Торможение в цнс список литературы


Реферат Процесс торможения в ЦНС: механизмы и виды торможения. Тип работы: Реферат. Добавлен: 2.10.2013. Год: 2012. Страниц: 27. Уникальность по antiplagiat.ru:

-2-
Введение
Проявление и осуществление рефлекса возможно только при ограничении распространения возбуждения с одних нервных центров на другие. Это достигается взаимодействием возбуждения с другим нервным процессом, противоположным по эффекту процессом торможения.
Почти до середины XIX века физиологи изучали и знали только один нервный процесс - возбуждение.
Торможение в ЦНС открыл И.М. Сеченов (1863). Значение этого процесса было рассмотрено в его книге "Рефлексы головного мозга". В опыте на таламической лягушке он определял латентное время сгибательного рефлекса при погружении задней конечности в слабый раствор серной кислоты. Было показано, что латентное время рефлекса значительно увеличивается, если на зрительный бугор предварительно положить кристаллик поваренной соли. Открытие И.М.Сеченова послужило толчком для дальнейшего исследования торможения с ЦНС. В частности, обнаружил проявление торможения у спинальной лягушки Ф.Гольц (1870). Он также исследовал латентное время рефлекса. При этом оказалось, что механическое раздражение кончиков пальцев одной конечности лягушки существенно удлиняет латентный период сгибательного рефлекса другой конечности при погружении ее в раствор кислоты. Наличие специальных тормозных структур в продолговатом мозге доказал Х. Мегун (1944). В опытах на кошках при изучении разгибательного рефлекса Х. Мегун установил, что раздражение медиальной части ретикулярной формации продолговатого мозга тормозит рефлекторную активность спинного мозга.
Торможение - активный нервный процесс, результатом которого является прекращение или ослабление возбуждения. Торможение всегда возникает как следствие возбуждения.
Тонкий анализ тормозных явлений в ЦНС позволил выделить две разновидности торможения:
1. Постсинаптическое торможение;
2. Пресинаптическое торможение.
-3-
Одна из характерных черт тормозного процесса- отсутствие способности к активному распространению по нервным структурам.
1. Принципы координации в деятельности ЦНС. Специфические и неспецифические структуры ЦНС, их значение.
"Нервная деятельность вообще состоит из явлений раздражения и торможения. Это и есть как бы две половины одной нервной деятельности"
И.П. Павлов .
Торможение играет важную роль в координации движений, регуляции вегетативных функций, в реализации процессов высшей нервной деятельности. Тормозные процессы:
1 - ограничивают иррадиацию возбуждения и концентрируют его в определенных отделах НС;
2 - выключают деятельность ненужных в данный момент органов, согласовывает их работу;
3 - предохраняют нервные центры от перенапряжения в работе.
По месту возникновения торможение бывает:
1 - пресинаптическое;
2 - постсинаптическое.
По форме торможение может быть:
1 - первичным;
2 - вторичным.
Для возникновения первичного торможения в НС существуют специальные тормозные структуры (тормозные нейроны и тормозные синапсы). В этом случае торможение возникает первично, т.е. без предшествующего возбуждения. Пресинаптическое торможение возникает перед синапсом в аксональных контактах. В основе такого торможения лежит развитие длительной
деполяризации аксона и блокирование проведения возбуждения к следующему нейрону.
Постсинаптическое торможение связано с гиперполяризацией постсинаптической мембраны под влиянием тормозных медиаторов типа
-4-
гамма-аминомасляной кислоты (ГАМК). Тормозные медиаторы выделяются специальными тормозными нейронами - клетками Реншоу (в спинном мозге) и корзинчатыми клетками(в промежуточном мозге).
Клетки Реншоу обеспечивают развитие торможения в мотонейронах мышц - антагонистов. Они также обеспечивают возвратное (антидромное) торможение, предохраняя мотонейроны от перевозбуждения.
Корзинчатые клетки регулируют потоки импульсов возбуждения, идущие к центрам промежуточного мозга и коре полушарий. Они вызывают синхронное торможение целой группы нейронов диэнцефальных центров, регулируя, таким образом, ритм активности коры.
