Система опоры и движения нервная система

Органы. Системы органов.

Органы . Организм человека состо ит из органов. Сердце, легкие, поч ки, рука, глаз — все это органы, т. е. части организма, выполняющие определенные функции. Орган имеет только ему свой ственную форму, строение и положение в орга низме. Форма руки отличается от формы ноги, сердце не похоже на легкие или желудок. В зависимости от выполняемых функций разным бывает и строение органа. Обычно орган состоит из нескольких тканей, нередко из четырех основных. Одна из них играет первостепенную роль . Так, преобладающая ткань кости — костная, главная ткань железы — эпителиальная, главная ткань мус кула — мышечная. В то же время в каждом органе есть соединительная нервная и эпителиальная ткани (кро веносные сосуды).

Орган является частью целостно го организма и поэтому вне организ ма работать не может. В то же вре мя организм способен обходиться без некоторых органов. Об этом свиде тельствуют хирургические удаления конечности, глаза, зубов. Каждый из органов является составной частью более сложной физиологической сис темы органов.

Системы органов . Жизнь орга низма обеспечивается взаимодей ствием большого числа разных орга нов. Органы, объединенные определенной физиологической функцией, составляют физиологическую сис тему. Различают следующие физио логические системы: покровную, систему опоры и движения, пищеварительную, кровеносную, дыхатель ную, выделительную, половую, эн докринную, нервную, иммунную.

В покровную систему входят кожа и слизистые оболочки. Кожа покрывает тело снаружи. Слизистые оболочки выстилают изнутри полос ти носа, рта, дыхательных путей и пищеварительной системы. Кожа и слизистые оболочки предохраняют организм от внешних воздействий — высыхания, колебаний температуры, повреждений, проникновения в организм различных возбудителей болез ней и ядовитых веществ.

Система опоры и движения пред ставлена большим числом костей и мышц. Кости, соединяясь между со бой, образуют скелет соответствую щих частей тела. При любых поло жениях тела, например при стоянии, сидении, лежании, все его органы опираются на кости. В этом состоит опорная функция скелета. Скелет выполняет и защитную функцию, ограничивая полости, занятые внут ренними органами. Например, ребра, позвонки, грудина образуют грудную клетку, в полости которой распола гаются такие органы, как сердце, легкие. Скелет и мышцы обеспечива ют движение тела. Соединенные между собой кости являются рычага ми, которые приводятся в движение сокращением прикрепляющихся к ним мышц.

Пищеварительная система вклю чает органы ротовой полости — язык, зубы, слюнные железы, глотку, пищевод, кишечник, печень, подже лудочную железу. В органах пищева рения пища измельчается, смачивается слюной, на нее воздействуют желу дочный и другие пищеварительные соки. В результате образуются необходимые организму питательные ве щества. Они всасываются в кишечни ке и доставляются кровью ко всем тканям и клеткам организма.

Кровеносная система состоит из сердца и кровеносных сосудов. Сердце своими сокращениями проталки вает кровь по сосудам к органам и тканям, где происходит непрерыв ный обмен веществ. Благодаря тако му обмену клетки постоянно получа ют кислород и другие необходимые вещества и освобождаются от ненуж ных веществ, таких, как углекислый газ и продукты распада.

Дыхательная система участвует в обеспечении организма кислородом и в освобождении его от углекисло го газа. Воздух поступает сначала в носовую полость, затем в носоглотку, гортань и дальше в трахею и легкие. В легких воздух соприкасается с ог ромной сетью кровеносных сосудов. Здесь происходит обмен кислородом и углекислым газом.

Выделительная система выпол няет функцию удаления жидких продуктов обмена веществ. Основны ми органами этой системы являются почки. В них образуется моча, кото рая по мочеточникам стекает в моче вой пузырь. Там она накапливается и в определенный момент выбрасы вается наружу.

Половая система выполняет функции размножения. В половой системе формируются половые клет ки. К этой системе относятся мужс кие половые железы — семенники, женские половые железы — яични ки. В матке происходит развитие плода.

Эндокринная система включает различные железы внутренней секре ции. Каждая из желез вырабатывает и выделяет в кровь особые химичес кие вещества. Эти вещества участву ют в регуляции функций всех клеток и тканей организма.

Нервная система объединяет все другие системы, регулирует и согла совывает их деятельность. Любое нарушение связи между нервной сис темой и органом приводит к прек ращению его нормального функ ционирования. Посредством чувствительных клеток — рецепторов, расположенных в органах зрения, слуха, равновесия, обоняния, осяза ния, поддерживается постоянная связь организма с окружающей сре дой. Благодаря нервной системе осу ществляется психическая деятель ность человека, его поведение.

