В чем заключается регулирующая роль нервной системы по отношению к составу крови

Регуляция системы крови включает в себя поддержание постоянства объема циркулирующей крови, ее морфологического состава и физико-химических свойств плазмы. В организме существует два основных ме-ханизма регуляции системы крови – нервный и гуморальный.

Высшим подкорковым центром, осуществляющим нервную регуля-цию системы крови, является гипоталамус.Кора головного мозга оказы-вает влияние на систему крови также через гипоталамус. Эфферентные влияния гипоталамуса включают механизмы кроветворения, кровообращения и перераспределения крови, ее депонирования и разрушения.

Нервная система оказывает как прямое, так и косвенное регули-рующее влияние на систему крови. Прямой путь регуляции заключается в двусторонних связях нервной системы с органами кроветворения, крове-распределения и кроверазрушения. Афферентные и эфферентные импуль-сы идут в обоих направлениях, регулируя все процессы системы крови. Косвенная связь между нервной системой и системой крови осуществляет-ся с помощью гуморальных посредников, которые, влияя на рецепторы кроветворных органов, стимулируют или ослабляют гемопоэз.

Среди механизмов гуморальной регуляции крови особая роль при-надлежит биологически активным гликопротеидам – гемопоэтинам, синте-зируемым, главным образом, в почках, а также в печени и селезенке. Продукция эритроцитов регулируется эритропоэтинами, лейкоцитов – лейко-поэтинами и тромбоцитов – тромбопоэтинами. Эти вещества усиливают кроветворение в костном мозге, селезенке, печени, ретикулоэндотелиаль-ной системе. Концентрация гемопоэтинов увеличивается при снижении в крови форменных элементов, но в малых количествах они постоянно со-держатся в плазме крови здоровых людей, являясь физиологическими сти-муляторами кроветворения.

Стимулирующее влияние на гемопоэз оказывают гормоны гипофиза (соматотропный и адренокортикотропный гормоны), коркового слоя надпо-чечников (глюкокортикоиды), мужские половые гормоны (андрогены). Женские половые гормоны (эстрогены) снижают гемопоэз, поэтому содер-жание эритроцитов, гемоглобина и тромбоцитов в крови женщин меньше, чем у мужчин. У мальчиков и девочек (до полового созревания) различий в картине крови нет, отсутствуют они и у людей старческого возраста.

Главную роль в регуляции деятельности сердца играют нервные и гуморальные влияния.Сердце сокращается благодаря импульсам, по-ступающим от главного водителя ритма, деятельность которого контроли-руется центральной нервной системой.

Нервная регуляция деятельности сердца осуществляется аффе-рентными ветвями блуждающего (парасимпатический отдел ВНС) и сим-патического нервов. Исследование нервной регуляции деятельности сердца началось с открытия в Петербурге в 1845 г. братьями Вебер тормозящего влияния блуждающего нерва,а в 1867 г. там же братья Цион обна-ружили ускоряющее влияние симпатического нерва.И. П. Павлов в 1887 г. обнаружил симпатические нервные волокна, усиливающие сердеч-ные сокращения без заметного учащения ритма. По его мнению усили-вающие нервные волокна являются трофическими,т.е. действуют на сердце путем повышения обмена веществ в миокарде.

На основе анализа всех влияний блуждающего и симпатического нервов на сердце создана современная классификация их эффектов. Хронотропный эффект характеризует изменение частоты сердечных сокращений, батмотропный – изменение возбудимости, дромотропный – изменение проводимости и инотропный – изменение сократимости. Все эти процессы блуждающие нервы замедляют и ослабляют, а симпатиче-ские– ускоряют и усиливают.

Центры блуждающих нервов находятся в продолговатом мозге. Вторые их нейроны расположены непосредственно в нервных узлах серд-ца. Отростки этих нейронов иннервируют синусно-предсердный (синоат-риальный) и предсердно-желудочковый (атриовентрикулярный) узлы и мышцы предсердий; миокард желудочков блуждающими нервами не иннервируется.

Гуморальные влияния на сердце могут оказываться гормонами, про-дуктами распада углеводов и белков, изменениями рН, ионов калия и каль-ция. Адреналин, норадреналин и тироксин усиливают работу сердца, аце-тилхолин – ослабляет. Снижение рН, увеличение уровня мочевины и мо-лочной кислоты повышают сердечную деятельность. При избытке ионов калия урежается ритм и уменьшается сила сокращений сердца, его возбуди-мость и проводимость. Высокая концентрация калия приводит к расслабле-нию миокарда и остановке сердца в диастоле. Ионы кальция учащают ритм и усиливают сердечные сокращения, повышают возбудимость и проводи-мость миокарда; при избытке кальция сердце останавливается в систоле.