Для возникновения вторичного торможения не требуется специальных тормозных структур. Оно возникает в результате изменения функциональной активности обычных возбудимых нейронов. Вторичное торможение иначе называется пессимальным. При высокой частоте импульсов постсинаптическая мембрана сильно деполяризуется и становится неспособной отвечать на импульсы, идущие к клетке.
В живом организме работа всех органов является согласованной.
Согласование отдельных рефлексов для выполнения целостных физиологических актов называется координацией.
За счет координированной работы нервных центров осуществляется управление двигательными актами (бег, ходьба, сложные целенаправленные движения практической деятельности), а также изменение режима работы органов дыхания, пищеварения, кровообращения, т.е. вегетативных функций. Этими процессами достигается приспособление организма к изменениям условий существования.
Координация основывается на ряде общих закономерностей (принципов):
1. Принцип конвергенции (установлен Шеррингтоном) - к одному нейрону поступают импульсы из разных отделов нервной системы. Например, к одному и тому же нейрону могут преобразовывать импульсы от слуховых, зрительных, кожных рецепторов.
-5-
2. Принцип иррадиации. Возбуждение или торможение, возникнув, в одном
нервном центре может распространяться на соседние центры.
3. Принцип реципрокности (сопряженности; согласованного антагонизма) был изучен Сеченовым, Введенским, Шеррингтоном. При возбуждении одних нервных центров деятельность других центров может тормозиться. У спинальных животных раздражение одной конечности одновременно вызывает ее сгибание, а на другой стороне одновременно наблюдается разгибательный рефлекс.
Реципрокность иннервации обеспечивает согласованную работу групп мышц при ходьбе, беге. При необходимости взаимосочетанные движения могут изменяться под контролем головного мозга. Например, при прыжках происходит сокращение одноименных групп мышц обеих конечностей.
4. Принцип общего конечного пути связан с особенностью строения ЦНС. Дело в том, что афферентных нейронов в несколько раз больше, чем эфферентных, поэтому множество афферентных импульсов стекаются к общим для них эфферентным путям. Система реагирующих нейронов образует как бы воронку ("воронка Шеррингтона"), поэтому множество разных раздражений может вызвать одну и ту же двигательную реакцию. Шеррингтон предложил различать:
а) союзные рефлексы (которые усиливают друг друга, встречаясь на общих конечных путях);
б) антагонистические рефлексы (которые тормозят друг друга).
Преобладание на конечных путях той или иной рефлекторной реакции обусловлено ее значением для организма в данный момент. В таком отборе важную роль играет доминанта, обеспечивающая протекание главной реакции.
5. Принцип доминанты (установлен Ухтомским).
Доминанта (лат. dominans - господствующий) - это господствующий очаг возбуждения в ЦНС, определяющий характер ответной реакции организма на раздражение.
Для доминанты характерно устойчивое перевозбуждение нервных центров,
-6-
способность к суммации посторонних раздражителей и инертность (сохранность после действия раздражения). Доминантный очаг притягивает к себе импульсы из других нервных центров и за счет них усиливается. Как фактор поведения доминанта связана с высшей нервной деятельностью, с психологией человека. Доминанта является физиологической основой акта внимания. Формирование и торможение условных рефлексов так же связано с доминантным очагом возбуждения.
В нервной системе по современным представлениям, имеются специфические и неспецифические структуры.
Специфические структуры ЦНС лежат в наружных и боковых ее отделах, а неспецифические структуры - в срединных отделах. Они отличаются по строению и функции.
К специфическим структурам относятся все нервные центры и пути, проводящие афферентные нервные импульсы от рецепторов тела (восходящие пути) и эфферентные импульсы к рабочим органам (нисходящие пути).
Восходящие пути проводят сигналы мышечно-суставной, тактильной, слуховой, зрительной, болевой и температурной чувствительности к нервным центрам.
Деятельность специфических структур ЦНС связана с анализом раздражителей и определенным характером ответных реакций организма.
В этой деятельности принимают участие и неспецифические структуры, изменяющие восприятие специфических раздражений и эфферентную деятельность органов и систем.
Неспецифиче.

* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.

Агаджанян А.А., Телль Л.З., Циркин В.И. Физиология человека. – СПб, 1998.

Анатомия человека. / Под ред. М.Р.Сапина. - В 2-х томах. – Т.2. – М., 1993.

Биология / Под ред. В.Н.Ярыгина. – М., 2004.

Косицкий Г.И. Лекции по клинической физиологии. – М., 1974.

Ткаченко Б.И. Основы физиологии человека. – СПб., 1994.

Физиология центральной нервной системы / Под ред. П.Г.Костюк. – Киев, 1977.

Физиология: Основы и функциональные системы: Курс лекций / Под ред. К.В.Судакова. – М., 2000.

Физиология человека / Под ред. В.М.Покровского, Г.Ф.Коротько. – М., 2002.

Физиология человека / Под ред. В.М.Смирнова. – М., 2001.

Хомутов А.Е., Кульба С.Н. Анатомия центральной нервной системы. – М., 1997.

Чебышев Н.В., Кузнецов С.В. Биология (учебное пособие в 2-х томах). – Том 2. – М., 2000.

Терминологический справочник

Автономная (вегетативная) нервная система регулирует обмен веществ, работу внутренних органов и гладких мышц.

Адаптация (от лат. adaptatio – приспособление) – все виды врожденной и приобретенной приспособительной деятельности, которые обеспечиваются на основе физиологических процессов, происходящих на клеточном, органном, системном и организменном уровнях.

Аксон – отросток нейрона, по которому осуществляется проведение нервного импульса от тела нейрона к другой нервной клетке или к рабочей ткани, органу.

Анализатор – сложный нервный механизм, состоящий из рецепторного воспринимающего аппарата, проводников нервных импульсов и мозгового центра, где и происходит анализ тех раздражений, которые поступают из окружающей среды и из организма человека.

Апраксии – сложные координированные целенаправленные движения.

Базальные ганглии – совокупность трех парных образований, расположенных в конечном мозге в основании больших полушарий.

Высшая нервная деятельность – совокупность нейрофизиологических процессов, обеспечивающих сознание, подсознательное усвоение информации и индивидуальное приспособительное поведение живого организма в окружающей среде.

Возбуждение – ответная реакция живой ткани на внешнее воздействие, характеризующаяся изменением характера или интенсивности протекающих в ней процессов.

Глия – клетки, заполняющие пространство между нейронами и обеспечивающие структурную и метаболическую опору для сети нейронов.

Дендриты – отростки, проводящие нервные импульсы к телу нейрона.

Иннервация – передача импульса по нерву к конкретному (иннервируемому) органу.

Интракортикальные ассоциативные волокна – волокна, соединяющие серое вещество соседних извилин и не выходящие за пределы коры.

Комиссуральные нервные волокна – волокна, соединяющие серое вещество правого и левого полушарий, аналогичные центры правой и левой половин мозга с целью координации их функций.

Координационная деятельность ЦНС – это согласование деятельности различных отделов ЦНС при помощи упорядочения распространения возбуждения между ними.

Лимбическая система – функциональное объединение различных структур конечного, промежуточного и среднего мозга, обеспечивающих эмоционально-мотивационные компоненты поведения и интеграцию висцеральных функций организма.

Магнитоэнцефолография – метод фиксации функционирования электромагнитных полей нервной системы.

Междолевые пучки волокон – длинные ассоциативные волокна, связывающие участки серого вещества, далеко отстоящие друг от друга и прилежащие различным долям мозга.

Мозговые оболочки – соединительнотканные листки, покрывающие головной мозг.

Нейрон – основная структурно-функциональная единица нервной системы.

Нервное волокно – совокупность нервных отростков, покрытых оболочками.

Низшая нервная деятельность – совокупность нейрофизиологических процессов, обеспечивающих осуществление безусловных рефлексов и инстинктов.

Основание головного мозга – нижняя его поверхность.

Периферическая нервная система образована многочисленными парными нервами, которые отходят как от головного, так и от спинного мозга.

Подпаутинное субарахноидальное пространство – пространство, заполненное жидкостью и расположенное между паутинной и мягкой оболочками мозга.

Полюс – наиболее выступающие кпереди и кзади участки больших полушарий головного мозга.

Принервий – волокнистая соединительная ткань, покрывающая нерв снаружи.

Проводящие пути – пучки нервных волокон, соединяющие функционально однородные участки серого вещества в центральной нервной системе или занимающие в белом веществе головного и спинного мозга определенное место и проводящие одинаковый импульс.

Психическая деятельность – идеальная субъективно осознаваемая деятельность организма, осуществляемая с помощью нейрофизиологических процессов.

Рецептор – чувствительным окончание нейрона.

Рефлекс - это ответная реакция организма на то или иное раздражение (внешнее или внутреннее воздействие), которая происходит при участии центральной нервной системы.

Рефлекторная дуга – путь, по которому распространяется возбуждение при осуществлении рефлекса.

Синапсы - образования в местах контактов нейронов, способствующие передаче нервного импульса от одного нейрона к другому.

Соматическая нервная система регулирует работу скелетных мышц и обеспечивает чувствительность человеческого тела.

Спинномозговые узлы - скопления нервных клеток.

Тип нервной системы – степень приспособленности организма к условиям окружающей среды.

Торможение – активный нервный процесс прекращения или ослабления возбуждения.

Физиология – это биологическая наука, которая на основе изучения частных процессов и механизмов жизнедеятельности человека и животных устанавливает закономерности функционирования живого организма как целостной системы.