Иммунная система. Наш организм способен защищать себя от вредных воздействий микроорганизмов. Если микробы все же проникают в организм, то там они встречаются с его защитными силами — иммунитетом. Центральная

иммунная система представлена красным костным мозгом и тимусом, периферическая – лимфатическими узлами, селезенкой.

Функциональная система . На уроке физкультуры, например, усиливается не только работа мышц, но и кровеносной, дыхательной системы. Несколько систем органов, совместно работающих для выполнения какой либо задачи и называется функциональной системой.

Таким образом, в итоге можно наметить следующую схему построе ния организма: молекулы — клеточ ные органоиды — клетки — тка ни — органы — системы органов — организм.

Связь между строением и функ циями органов.

Между строением органов и их функциями существует тесная связь. Рассмотрим это на при мерах.

Хорошо известно, что при недостаточном развитии мышц, которые сгибают руку в локте, их функции ослаб лены и человек не способен к выпол нению физической работы и подъему тяжестей. Но если эти мышцы разви вать, постепенно упражняя и нагру жая их, то мышцы станут развивать ся, расти и все более отчетливо выде ляться под кожей плеча. Значит, не только строение мышцы обуславли вает ее функцию, но и функция влияет на строение мышцы.

Этот пример говорит о том, что не льзя понять строение органов, не зная их функции. Наоборот, понять функ цию можно, только зная строение ор гана. Такая зависимость между строе нием органов и их функциями является одной из причин объединения двух наук — анатомии и физиологии — в один учебный предмет.

Функции организма человека. Живой организм всегда отвечает на изменения, которые происходят в нем самом и в окружающей его сре де. Существование организма было бы просто невозможно, если бы он не реагировал на недостаток воды, кис лорода, изменение температуры, на влияние различных вредных веществ или был бы безразличен к пище. Ре акции организма направлены на то, чтобы удовлетворить возникшие в нем потребности (голод, жажда и др.), защитить от вредных воз действий и приспособить к изменя ющимся условиям среды. Такое проявление деятельности организма по лучило название функции.

Для нормального функционирова ния организма человека исключи тельно важной особенностью являет ся постоянство химического состава и физико-химических свойств кле ток и тканей – гомеостаз . Например, клетки организма очень чувствительны к изменению содержания глюкозы в крови — одного из главных пита тельных веществ. Постоянство ее уровня достигается тем, что при из бытке в крови она откладывается в печени и мышцах про запас, а при недостатке вновь поступает оттуда в кровь. Показателем постоянства хи мического состава клеток и тканей является также содержание в крови солей, температура тела и т. д.

Таким образом, важной функцией организма человека является поддер жание постоянства его химического состава и физико-химических свойств.

Другой важной функцией челове ка является установление непрерывного взаимодействия с внешним ми ром, которое достигается с помощью психической деятельности. Благода ря ей человек формирует духовную картину внешнего мира и в соответ ствии с ней управляет своим поведе нием. В результате человек достига ет поставленной цели, решает раз личные жизненные ситуации. Все это объединяется понятием психичес кие функции человека .

Биомеханика

Название включает в себя греческие слова bios — жизнь и mexane — механизм, рычаг. В отличие от традиционной механики, в которой рассматривается движение и взаимодействие предметов, биомеханика это наука, которая изучает и анализирует многогранные и разносторонние движения живых существ. В фитнесе, да и во всех видах спорта, особенно подвижных, биомеханика рассматривается и используется, как базовая наука и имеет большое значение.

Всем известно, что изменение формы организма или его части, а также способности к передвижению осуществляет специализированная мышечная ткань, которая состоит из скелетных (поперечнополостных), гладких и сердечной мышц. Сущность мышечного сокращения заключается не только в передвижении, но и в том, что в сокращающихся элементах наиболее продуктивно преобразуется химическая энергия в механическую работу. Мышцы, сокращаясь под управлением центральной нервной системы, оказывают формообразующее влияние не только на кости, связки, суставы, но и на сердечно-сосудистую систему и внутренние органы, вызывая усиление обмена веществ. Многообразные жизненные процессы в клетках, работа всех систем организма – всё это различные формы движения.


