системы Особое место в живом организме занимает нервная система, функционально объединяющая клетки, ткани, отдельные органы и системы органов в одно целое. Она осуществляет регуляцию всех процессов жизнедеятельности,

Функции лимбической системы Многочисленные связи лимбической системы с подкорковыми структурами мозга, корой больших полушарий и внутренними органами позволяют ей принимать участие в реализации различных функций, как соматических, так и вегетативных. Она

Заболевания сердечно-сосудистой системы и системы крови Заболевания сердечно-сосудистой системы сейчас вышли во всем мире на первое место. Возможно, это связано с выросшей продолжительностью жизни, возможно, с изменением стиля жизни и уменьшением физических нагрузок.

Великаны Лимбической страны: роль бабушек и тетушек В разговоре о возможных лимбических связях в Последней Трети невозможно пройти мимо едва ли не самой очевидной, важной и приятной: о возможности быть бабушкой. Пусть даже двоюродной. Если у вас есть внуки, вклад во

Ретикулярная формацияописана В.М. Бехтеревым в 1898 г. и Рамон-Кахалем в 1909 г. как диффузное скопление разрозненных нервных элементов, пронизанное большим числом проходящих волокон. В стволе мозга между его специальными ядрами находятся скопления нейронов с отростками, образующие густую сеть, то есть ретикулярную формацию.

По структурно-функциональным критериям ретикулярная формация делится на 3 зоны:

1) медианную, расположенную по средней линии;

2) медиальную, занимающую медиальные отделы ствола;

3) латеральную, нейроны которой лежат вблизи сенсорных образований.

Медианная зона представлена элементами шва, состоящие из ядер, нейроны которых синтезируют медиатор – серотонин. Система ядер шва принимает участие в организации агрессивного и полового поведения, в регуляции сна.

Медиальная (осевая)зона состоит из мелких нейронов, которые не ветвятся. В зоне располагается большое количество ядер. Встречаются также крупные мультиполяры с большим числом густо ветвящихся дендритов. Они образуют восходящие нервные волокна в кору больших полушарий и нисходящие нервные волокна в спинной мозг. Восходящие пути связи медиальной зоны оказывают активирующее влияние (прямо или опосредованно через таламус) на новую кору. Нисходящие пути оказывают тормозящее влияние.

Латеральная зона – к ней относятся ретикулярные образования расположенные в стволе мозга вблизи сенсорных систем, а также ретикулярные нейроны, лежащие внутри сенсорных образований. Основным компонентом этой зоны является группы ядер, которые примыкают к ядру тройничного нерва. Все ядра латеральной зоны (за исключением ретикулярного латерального ядра продолговатого мозга) состоят из нейронов малой и средней величины и лишены крупных элементов. В этой зоне располагаются восходящие и нисходящие пути, обеспечивающие связь сенсорных образований с медиальной зоной ретикулярной формации и моторными ядрами ствола. Эта часть ретикулярной формации является более молодым и возможно прогрессивнее, с ее развитием связан факт уменьшения объема осевой ретикулярной формации в ходе эволюционного развития.

Таким образом, латеральная зона – это совокупность элементарных интегративных единиц, сформированных вблизи и внутри специфических сенсорных систем.

Благодаря нисходящим влияниям ретикулярная формация оказывает тоническое влияние и на мотонейроны спинного мозга, что в свою очередь повышает тонус скелетной мускулатуры, совершенствует систему обратной афферентной связи. Благодаря этому любой двигательный акт совершается значительно эффективнее, осуществляет более точный контроль за движением, но чрезмерное возбуждение клеток ретикулярной формации может привести к дрожанию мышц.

В ядрах ретикулярной формации находятся центры сна и бодрствования, и стимуляция тех или иных центров приводит или к наступлению сна, или к пробуждению. На этом основано применение снотворных. В ретикулярной формации расположены нейроны, реагирующие на болевые раздражения, идущие от мышц или внутренних органов. В ней также расположены специальные нейроны, которые обеспечивают быструю реакцию на внезапные, неопределенные сигналы.

Ретикулярная формация тесно связана с корой больших полушарий, благодаря этому формируется функциональная связь между внешними отделами ЦНС и стволом головного мозга. Ретикулярная формация играет важную роль как в интеграции сенсорной информации, так и в контроле над деятельностью всех эффекторных нейронов (моторных и вегетативных). Она имеет также первостепенное значение для активации коры больших полушарий, для поддержания сознания.

Таким образом, ретикулярная формация может оказывать на кору больших полушарии не только возбуждающее, но и тормозящее влияние, влияние и, наоборот, кора больших полушарий также может оказывать на клетки ретикулярной формации.