Центральная нервная система состоит из головного мозга, заключенного в мозговом отделе черепа, и спинного мозга, который проходит по каналу позвоночника и заканчивается на уровне граница между 1-м и 2-м поясничными позвонками.

Экстракортикальные ассоциативные нервные волокна – волокна, выходящие в белое вещество полушария (за пределы коры).

Электроэнцефалография (ЭЭГ) – это специфический метод регистрации электрической активности мозга.

Эндонервий – соединительная ткань, расположенная тонким слоем между нервными волокнами.

Ядро – место концентрации нервных клеток коры, составляющих точную проекцию всех элементов определенного периферического рецептора, где происходит высший анализ, синтез и интеграция функций.

ТОРМОЖЕНИЕ В ЦНС. ВИДЫ И ЗНАЧЕНИЕ.

Проявление и осуществление рефлекса возможно только при ограничении распространения возбуждения с одних нервных центров на другие. Это достигается взаимодействием возбуждения с другим нервным процессом, противоположным по эффекту процессом торможения.

Почти до середины XIX века физиологи изучали и знали только один нервный процесс - возбуждение.

Явления торможения в нервных центрах, т.е. в центральной нервной системе были впервые открыты в 1862 году И.М.Сеченовым ("сеченовское торможение”). Это открытие сыграло в физиологии не меньшую роль, чем сама формулировка понятия рефлекса, так как торможение обязательно участвует во всех без исключения нервных актах. И.М.Сеченов обнаружил явление центрального торможения при раздражении промежуточного мозга теплокровных. В 1880 году немецкий физиолог Ф.Гольц установил торможение спинальных рефлексов. Н.Е. Введенский в результате серий опытов по парабиозу вскрыл интимную связь процессов возбуждения и торможения и доказал, что природа этих процессов едина.

Торможение - местный нервный процесс, приводящий к угнетению или предупреждению возбуждения. Торможение является активным нервным процессом, результатом которого служит ограничение или задержка возбуждения. Одна из характерных черт тормозного процесса- отсутствие способности к активному распространению по нервным структурам.

В настоящее время в центральной нервной системе выделяют два вида торможения: торможение центральное (первичное), являющееся результатом возбуждения (активации) специальных тормозных нейронов и торможение вторичное, которое осуществляется без участия специальных тормозных структур в тех самых нейронах в которых происходит возбуждение.

Центральное торможение( первичное) - нервный процесс, возникающий в ЦНС и приводящий к ослаблению или предотвращению возбуждения. Согласно современным представлениям центральное торможение связано с действием тормозных нейронов или синапсов, продуцирующих тормозные медиаторы (глицин, гаммааминомасляную кислоту), которые вызывают на постсинаптической мембране особый тип электрических изменений, названных тормозными постсинаптическими потенциалами (ТПСП) или деполяризацию пресинаптического нервного окончания, с которым контактирует другое нервное окончание аксона. Поэтому выделяют центральное (первичное) постсинаптическое торможение и центральное (первичное) пресинаптическое торможение.

Постсинаптическое торможение (лат. post позади, после чего-либо + греч. sinapsis соприкосновение, соединение) - нервный процесс, обусловленный действием на постсинаптическую мембрану специфических тормозных медиаторов (глицин, гаммааминомаслянная кислота), выделяемых специализированными пресинаптическими нервными окончаниями. Медиатор, выделяемый ими, изменяет свойства постсинаптической мембраны, что вызывает подавление способности клетки генерировать возбуждение. При этом происходит кратковременное повышение проницаемости постсинаптической мембраны к ионам К+ или CI - , вызывающее снижение ее входного электрического сопротивления и генерацию тормозного постсинаптического потенциала (ТПСП). Возникновение ТПСП в ответ на афферентное раздражение обязательно связано с включением в тормозной процесс дополнительного звена - тормозного интернейрона, аксональные окончания которого выделяют тормозной медиатор. Специфика тормозных постсинаптических эффектов впервые была изучена на мотонейронах млекопитающих (Д. Экклс, 1951). В дальнейшем первичные ТПСП были зарегистрированы в промежуточных нейронах спинного и продолговатого мозга, в нейронах ретикулярной формации, коры больших полушарий, мозжечка и таламических ядер теплокровных животных.

Известно, что при возбуждении центра сгибателей одной из конечностей центр ее разгибателей тормозится и наоборот. Д. Экклс выяснил механизм этого явления в следующем опыте. Он раздражал афферентный нерв, вызывающий возбуждение мотонейрона, иннервирующего мышцу - разгибатель.