Движения человека, какую бы задачу они не решали, в конечном итоге осуществляются мышцами. Мышцы вместе с костным скелетом выполняют функцию машины, и это дало основание И. М. Сеченову вслед за Леонардо да Винчи высказать мысль, что механические движения могут быть подвергнуты математическому анализу и выражены формулой. Первые попытки в этом направлении, предпринятые Брауне, Фишером, братьями Вебер, были блестяще продолжены Н. А. Бернштейном. /5/


Итак, мышцы выполняют функцию машины, причем это единственная в мире машина, где химическая энергия, выделяющаяся за счет органических белковых соединений, непосредственно преобразуется в механическую без промежуточного образования тепла. Конечно, живую машину (выражение, которым широко пользовались Сеченов, Павлов, Ухтомский, Амар, Хилл, Шеррингтон и многие другие) следует представлять себе не в качестве механического агрегата с постоянными раз и навсегда установленными рабочими константами, а в качестве системного образования, выполняющего многообразные рабочие функции. Следует добавить, что живая машина отличается от своего механического аналога ещё и тем, что меняет свои рабочие константы в зависимости от ситуации и внешнего воздействия и способна накапливать и анализировать опыт, связывающий её прошлое, настоящее и будущее. /5/


В сложном процессе движения принимают участие не только мышцы, но и все органы человека, хотя прямыми исполнителями движений являются кости, суставы, мышцы с нервными и сосудистыми связями. С механической точки зрения двигательный аппарат совмещает в себе двигатель как преобразователь энергии и рабочую машину. Изучение двигательного аппарата как рабочей машины является частью биомеханики. Биомеханика – наука, которая изучает движения, выполненные опорно-двигательным аппаратом, с точки зрения приложения законов механики, устанавливает прочность и механические свойства различных тканей с учётом анатомо-физиологических особенностей. Биомеханика позволяет установить условия, при которых наиболее эффективно выполняется полезная работа в процессе сокращения мышечных групп.


Поперечнополостные (скелетные) мышечные волокна имеют длину от 150 мкм до 12 см. Мышцы после рождения человека развиваются усиленно и у мужчин составляют 36 % массы тела, у женщин – 32%. У тренированных лиц масса мышечной ткани может достигнуть 50% массы тела. Мышца растёт за счёт утолщения мышечных волокон. У новорождённых диаметр волокна 7 – 8 мкм, в 2 года – 10 – 14 мкм, в 5лет – 15 –20 мкм, у взрослого – 10 – 100 мкм. Работающая мышца увеличивается в диаметре быстро. Каждое волокно содержит миофибриллы толщиной 1 – 2 мкм, которые состоят из протофибрилл диаметром 20 нм, отвечающих за сократительную деятельность. Миофибриллы заключены в малодифференцированную саркоплазму, содержащую ядерно-протоплазматические образования. В зависимости от количества миофибрилл и саркоплазмы выделяют белые и красные мышечные волокна. В белых волокнах относительно меньше саркоплазмы и больше миофибрилл, чем в красных волокнах. Их функциональная особенность заключается в том, что быстрее, но с меньшей силой сокращаются белые волокна – языка, мимических мышц и др. Красные волокна сокращаются медленнее, но развивают большую силу.


Различие в строении мышц объясняется тем, что филогенетически они развивались так, как это требовало их анатомическое положение. Так, мышцы перистого строения приспособлены к развитию напряжения большой силы, а мышцы с параллельными и веретенообразными волокнами- к более быстрым, ловким и размашистым движениям (П. Ф. Лесгафт). /14/


Мышцы имеют нервы, как чувствительные, так и двигательные. Мышцы в зависимости от точности и скорости выполняемых движений имеют различную количественную двигательную иннервацию. Например, в глазных мышцах одно нервное волокно иннервирует примерно 19 мышечных волокон, в икроножной мышце – 227, а в задней большеберцовой мышце – 430. Каждое мышечное волокно окружено сарколеммой (оболочкой), представляющий опорный аппарат волокна. При сокращении мышечных волокон смещается сарколемма, находящаяся в связи с соединительными оболочками мышечных пучков, которые напрягают сухожилие и вызывают движение в суставах. Коэффициент полезного действия (КПД) скелетных мышц равен 50%, а КПД двигательного аппарата человека составляет менее КПД двигателя внутреннего сгорания, равного 35%. Чтобы правильно представить механизм сокращения мышечного волокна, необходимо знать химический состав мышечной ткани. В формировании мышечных волокон принимают участие растворимые и нерастворимые в воде белки. Относительная плотность мышцы 1,04 – 1,06. Растворимые белки составляют структуру саркоплазмы, состоящей из ферментов гликолиза и миоглобина. Нерастворимые белки актин и миозин участвуют в построении саркомеров миофибрилл. Считается, что процесс сокращения заключается в сближении нитей актина, которые проскальзывают в пространство между волокнами миозина.