Лимбическая система это совокупность нейронов, функционально связанных между собой, образований древней коры (гиппокамп, грушевидная доля), старой коры (поясная извилина) и подкорковых структур (миндалевидное ядро, область перегородки, ряд ядер таламуса и гипоталамуса).

Лимбическую систему называют висцеральным мозгом, потому что туда поступает информация из рецепторов внутренних органов (интерорецепторы).

Особенностью лимбической системы является то, что между ее структурами имеются простые двусторонние связи и сложные пути, образующие множество замкнутых кругов. Такая организация создает условия для длительного циркулирования одного и того же возбуждения в системе и, тем самым, сохранения единого состояния и навязывание этого состояния другим системам мозга. Благодаря этому поток сенсорных возбуждений получает эмоциональную окраску и сопоставлению с памятью.

Гиппокамп расположен в глубине височных долей мозга. Он является основной структурой лимбической системы, где происходит консолидация памяти – переход из краткосрочной в долговременную память.

Миндалины находятся в глубине височной доли мозга. Они обеспечивают оборонительное поведение, а также двигательные, вегетативные, эмоциональные реакции. При нарушении деятельности миндалины поведение резко меняется, утрачивается способность к поведению в социуме.

Лимбическая система участвует в регуляции вегетативных функций, и оказывает влияние на смену сна и бодрствования. Совместно с гиппокампом она обеспечивает процессы запоминания и долговременную память. Лимбическая система является высшим подкорковым регулятором поведенческих реакций, связанных с удовлетворением первичных потребностей (еда, питье, половая потребность).

Кора головного мозга.

Строение.

Кора представляет собой филогенетически наиболее молодой и вместе с тем сложный отдел мозга, предназначенный для обработки сенсорной информации, формирования поведенческих реакций организма.

Кора больших полушарий делится на древнюю (обонятельная луковица, обонятельный тракт, обонятельный бугорок), старую (часть лимбической системы) и новую кору. Новая кора занимает 95-96% общей площади и 4-5% приходится на долю древней и старой коры. Толщина коры колеблется от 1,3 до 4,5 мм. Площадь коры увеличивается за счет борозд и извилин. У взрослого человека она составляет 2200 см²

Кора состоит из серого и белого вещества, а также нейроглии. Количество нейронов 16-18 млрд. Глиальные клетки выполняют трофическую функцию.

По функциональному признаку нейроны коры делятся на 3 вида: афферентные (сенсорные) – к ним подходят нервные волокна афферентных путей, ассоциативные (вставочные) – в пределах головного и спинного мозга, эфферентные (двигательные) – образует нисходящие (эфферентные) проводящие пути, идущие от коры к разным ядрам головного и спинного мозга. К сенсорным клеткам относятся звездчатые клетки, входящие в 3 и 4 слоя сенсорных областей коры. К эфферентным нейронам относятся нейроны 5 слоя моторной зоны, которые представлены гигантскими пирамидными клетками Беца. К ассоциативным клеткам относятся веретенообразные и пирамидные клетки 3 слоя.

В связи с тем, что тела и отростки описанных выше нейронов имеют упорядоченное расположение, кора построена по экранному принципу, т.е. сигнал фокусируется не точка в точку, а на множество нейронов, что обеспечивает полный анализ раздражителя, а также возможность передачи сигнала в другие зоны коры, которые заинтересованы в нем.

Кора состоит из 7 слоев.

1. Молекулярный слой – мелкие нейроны и волокна. Сюда приходят афферентные таламокортикальные волокна от неспецифических ядер таламуса, регулирующие уровень возбудимости корковых нейронов.

2. Наружный зернистый слойобразован мелкими нейронами в форме зерен и мелкими пирамидными клетками.

3. Наружный пирамидный слойсостоит из пирамидных клеток разной величины. Функционально II и III слои коры объединяют нейроны, отростки которых обеспечивают кортико-кортикальные ассоциативные связи.

4. Внутренний зернистый слойобразован звездчатыми клетками. Здесь оканчиваются афферентные таламокортикальные волокна, идущие от проекционных ядер таламуса.

5. Внутренний пирамидный слойвключает крупные пирамидальные клетки – клетки Беца, аксоны которых идут в головной и спинной мозг.

6. Полиморфный слой ( мультиформный) –многоформенные нейроны, имеющие треугольную и веретенообразную форму.

7. Веретенообразные нейронысвязывают все слои коры, их волокна поднимаются до 1 слоя. Имеются только в некоторых областях коры.

Функциональной единицей коры является вертикальная колонка, состоящая из 7 клеток, они вместе реагируют на один и тот же раздражитель.