Нервные импульсы, дойдя до афферентного нейрона в спинномозговом ганглии, направляются по его аксону в спинном мозге по двум путям: к мотонейрону, иннервирующему мышцу - разгибатель, возбуждая ее и по коллатерам к промежуточному тормозному нейрону, аксон которого контактирует с мотонейроном иннервирующим мышцу - сгибатель, вызывая таким образом торможение антагонистической мышцы. Этот вид торможения был обнаружении в промежуточных нейронах всех уровней центральной нервной системы при взаимодействии антагонистических центров. Он был назван поступательным постсинаптическим торможением . Этот вид торможения координирует, распределяет процессы возбуждения и торможения между нервными центрами.

Возвратное (антидромное) постсинаптическое торможение (греч. antidromeo бежать в противоположном направлении) - процесс регуляции нервными клетками интенсивности поступающих к ним сигналов по принципу отрицательной обратной связи. Он заключается в том, что коллатерали аксонов нервной клетки устанавливают синаптические контакты со специальными вставочными нейронами (клетки Реншоу), роль которых заключается в воздействии на нейроны, конвергирующие на клетке, посылающей эти аксонные коллатерали (рис. 87). По такому принципу осуществляется торможение мотонейронов.

Возникновение импульса в мотонейроне млекопитающих не только активирует мышечные волокна, но через коллатерали аксона активирует тормозные клетки Реншоу. Последние устанавливают синаптические связи с мотонейронами. Поэтому усиление импульсации мотонейрона ведет к большей активации клеток Реншоу, вызывающей усиление торможения мотонейронов и уменьшение частоты их импульсации. Термин "антидромное” употребляется потому, что тормозной эффект легко вызывается антидромными импульсами, рефлекторно возникающими в мотонейронах.

Чем сильнее возбужден мотонейрон, чем больше сильные импульсы идут к скелетным мышцам по его аксону, тем интенсивнее возбуждается клетка Реншоу, которая подавляет активность мотонейрона. Следовательно, в нервной системе существует механизм, оберегающий нейроны от чрезмерного возбуждения. Характерная особенность постсинаптического торможения заключается в том, что оно подавляется стрихнином и столбнячным токсином (на процессы возбуждения эти фармакологические вещества не действуют).

В результате подавления постсинаптического торможения нарушается регуляция возбуждения в цнс, возбуждение разливается ("диффундирует”) по всей цнс, вызывая перевозбуждение мотонейронов и судорожные сокращения групп мышц (судороги).

Торможение ретикулярное (лат. reticularis - сетчатый) - нервный процесс развивающийся в спинальных нейронах под влиянием нисходящей импульсации из ретикулярной формации (гигантское ретикулярное ядро продолговатого мозга). Эффекты, создаваемые ретикулярными влияниями, по функциональному действию сходны с возвратным торможением, развивающимся на мотонейронах. Влияние ретикулярной формации вызывают стойкие ТПСП, охватывающие все мотонейроны независимо от их функциональной принадлежности. В этом случае, так же как и при возвратном торможении мотонейронов происходит ограничение их активности. Между таким нисходящим контролем со стороны ретикулярной формации и системочй возвратного торможения через клетки Реншоу существует определенное взаимодействие, и клетки Реншоу находятся под постоянным тормозящем контролем со стороны двух структур. Тормозящее влияние со стороны ретикулярной формации являются дополнительным фактором в регуляции уровня активности мотонейронов.

Первичное торможение может вызываться механизмами иной природы, не связанными с изменениями свойств постсинаптической мембраны. Торможение в этом случае возникает на пресинаптической мембране (синаптическое и пресинаптическое торможение).

Синаптическое торможение (греч. sunapsis соприкосновение, соединение) - нервный процесс, основанный на взаимодействии медиатора, секретируемого и выделяемого пресинаптическими нервными окончаниями, со специфическими молекулами постсинаптической мембраны. Возбуждающий или тормозной характер действия медиатора зависит от природы каналов, которые открываются в постсинаптической мембране. Прямое доказательство наличия в цнс специфических тормозящих синапсов было впервые получено Д. Ллойдом (1941).

Данные относительно электрофизиологических проявлений синаптического торможения: наличие синаптической задержки, отсутствие электрического поля в области синаптических окончаний дали основание считать его следствием химического действия особого тормозящего медиатора, выделяемого синаптическими окончаниями. Д. Ллойд показал, что если клетка находится в состоянии деполяризации, то тормозной медиатор вызывает гиперполяризацию, в то время как на фоне гиперполяризации постсинаптической мембраны он вызывает ее деполяризацию.