Поперечнополостные мышечные волокна объединены с помощью соединительных оболочек в отдельные мышцы. Эти оболочки непосредственно участвуют в формировании сухожилия. Каждая мышца имеет на конце начало и конец (прикрепление). Сухожилие представлено прочными соединительно-тканевыми волокнами, которые соединены с мышцей и костью. При травмах сухожилие не рвётся, а происходит его отрыв от мышцы или кости; например сухожилие четырёхглавой мышцы выдерживает нагрузку до 600 кг.


По форме мышцы разделяются на длинные, короткие и широкие. У человека есть мышцы квадратной, ромбовидной, треугольной, пирамидальной, зубчатой и других форм.

По отношению к суставам они разделяются на односуставные, двусуставные и многосуставные. Все мышцы разделяются по функции на сгибатели, разгибатели, отводящие, приводящие, пронаторы, супинаторы, сжиматели.

Кровоснабжение мышечных волокон обильное.


В расслабленной мышце большее число капилляров не функционирует и кровь поступает по единичным капиллярам. Кровоснабжение работающей мышцы увеличивается в 30 раз Сухожилия снабжаются кровью значительно меньше, чем мышечные волокна. В мышцах богато представлена и лимфатическая система.


К вспомогательным аппаратам мышц относятся фасции, межмышечные перегородки, синовиальные влагалища и сумки, фиброзные каналы, сесамовидные кости и блоки.


Мышцы человека делятся на группы, противоположные по своему действию, и являются парными, за некоторым исключением. Во всех частях тела мышцы расположены так, что сокращение одной мышцы смещает точку прикрепления другой мышцы, т.е. подготавливает большой угол подхода сухожилия к кости. Это значительно повышает силу мышцы с наименьшей затратой энергии и силы сокращения. Таким образом, благодаря слойному расположению мышц при сравнительно малой величине мышечной ткани человек может выполнять значительную работу.


Работу двигательного аппарата человека обычно излагают с позиций общих законов механики, вполне применимых для оценки системы опорно-двигательного аппарата как системы рычагов. Рычагом называется всякое твёрдое тело, способное совершать вращательные движения около оси, на плече которого Действует две противоположные силы: движущая сила (мышечные сокращения) и сила сопротивления. В зависимости от величины движущей силы и силы сопротивления возможно равновесие или движение рычага.

Плечом рычага называют расстояние оси вращения до точки приложения силы. Плечом силы называют кратчайшее расстояние – перпендикуляр от оси вращения до вектора силы или его продолжения. Участие каждой мышцы в выполнении движений зависит не только от величины подъёмной силы, но также и от величины плеча рычага, что определяется моментом силы. Моментом силы называется произведение силы на её плечо. Таким образом, условие для равновесия рычага достигается тогда, когда сумма моментов сил, действующих на него, относительно оси вращения равна нулю. Если равенство моментов сил нарушается, то рычаг начинает вращаться в направлении той силы, момент которой больше. Момент силы является непостоянной величиной, обусловленной положением одних костей по отношению к другим, образующим данное сочленение.


С позиции биомеханики работа мышцы определяется в том случае, когда она производит перемещение части тела или тяжести на какое-либо расстояние. В действительности мышца выполняет работу, начиная с малейшего её напряжения. Мышечная работа разделяется на статическую и динамическую.


При статической работе часть мышц, напрягаясь, стремиться уравновесить момент силы тяжести или силу сопротивления, что наблюдается при выравнивании или сохранении положения тела или его частей. При этом мышца не укорачивается, не удлиняется, а только напрягается. Статическая работа мышц необходима для сохранения вертикального положения тела или определённой позы. Выделяют три вида статической работы мышц: удерживающую, укрепляющую и фиксирующую.