В коре выделяют сенсорные, ассоциативные и двигательные зоны, исходя из расположения нейронов:

Сенсорные зоны – это входные участки коры, которые через восходящие нервные пути получают сенсорную информацию от большинства рецепторов тела.

Двигательные зоны – выходные области коры. В них возникают двигательные импульсы, идущие к произвольным мышцам по нисходящим путям, которые находятся в белом веществе больших полушарий.

Цитоархитектоника – это расположение нейронов в коре.

Миелоархитектоника – это распределение волокон в коре головного мозга.

Начало разнокачественного строения коры больших полушарий было положено в 1674 г. киевским анатомом А.А. Бецом. Позже К. Бродман в 1903-09 гг. выделил 52 цитоархитектонических полей. О. Фогт и Ц. Фогт выделили в коре 150 миелоархитектонических полей.

Локализация функций в коре больших полушарий.

И.П. Павлов рассматривал кору больших полушарий как сплошную воспринимательную поверхность, как совокупность корковых концов анализаторов. Анализатор – сложная система, которая состоит из рецептора - воспринимающего аппарата, проводников нервных импульсов и мозгового конца, где происходит высший анализ раздражений. И.П. Павлов показал, что в коре различают ядра и рассеянные элементы. Ядро – это место концентрации нейронов, где проецируются все структуры периферического рецептора и происходит важный анализ и синтез и интеграция функций.

Рассеянные элементы могут располагаться по периферии ядра и на различном расстоянии от него. В них происходит более простой анализ и синтез.

Корковые концы анализатора осуществляют анализ и синтез сигналов.

Рассмотрим некоторую локализацию ядер моторных анализаторов:

1. В коре постцентральной извилины (поля 1, 2, 3) и верхней теменной дольки (поля 5 и 7) залегают нервные клетки, образующие ядро коркового анализатора общей чувствительности(температурной, болевой, осязательной и проприоцептивной). Проводящие чувствительные пути, следующие в кору большого мозга, перекрещиваются либо на уровне различных сегментов спинного мозга (пути болевой, температурной чувствительности, осязания и давления), либо на уровне продолговатого мозга (пути проприоцептивной чувствительности коркового направления). Вследствие этого постцентральные извилины каждого из полушарий связаны с противоположной половиной тела. В постцентральной извилине рецепторные поля различных участков тела человека спроецированы таким образом, что наиболее высоко расположены корковые концы анализатора чувствительности нижних отделов туловища и нижних конечностей, а наиболее низко (ближе к латеральной борозде) проецируются рецепторные поля верхних участков тела, головы и верхних конечностей.

2. Ядро двигательногоанализатора находится в основном в так называемой двигательной области коры, к которой относятся процентральная извилина (поля 4 и 6) и парацентральная долька на медиальной поверхности полушария. В 5 слое коры предцентральной извилины залегают пирамидные нейроны (клетки Беца), которые И.П. Павлов относил к вставочным, и отмечал, что эти клетки своими отростками связаны с подкорковыми ядрами, двигательными клетками ядер черепных и спинномозговых нервов. Причем в верхних участках предцентральной извилины и в парацентральной дольке расположены клетки, импульсы от которых направляются к мышцам самых нижних отделов туловища и нижних конечностей. В нижней части предцентральной извилины находятся также двигательные центры, регулирующие деятельность мышц лица.

3. Ядро зрительного анализатора располагается в затылочной доле полушария большого мозга (поля 17, 18, 19). Ядро зрительного анализатора правого полушария связано проводящими путями с латеральной половиной сетчатки правого глаза и медиальной половиной сетчатки левого глаза. В коре затылочной доли левого полушария проецируюся соответственно рецепторы латеральной половины сетчатки левого глаза и медиальной половины сетчатки правого глаза. Только двустороннее поражение ядер зрительного анализатора приводит к полной корковой слепоте. Поражение поля 18, находящегося несколько выше поля 17, сопровождается потерей зрительной памяти, однако утраты зрения не отмечается. Наиболее высоко по отношению к двум предыдущим в коре затылочной доли находится поле 19, поражение которого сопровождается утратой способности ориентироваться в незнакомой окружающей обстановке.

4. В глубине латеральной борозды на обращенной к островку поверхности средней части верхней височной извилины находится ядро слуховогоанализатора (поля 41, 42, 52). К нервным клеткам, составляющим ядро слухового анализатора каждого из полушарий, проходят проводящие пути от рецепторов как левой, так и правой стороны. В связи с этим одностороннее поражение этого ядра не вызывает полной утраты способности воспринимать звуки. Двустороннее поражение сопровождается корковой глухотой, как и в случае полной корковой слепоты.