Пресинаптическое торможение ( лат. praе -впереди чего-либо + греч. sunapsis соприкосновение, соединение) - частный случай синаптических тормозных процессов, проявляющихся в подавлении активности нейрона в результате уменьшения эффективности действия возбуждающих синапсов еще на пресинаптическом звене путем угнетения процесса высвобождения медиатора возбуждающими нервными окончаниями. В этом случае свойства постсинаптической мембраны не подвергаются каким-либо изменениям. Пресинаптическое торможение осуществляется посредством специальных тормозных интернейронов. Его структурной основой являются аксо-аксональные синапсы, образованные терминалиями аксонов тормозных интернейронов и аксональными окончаниями возбуждающих нейронов.

При этом окончание аксона тормозного нейрона является пресимпатическим по отношению к терминали возбуждающего нейрона, которая оказывается постсинаптической по отношению к тормозному окончанию и пресинаптической по отношению к активируемой им нервной клетки. В окончаниях пресинаптического тормозного аксона освобождается медиатор, который вызывает деполяризацию возбуждающих окончаний за счет увеличения проницаемости их мембраны для CI - . Деполяризация вызывает уменьшение амплитуды потенциала действия, приходящего в возбуждающее окончание аксона. В результате происходит угнетение процесса высвобождения медиатора возбуждающими нервными окончаниями и снижение амплитуды возбуждающего постсинаптического потенциала.

Характерной особенностью пресинаптической деполяризации является замедленное развитие и большая длительность (несколько сотен миллисекунд), даже после одиночного афферентного импульса.

Пресинаптическое торможение существенно отличается от постсинаптического и в фармакологическом отношении. Стрихнин и столбнячный токсин не влияют на его течение. Однако наркотизирующие вещества (хлоралоза, нембутал) значительно усиливают и удлиняют пресинаптическое торможение. Этот вид торможения обнаружен в различных отделах цнс. Наиболее часто оно выявляется в структурах мозгового ствола и спинного мозга. В первых исследованиях механизмов пресинаптического торможения считалось, что тормозное действие осуществляется в точке, отдаленной от сомы нейрона, поэтому его называли "отдаленным” торможением.

Функциональное значение пресинаптического торможения, охватывающего пресинаптические терминали, по которым поступают афферентные импульсы, заключается в ограничении поступления к нервным центрам афферентной импульсации. Пресинаптическое торможение в первую очередь блокирует слабые асинхронные афферентные сигналы и пропускает более сильные, следовательно, оно служит механизмом выделения, вычленения более интенсивных афферентных импульсов из общего потока. Это имеет огромное приспособительное значение для организма, так как из всех афферентных сигналов, идущих к нервным центрам, выделяются самые главные, самые необходимые для данного конкретного времени. Благодаря этому нервные центры, нервная система в целом освобождается от переработки менее существенной информации.

Вторичное торможение - торможение осуществляющееся теми же нервными структурами, в которых происходит возбуждение. Этот нервный процесс подробно изложен в работах Н.Е. Введенского (1886, 1901г.г.).

Торможение реципрокное (лат. reciprocus - взаимный) - нервный процесс, основанный на том, что одни и те же афферентные пути, через которые осуществляется возбуждение одной группы нервных клеток, обеспечивают через посредство вставочных нейронов торможение других групп клеток. Реципрокные отношения возбуждения и торможения в цнс были открыты и продемонстрированы Н.Е. Введенским: раздражение кожи на задней лапке у лягушки вызывает ее сгибание и торможение сгибания или разгибания на противоположной стороне. Взаимодействие возбуждения и торможения является общим свойством всей нервной системы и обнаруживается как в головном, так и в спинном мозге. Экспериментально доказано, что нормальное выполнение каждого естественного двигательного акта основано на взаимодействии возбуждения и торможения на одних и тех же нейронах цнс.

Общее центральное торможение - нервный процесс, развивающийся при любой рефлекторной деятельности и захватывавающий почти всю цнс, включая центры головного мозга. Общее центральное торможение обычно проявляется раньше возникновения какой-либо двигательной реакции. Оно может проявляться при такой малой силе раздражения при которой двигательный эффект отсутствует. Такого вида торможение было впервые описано И.С. Беритовым (1937). Оно обеспечивает концентрацию возбуждения других рефлекторных или поведенческих актов, которые могли бы возникнуть под влиянием раздражений. Важная роль в создании общего центрального торможения принадлежит желатинозной субстанции спинного мозга.

При электрическом раздражении желатинозной субстанции у спинального препарата кошки происходит общее торможение рефлекторных реакций, вызываемых раздражением сенсорных нервов. Общее торможение является важным фактором в создании целостной поведенческой деятельности животных, а также в обеспечении избирательного возбуждения определенных рабочих органов.