При динамической работе движение в суставах происходит в результате несоответствия мышечных и механических сил. Динамическая работа мышц подразделяется на преодолевающую и уступающую. Этот вид работы мышц является важным и необходимым для обеспечения плавности и эластичности движений. Если бы не было этого регулятора, движения были бы толчкообразными и малокоординированными. Таким образом, в каждом виде движений на первый план выступает тот или другой вид мышечной работы

.
Мышцы также подразделяют на антагонисты и синергисты. К антагонистам относятся все мышцы, которые по своей функции действуют в сторону противоположную другой группе мышц. Например, мышцы сгибатели плеча являются антагонистами разгибателей плеча. К синергистам относятся все мышцы, которые, сокращаясь, одновременно действуют на сустав, находясь по одну сторону его оси. Примером могут служить сгибатели предплечья и плеча, вызывающие сгибание в локтевом суставе. Функции антагонистов и синергистов могут чередоваться. При сокращении мышцы возникает активная двигательная сила.

Мышечная сила характеризуется степенью сокращения мышцы, способной при возбуждении удержать в этом состоянии груз до 4 – 6 кг на 1 квадратный см поперечника мышцы. Величина силы зависит от исходной длины мышечных волокон. Активная мышечная сила больше всего развивается в мышцах, построенных из длинных волокон (широкие и веретенообразные мышцы). Мышца может сократиться на 50 – 57 % первоначальной её длины, но ввиду ограничения степеней свободы суставов она сокращается, как правило, на 35 %.

Активная мышечная сила группы мышц (синергистов и антагонистов) складывается из суммы подъёмной силы каждой мышцы, а точка приложения этой силы располагается между местами прикрепления всех длинных мышц. Однако у человека только единичные мышцы занимают параллельное друг другу положение. Большей частью их равнодействующие находятся под определённым углом, образуя параллелограммы сил. Располагаясь под углом друг к другу, мышцы тянут кость в различных направлениях. В этом случае движение кости совершается не по равнодействующей одной или второй мышцы, а по диагонали параллелограмма, построенного сокращающимися мышцами. Параллелограммы сил могут формироваться и целыми мышечными группами.


Опорой для позвоночного столба служат кости тазового пояса, которые могут выдержать силу давления до 2000 кг. От этих костей нагрузка передаётся через тазобедренные суставы на нижние конечности – бедренные кости, от них через коленный сустав – на большеберцовые кости и далее через голеностопный сустав – на стопу. Большеберцовые кости выдерживают силу на сжатие до 1600 кг. Стопа, как и позвоночник, является опорным и рессорным аппаратом человека. Благодаря сводчатому строению стопа может пружинить.


Таким образом, единство двигательной системы достигается функциональным объединением кости, сухожилия, мышцы, сосудов и нервных рецепторов в целостную систему. Сокращение мышцы возможно только в случае постоянного поступления дозированных нервных импульсов из центральной нервной системы в определённой последовательности, возникающих под влиянием раздражителей внешней среды. Активная деятельность мышечной системы оказывает не только формирующее влияние на мышцы, но и приводит к перестройке костной ткани и соединений костей. Через нервную систему внешняя среда воздействует на двигательную систему, которая, перестраиваясь, влияет на внешние формы человеческого организма и его внутреннюю структуру. Поэтому правильно дозированный физический труд и упражнения оказывают гармоничное влияние на развитие человека.
Не трудно заметить, что не все мышцы тренирующегося развиты одинаково. В первую очередь они преимущественно тренируют те мышцы, сила которых способствует достижению высоких результатов в конкретном виде спорта. Так например, пауэрлифтерам в первую очередь нужны сильные мышцы ног, спины и плечевого пояса. Чтобы развить силу определенной мышцы или группы мышц, необходимо увеличить мышечную массу. Но в зависимости от метода её развития мышца может проявлять силовые, скоростные или скоростно-силовые способности. Поэтому при увеличении мышечной массы небезразлично, с помощью каких физических упражнений она развивалась. / 13/


Не надо забывать, что нет такого упражнения, которое могло бы дать одинаковую нагрузку всем мышцам одновременно. А ведь без максимальной нагрузки, как теперь известно, мышца не может интенсивно развиваться.

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Системы органов опоры и движений – это система костей, система их соединений и мышечная система, которые в совокупности об­разуют единый в функциональном отношении двигательный аппарат. В зависимости от функциональной значимости в двигательном аппарате различают пассивную его часть и активную. К пассивной относятся кости и соединения костей, вместе составляющие скелет человека, к активной – скелетные мышцы, которые, фиксируясь на скелете, при напряжении укрепляют отдельные части скелета (стойка на кистях и другие положения тела) или производят их движения.

Кости и их соединения

Все многообразие функций, выполняемых скелетом, можно объединить в две большие группы – механические функции и биологические функции. К механическим функциям относятся защитная, опорная, локомоторная и рессорная.