5. Ядро двигательного анализатора артикуляции речи(речедвигательный анализатор) располагается в задних отделах нижней лобной извилины (поле 44). Он граничит с теми отделами предцентральной извилины, которые являются анализаторами движений, производимых при сокращении мышц головы и шеи. Это и понятно, так как в речедвигательном анализаторе осуществляется анализ движений всех мышц (губ, шеи, языка, гортани), принимающих участие в акте формирования устной речи. Повреждение участка коры этой области (поле 44) приводит к двигательной афазии, т.е. утрате способности к сокращению мышц, участвующих в речеобразовании. Более того, при повреждении поля 44 не утрачивается способность к произношению звуков или пению.

В центральных отделах нижней лобной извилины (поле 45) находится ядро речевого анализатора, связанного с пением. Поражение поля 45 сопровождается вокальной амузией – неспособностью к составлению и воспроизведению музыкальных фраз, и аграмматизмом, когда утрачивается способность к составлению осмысленных предложений из отдельных слов. Речь таких людей состоит из не связанного по смысловому значению набора слов.

6. Ядро слухового анализатора устной речитесно взаимосвязано с корковым центром слухового анализатора и располагается, как и последний, в области верхней височной извилины. Это ядро находится в задних отделах верхней височной извилины, на ее поверхности, обращенной в сторону латеральной борозды полушария большого мозга (поле 42).

Поражение ядра не нарушает слухового восприятия звуков, однако утрачивается способность понимать слова, речь. Функция этого ядра состоит в том, что человек не слышит и не понимает речь другого человека, но контролирует свою собственную.

В средней трети верхней височной извилины (поле 22) находится ядро коркового анализатора, поражение которого сопровождается наступлением музыкальной глухоты, когда музыкальные фразы воспринимаются как бессмысленный набор различных шумов. Этот корковый конец слухового анализатора относится к центрам второй сигнальной системы, воспринимающим словесное обозначение предметов, действий, явлений, т.е. воспринимающих сигналы сигналов.

7. В непосредственной связи с ядром зрительного анализатора находится ядро зрительного анализатора письменной речи(поле 39), расположенное в угловой извилине нижней теменной дольки. Поражение этого ядра приводит к утрате способности воспринимать написанный текст, читать.

Различают в коре 3 группы полей: первичные, вторичные и третичные.

Первичное поле связано с органами чувств и органами движения, оно раньше формируется в онтогенезе и имеет наиболее крупные клетки. Это так называемые ядерные зоны анализаторов. Они осуществляют анализ раздражений, поступающих в кору от соответствующих рецепторов. Если разрушить ядерную зону, наступит корковая слепота, глухота, двигательный паралич.

Вторичные поля (периферические зоны анализаторов) связаны с отдельными органами только через первичные поля. Они служат для обобщения и дальнейшей обработки поступающей информации. Если разрушить это поле, человек видит, слышит, но не понимает смысла.

Третичные поля (зоны перекрытия анализаторов) занимают почти половину территории коры и имеют обширные связи с другими отделами коры и неспецифическими системами мозга. Здесь в основном располагаются мелкие и разнообразные (звездчатые) клетки и происходит высший анализ и синтез информации, в результате чего вырабатываются цели и задачи поведения. Согласно им происходит программирование двигательной деятельности. При врожденном недоразвитии третичных полей человек не в состоянии овладеть речью и даже простыми двигательными навыками.

Первичные и вторичные поля есть у человека и животных, а третичное поле только у человека. Третичные поля созревают у человека позже других корковых полей. Для развития полей необходимо, чтобы больше информации поступало от зрительных, слуховых, мышечных рецепторов.

Онто- и филогенез коры.

К 30-тидням внутриутробного развития формируется кора. К 7‑12‑му месяцам постнатального развития происходит созревание мозговых систем.

У новорожденного развиты филогенетически старые отделы мозга: мозжечок, мост, а также промежуточный мозг. У новорожденных основные борозды и извилины (центральная, латеральная) выражены хорошо, а ветви борозд и извилин слабо. Миелинизация афферентных волокон начинается в 2 месяца и заканчивается к 4-5 годам, а эфферентные волокна несколько позже – от 4-5 месяцев до 7-8 лет. Соотношения борозд, извилин и швов, характерные для взрослого человека, устанавливаются у детей в 6-8 лет.

Последнее изменение этой страницы: 2016-08-16; Нарушение авторского права страницы

Читайте также:

Пожалуйста, не занимайтесь самолечением!
При симпотмах заболевания - обратитесь к врачу.