Парабиотическое торможение развивается при патологических состояниях, когда лабильность структур центральной нервной системы снижается или происходит очень массивное одновременное возбуждение большого числа афферентных путей, как, например, при травматическом шоке.

Некоторые исследователи выделяют еще один вид торможения - торможение вслед за возбуждением . Оно развивается в нейронах после окончания возбуждения в результате сильной следовой гиперполяризации мембраны (постсинаптической).

Торможение – активный нервный процесс, результатом которого является прекращение или ослабление возбуждения. Торможение всегда возникает как следствие возбуждения.
Тонкий анализ тормозных явлений в ЦНС позволил выделить две разновидности торможения:
Постсинаптическое торможение;
Пресинаптическое торможение.

Введение
1.Постсинаптическое торможение
2.Пресинаптическое торможение
3. Условное торможение
4.Роль различных видов торможения и их
локализация в ЦНС
5.Взаимодействие процессов возбуждения и
торможения в центральной нервной системе
Заключение
Приложение
Список использованной литературы

1.docx

Белорусский государственный педагогический университет

Факультет специального образования

Управляемая самостоятельная работа по предмету

студентка группы №102

Артемьева Анастасия Анатольевна

3. Условное торможение

4.Роль различных видов торможения и их

локализация в ЦНС

5.Взаимодействие процессов возбуждения и

торможения в центральной нервной системе

Список использованной литературы

Проявление и осуществление рефлекса возможно только при ограничении распространения возбуждения с одних нервных центров на другие. Это достигается взаимодействием возбуждения с другим нервным процессом, противоположным по эффекту процессом торможения.

Почти до середины XIX века физиологи изучали и знали только один нервный процесс - возбуждение.

Торможение в ЦНС открыл И.М.Сеченов (1863). Значение этого процесса было рассмотрено в его книге "Рефлексы головного мозга". В опыте на таламической лягушке он определял латентное время сгибательного рефлекса при погружении задней конечности в слабый раствор серной кислоты. Было показано, что латентное время рефлекса значительно увеличивается, если на зрительный бугор предварительно положить кристаллик поваренной соли. Открытие И.М.Сеченова послужило толчком для дальнейшего исследования торможения с ЦНС. В частности, обнаружил проявление торможения у спинальной лягушки Ф.Гольц (1870). Он также исследовал латентное время рефлекса. При этом оказалось, что механическое раздражение кончиков пальцев одной конечности лягушки существенно удлиняет латентный период сгибательного рефлекса другой конечности при погружении ее в раствор кислоты. Наличие специальных тормозных структур в продолговатом мозге доказал Х.Мегун (1944). В опытах на кошках при изучении разгибательного рефлекса Х.Мегун установил, что раздражение медиальной части ретикулярной формации продолговатого мозга тормозит рефлекторную активность спинного мозга.

Торможение – активный нервный процесс, результатом которого является прекращение или ослабление возбуждения. Торможение всегда возникает как следствие возбуждения.

Тонкий анализ тормозных явлений в ЦНС позволил выделить две разновидности торможения:

  1. Постсинаптическое торможение;
  2. Пресинаптическое торможение.

Одна из характерных черт тормозного процесса- отсутствие способности к активному распространению по нервным структурам.

Торможение играет важную роль в координации движений, регуляции вегетативных функций, в реализации процессов высшей нервной деятельности.

Этот вид торможения открыл Д.Экклс (1952) при регистрации потенциалов мотонейронов спинного мозга у кошки во время раздражения мышечных афферентов группы Ia. При этом оказалось, что в мотонейронах мышцы антогониста регистрируются не деполяризация и возбуждение, а гиперполяризационный постсинаптический потенциал, уменьшающий возбудимость мотонейрона, угнетающий его способность реагировать на возбуждающие явления. По этой причине вызванный гиперполяризационный потенциал был назван тормозным постсинаптическим потенциалом, ТПСП.

У кошки ТПСП регистрируется на 0,5 мс позже, чем ВПСП, что объясняется наличием на пути проведения возбуждения, запускающего ТПСП, одного дополнительного синапса. Амплитуда ТПСП – 1-5 мВ. Он способен суммироваться; более мощный эфферентный залп вызывает возрастание амплитуды ТПСП.