Защитная функция скелета состоит в том, что он образует стенки ряда полостей (грудной полости, полости черепа, полости таза, позвоночного канала) и является, таким образом, надежной защитой для располагающихся в этих полостях жизненно важных органов.

Опорная функция скелета заключается в том, что он явля­ется опорой для мышц и внутренних органов, которые, фиксируясь к костям, удерживаются в своем положении.

Локомоторная функция скелета проявляется в том, что кости – это рычаги, которые приводятся в движение мышцами (че­рез нервную систему), обусловливая различные двигательные ак­ты – бег, ходьбу, прыжки и т. п.

Рессорная функция скелета обусловлена способностью его смягчать толчки и сотрясения (благодаря сводчатому строению стопы, хрящевым прокладкам между костями в местах их соедине­ния, связкам внутри соединений костей, изгибам позвоночника и др.).

Биологические функции скелета связаны с участием его в обмене веществ, прежде всего в минеральном обмене. Кости – это депо минеральных солей кальция и фосфора. 99% всего кальция нахо­дится в костях. При недостатке в пище солей кальция компенса­ция их в организме осуществляется за счет кальция костей.

Кроме того, кости скелета принимают участие и в кроветворе­нии. Находящийся в них красный костный мозг вырабатывает эритроциты, зернистые формы лейкоцитов и кровяные пластинки. При этом в кроветворной функции участвует не только костный мозг, но и кости в целом, так что усиленная мышечная деятельность, оказывая влияние на кость, способствует и улучшению кроветворения.

Основной структурно-функциональной единицей скелета явля­ется кость. Каждая кость в организме человека – это живой, плас­тичный, изменяющийся орган. Кость как орган состоит из несколь­ких тканей, имеет свою определенную морфологическую структуру и функционирует как часть целостного организма. Основной тканью в кости является костная ткань, кроме нее имеется плотная соединительная ткань, образующая, например, оболочку кости, покрывающую ее снаружи, рыхлая соединительная ткань, одевающая сосуды, хрящевая, покрывающая концы костей или образующая зоны роста, ретикулярная ткань – основа костного мозга и элементы нервной ткани – нервы и нервные окончания. Каждая кость имеет определенную форму, величину, строение и находится в связи с соседними костями. В состав скелета входит 206 костей – 85 парных и 36 непарных. Кости составляют примерно 18% веса тела.

Химический состав костей. Кость состоит из двух видов хими­ческих веществ: неорганических и органических. К неорганическим веществам относятся вода и соли (главным образом соли кальция). Органическое вещество кости называется оссеином. В свежей кости около 50% воды, 22% солей, 12% оссеина и 16% жира. Обез­воженная, обезжиренная и отбеленная кость содержит приблизи­тельно 1 /3 оссеина и 2 /3 неорганических веществ.

Особое специфическое физико-химическое соединение органи­ческих и неорганических веществ в костях и обусловливает их ос­новные свойства – упругость, эластичность, прочность и твердость. В этом легко убедиться. Если кость положить в соляную кислоту, то соли растворятся, останется оссеин, кость сохранит форму, но ста­нет очень мягкой (ее можно завязать в узел). Если же кость под­вергнуть сжиганию, то органические вещества сгорят, а соли оста­нутся (зола), кость тоже сохранит свою форму, но будет очень хрупкой. Таким образом, эластичность кости связана с органиче­скими веществами, а твердость и крепость – с неорганическими. Кость человека выдерживает давление на 1 мм 2 15 кг, а кирпич всего 0,5 кг.

Химический состав костей непостоянен, он меняется с возрастом, зависит от функциональных нагрузок, питания и других факторов. В костях детей относительно больше, чем в костях взрослых, оссеина, они более эластичны, меньше подвержены переломам, но под влиянием чрезмерных нагрузок легче деформируются Кости, выдерживающие большую нагрузку, богаче известью, чем кости менее нагруженные. Питание только растительной или только животной пищей также может вызвать изменения химического состава костей. При недостатке в пище витамина D в костях ребенка плохо откладываются соли извести, сроки окостенения нарушаются, а недоста­ток витамина А может привести к утолще­нию костей, запустению каналов в костной ткани.