Механизм постсинаптического торможения. Возбудимость клетки от ТПСП (гиперполяризованного постсинаптического потенциала) уменьшается, потому что увеличивается пороговый потенциал (∆V), так как Екр. (критический уровень деполяризации, КУД) остается на прежнем уровне, а мембранный потенциал (Е0) возрастает. ТПСП возникает опд влиянием аминокислоты глицина, и ГАМК – гамма-аминомасляной кислоты. В спинном мозге глицин выделяется особыми тормозными клетками (клетки Реншоу) в синапсах, образуемых этими клетками на мембране нейрона-мишени. Действуя на ионотропный рецептор постсинаптической мембраны, глицин увеличивает ее проницаемость для CI - , при .том CI - поступает в клетку согласно концентрационному градиенту, в результате чего развивается гиперполяризация. В бесхлорной среде тормозная роль глицина не реализуется. Ареактивность нейрона к возбуждающим импульсам является следствием алгебраической суммации ТПСП и ВПСП, в связи с чем в зоне аксонного холмика не происходит выведения мембранного потенциала на критический уровень. При действии ГАМК на постсинаптическую мембрану ТПСП развивается в резельтате входа CI - в клетку или выхода К + из клетки. Имеются ГАМК-рецепторы двух видов: ГАМК1 (ГАМКА) и ГАМК2 (ГАМКВ). Активация ГАМК1-рецепторов ведет к непосредственному повышению проницаемости клеточной мембраны для хлора. Активация ГАМК2-рецепторов реализуется с помощью вторых посредников (цАМФ), при этом повышается проницаемость для К + и понижается для Са 2+ .

Как известно К + транспортируется обратно в клетку Na/K – помпой, сто и поддерживает градиент его концентрации.

По-видимому, и CI - транспортируется в этом случае из клетки специальной хлорной помпой, хотя обычно отмечают, что градиент концентрации CI - поддерживается отрицательным электрическим зарядом внутри клетки - CI - выталкивается отрицательным электрическим зарядом. Поскольку возникновение ТПСП обеспечивается выходом CI - в клетку, что доказывает, что концентрационный градиент действует сильнее противоположно направленного электрического градиента. Отсутствие CI-помпы привело бы к накоплению CI - в клетке, наступлению равновесия между электрическим и химическим (концентрационным) градиентами для CI - и нарушению процесса торможения. Но этого не происходит, что подтверждает наличие хлорной помпы.

Как выяснилось, ТПСП могут возникать вследствие уменьшения проницаемости мембраны для Na + , что также сопровождается гиперполяризацией клеточной мембраны, особенно если проницаемость для К + и CI - сохраняется прежней. Такого рода ТПСП были зарегистрированы в нейронах симпатических ганглиев.

Разновидности постсинаптического торможения. Обычно выделяют возвратное, латеральное, параллельное и прямое (реципрокное) постсинаптическое торможение. Имеются и другие варианты классификаций. Некоторые авторы называют только два торможения – возвратное и прямое, последнее трактуется по-разному. В реальной действительности вариантов торможения больше, они определяются множеством связей различных нейронов в частности их коллатералей.

1.Возвратное постсинаптическое торможение – торможение, при котором тормозные вставочные нейроны действуют на те же нервные клетки, которые их активируют. В этом случае развивающееся торможение бывает тем глубже, чем сильнее было предшествующее возбуждение. Типичным примером возвратного постсинаптического торможения является торможение в мотонейронах спинного мозга. Мотонейроны посылают коллатерали к тормозным вставочным нейронам, аксоны которых в свою очередь образуют синапсы на тех же мотонейронах, которые возбуждают тормозную клетку Решоу. Такая тормозная цепь называется торможением Реншоу – в честь ученого, который ее открыл, а тормозные вставочные нейроны в этой цепи – клетками Реншоу. Это торможение в центрах мышц-сгибателей и разгибателей обеспечивает, например, поочередное сокращение и расслабление скелетной мышцы, что необходимо при ходьбе и беге. Сама клетка Реншоу возбуждается под влиянием ацетилхолина с помощью Н-холинорецептора.

2.Параллельное торможение может выполнять подобную же роль, когда возбуждение блокирует само себя, за счет дивергенции по коллатерали с включением тормозной клетки на своем пути и возвратом импульсов к нейрону, который активировался этим же возбуждением.

4.Примером прямого торможения может служить реципрокное торможение. Оно вызывает угнетение центра-антагониста. Например, при раздражении кожных рецепторов возникает защитный сгибательный рефлекс: центр сгибания возбужден, а центр разгибания заторможен. В этом случае возбуждающие импульсы поступают к центру мышцы-сгибателя, а через тормозную клетку Реншоу – к центру мышцы-антагониста – разгибателю, что предотвращает ее сокращение. Если бы возбуждались одновременно центры мышц сгибателей и разгибателей, сгибание конечности в суставе было бы невозможным.

Читайте также:

Пожалуйста, не занимайтесь самолечением!
При симпотмах заболевания - обратитесь к врачу.