В пожилом возрасте количество оссеина снижается, а количество неорганических ве­ществ солей, наоборот, увеличивается, что снижает ее прочностные свойства, создавая предпосылки к более частым переломам кос­тей. К старости в области краев суставных поверхностей костей могут появляться раз­растания костной ткани в виде шипов, выростов, что может ограничивать подвиж­ность в суставах и вызывать болезненные ощущения при движениях. О механических свойствах кости можно судить на основании их крепости на сжатие, растяжение, разрыв, излом и т. п. На сжатие кость в десять раз крепче хряща, в пять раз прочнее железобетона, в два раза больше крепости свинца. На растяжение компактное вещество кости выдерживает нагрузку до 10-12 кг на 1 мм 2 , а на сжатие – 12-16 кг. По сопротивлению на разрыв кость в продольном на­правлении превышает сопротивление дуба и равна сопротивлению чугуна. Так, напри­мер, для раздробления бедренной кости давлением нужно приблизительно 3 тыс. кг, для раздробления большеберцовой кости не менее 4 тыс. кг. Органическое вещество кости – оссеин выдерживает нагрузку на растяжение 1,5 кг на 1 мм 2 , на сжатие – 2,5 кг, крепость же сухожилий составляет 7 кг на 1 мм 2 , Несмотря на значительную крепость и прочность кость весьма пластичный орган и может перестраиваться на протяжении всей жизни че­ловека.

Длинные кости расположены на конечностях, где они, как рычаги, обеспечивают значительный размах движений. В этих кос­тях преобладает продольный размер. В каждой длинной или труб­чатой кости различают среднюю часть – тело (диафиз) и 2 конца (эпифизы) – проксимальный и дистальный.

Проксимальный эпифиз расположен ближе к оси туловища, а дистальный – дальше от нее. Эпифизы костей утолщены, что уве­личивает поверхность соединяющихся костей, а следовательно, соз­дает более прочную опору и увеличивает силу полезного действия мышц, изменяя ее угол подхода к кости.

Внутри тела кости находится костномозговая полость, не уменьшающая ее прочности.

Короткие кости находятся там, где вместе с подвижностью и разнообразием движений необходима прочность (позвоночный столб, кости запястья). Размеры коротких костей одинаковы в трех плоскостях.

Плоскиекости не содержат полости; между двумя пластинками компактного вещества в них располагается губчатое вещест­во. Плоские кости участвуют в образовании полостей для защиты органов (кости черепа, таза и др.).

Смешанные кости – это такие, различные части которых имеют разную форму (височная кость).

Пневматические, или воздухоносные, кости имеют внутри полость, выстланную слизистой оболочкой и заполненную воздухом, что облегчает вес кости, не уменьшая ее прочности.

Сесамовидные кости — это кости, вставленные в сухожи­лия мышц и увеличивающие поэтому плечо силы мышц, способст­вующие усилению их действия.

Строение костей. Каждая кость снаружи покрыта соединительнотканной оболочкой – надкостницей, в которой различают два слоя: наружный и внутренний. Наружный слой надкостницы состоит из плотной волокнистой соединительной ткани, внутренний – из рыхлой соединительной ткани, в которой имеются клетки (остео­бласты), продуцирующие костное вещество (в связи с чем этот слой называется остеогенным или костеобразующим). За счет внутреннего слоя происходит рост кости в толщину и сраста­ние после нарушения целости. Надкостница богата сосудами и нервами.

Надкостница выполняет защитную функцию, питательную – со­суды из надкостницы проходят в кость – и костеобразовательную. Отделение надкостницы приводит к омертвению кости.

За надкостницей следует компактное (плотное) вещество кости, а затем губчатое вещество, состоящее из отдельных костных пере­кладин, расположенных в виде сетки так, что между ними образу­ются ячейки – полости (что напоминает губку). Компактное веще­ство в теле длинных трубчатых костей толще; в эпифизах, коротких и плоских костях – тоньше. Оно толще в тех костях, которые не­сут большую нагрузку (в плечевой кости компактный слой тоньше, чем в бедренной).

Перекладины губчатого вещества расположены не беспорядоч­но, а в определенных направлениях в виде дуг, арок, соответствен­но действию сил сжатия и растяжения. Если действие силы направ­лено перпендикулярно кости (например, позвонку), то переклади­ны расположены почти под прямым углом друг к другу. Если силы действуют под острым углом (сила тяги мышц), то изменяется и направление перекладин, обеспечивая прочность и надежность кости.

Все пространство внутри кости заполнено костным мозгом. Он бывает двух видов: красный и желтый. Красный костный мозг на­ходится в ячейках губчатого вещества кости. Следовательно, его много в плоских, коротких, сесамовидных костях и эпифизах длин­ных трубчатых костей. Он выполняет кроветворную функцию. Жел­тый костный мозг расположен в костномозговой полости диафизов длинных костей. Он богат жировыми клетками. В период внутри­утробного развития все кости содержат только красный костный мозг, а после рождения в полости диафизов костей красный кост­ный мозг постепенно к 12-15 годам замещается желтым. Общее количество красного костного мозга около 1500 см 3 .

С возрастом компактное вещество утолщается, перекладины губчатого вещества становятся крупнее. Мозговая полость с 7 до 10 лет увеличивается мало. К 18-20 годам строение кости стано­вится аналогичным строению кости взрослого, однако внутренняя перестройка ее происходит на протяжении всей жизни человека. Рельеф поверхности кости формируется в основном после рожде­ния. Прилегающие к костям сухожилия, сосуды оставляют на кос­тях отверстия, вырезки, борозды. В местах прикрепления площадь прикрепления мышц и создает опору для них. Чем сильнее разви­ты мышцы, тем резче выражен рельеф костей.

Микроскопически кость состоит из костных пластинок: пласти­нок остеона, вставочных пластинок и общих пластинок. Плас­тинки остеона, в виде концентрических кругов окружая кост­ный канал, где проходят сосуды и нервы, образуют структурную единицу кости – остеон. Вставочные пластинки неправиль­ной формы располагаются между остеонами. Общие пластинок и (наружные и внутренние) охватывают кость с наружной поверхности и со стороны костномозговой полости.

Развитие и рост костей. Кости развиваются из среднего заро­дышевого листка – мезодермы, в их формировании принимает уча­стие зародышевая соединительная ткань – мезенхима.

Большинство костей в процессе развития проходят три стадии: соединительнотканную, или перепончатую, хрящевую и костную. И только кости крыши черепа, кости лица, часть ключицы проходят две стадии: перепончатую и костную, минуя хрящевую. Кости, ко­торые развиваются сразу на месте соединительной ткани, называ­ются первичными, а кости, которые развиваются на месте хря­ща, – вторичными.

Развитие первичных костей происходит довольно просто: на месте будущей кости в соединительной ткани возникает ядро окостенения (островок), которое увеличивается в размерах, образуя компактное вещество и губчатое вещество; из наружного слоя мезенхимных клеток формируется надкостница.

Развитие вторичных костей происходит более сложно. Вначале соединительная ткань, прообраз будущей кости, становится хря­щевой моделью кости. Надхрящница, покрывающая хрящевую мо­дель, превращается в надкостницу, которая начинает образовывать костное вещество с периферии (перихондральное окостенение). Вместе с этим внутри хряща также появляются остеогенные (костеобразующие) островки – ядра окостенения (энхондральное окосте­нение). Одновременно с продукцией кости идет и обратный процесс – процесс рассасывания с внутренней стороны костей (изнут­ри), в связи с чем образуется костномозговая полость и ячейки в губчатом веществе. Эти два процесса, обусловливая друг друга, протекают параллельно, формируя кость соответственно ее назна­чению.

К моменту рождения диафизы трубчатых костей уже являются окостеневшими. Окостенение эпифизов происходит после рождения. В проксимальном эпифизе ядро окостенения появляется обычно в первые месяцы после рождения, а в дистальном – на 2-м году жизни. Это основные ядра окостенения. У детей и юношей появ­ляются добавочные точки окостенения в тех местах кости, где прикрепляются мышцы, связки. Они называются апофизами. Меж­ду эпифизом и диафизом остается прослойка хряща, за счет кото­рой и осуществляется рост костей в длину. Полное синостозирование дистального эпифиза с телом кости происходит к 21 году, а проксимального – к 24 годам.

Окостение может нарушаться при недостатке в пище витаминов, понижении функции желез внутренней секреции (передней доли гипофиза, щитовидной) и т. п.

Таким образом, рост плоских костей происходит за счет над­костницы и соединительной ткани швов; рост трубчатых костей в толщину – также за счет надкостницы, а в длину – за счет эпифизарных хрящей, расположенных между эпифизом и диафизом. Рост трубчатых костей в основном заканчивается у женщин в 17-20 Лет, у мужчин в 19-23 года. Имеются наблюдения, указываю­щие на то, что рост костей может происходить и после окостенения эпифизарных хрящей, за счет хряща, покрывающего суставные по­верхности костей.

Читайте также:

Пожалуйста, не занимайтесь самолечением!
При симпотмах заболевания - обратитесь к врачу.