Функциональное состояние сосудистой системы, как и сердца, ре-гулируется нервными и гуморальными влияниями. Нервы, регулирующие тонус сосудов, называются сосудодвигательными и состоят из сосудосу-живающих и сосудорасширяющих. Симпатические нервные волокна, ока-зывают суживающее действие на сосуды кожи, органов брюшной полости, почек, легких и мозговых оболочек, но расширяют сосуды сердца. Сосудо-расширяющие влияния оказываются парасимпатическими волокнами.

РЕГУЛЯЦИЯ ФУНКЦИЙ ВЕГЕТАТИВНЫХ ОРГАНОВ И СИСТЕМ

Поддержание относительного постоянства состава периферической крови, так же, как и его колебания при воздействии различных физиологических факторов, осуществляется благодаря взаимодействию нескольких процессов - кроветворения, кроверазрушения и перераспределения. Координация этих процессов связана с наличием специальной системы регуляции. Эта система обеспечивает приспособительные реакции крови как на изменения внутренней среды организма, так и на различного рода влияния извне. Нервный и гуморальный пути регуляции могут оказывать свое воздействие на любое из звеньев, формирующих картину крови.

Роль нервной системы в регуляции системы крови.

Участие НС в перераспределительных реакциях подтверждается опытами, в которых анестезия предотвращает такие реакции, как возникновение местного лейкоцитоза при болевом раздражении, раздражении брюшины, механическом раздражении слизистой желудка, поверхности печени и т.п.. Четкие изменения состава периферической крови отмечаются и при введении медиаторов НС (адреналина и ацетилхолина). Так, инъекция адреналина приводит к возникновению кратковременного лейкоцитоза.

Значительно сложнее вопрос о влиянии нервной системы непосредственно на кроветворение. Многочисленные клинические наблюдения над изменениями состава крови при различных поражениях ЦНС явились основой для представления о существовании центральной регуляции кроветворения. При раздражении гипоталамуса стимуляция ядер симпатической НС приводит к ретикулоцитозу и эритропении, а разрушение этих ядер тормозит регенерацию крови после кровопотери. Гипоталамус участвует в регуляции образования гемопоэтинов.

Кора больших полушарий также оказывает свое влияние на состав крови и кроветворения. При удалении одного или обеих полушарий у животных развивается анемия и умеренно выраженный нейтрофильный лейкоцитоз. Одновременно тормозится регенерация крови в ответ на постгеморрагическую или гемолитическую анемию. При неврозах в клинике и в эксперименте могут развиваться анемии. Возможна выработка условных рефлексов в системе крови (условно-рефлекторный пищевой лейкоцитоз). Все эти исследования, хотя и свидетельствуют о возможном влиянии ЦНС на систему крови, но не раскрывают путей реализации этих воздействий. Можно полагать, что они осуществляются посредством изменения функционального состояния межуточного мозга, что приводит к изменениям деятельности эндокринных желез, обмена веществ, сосудистого тонуса и т.п..

Несомненное влияние на систему крови оказывают и нижележащие отделы НС. Это доказано многочисленными экспериментами с перерезкой спинного мозга на различных уровнях. При перерезке шейного и грудного отделов наблюдается развитие анемии, ретикулоцитопении и нейтрофильного лейкоцитоза. В костном мозге в этих случаях снижается количество эритробластов.

Нервные волокна, регулирующие кроветворение, выходят из спинного мозга на уровне D3-L3 сегментов. Симпатическая иннервация стимулирует кроветворение, парасимпатическая тормозит. Однако, при определенных условиях эти эффекты модифицируются и оба отдела ВНС могут оказывать на кроветворение одинаковое действие. Можно считать доказанным, что парасимпатикус влияет более на лейкопоэз, чем на эритропоэз.

Следует отметить, что в особой зависимости от нормального функционального состояния НС находится эритрон. Выключение определенных рефлексогенных зон (синокаротидная, аортальная), денервация внутренних органов (печень, селезенка, почки), перерезка некоторых периферических нервов (седалищный, бедренный) закономерно вызывают анемию у экспериментальных животных.

Гуморальная регуляция системы крови. Существует два пути регулирующего влияния НС на систему крови - прямой и косвенный с участием гуморальных посредников. Подтверждением наличия прямого пути является наличие иннервации костного мозга, причем костный мозг является и источником афферентной импульсации, т.е. связь двусторонняя. Вместе с тем велика и роль гуморальных посредников между НС и системой крови (опыты на парабионтах). Эти гуморальные стимуляторы кроветворения получили наименование гемопоэтины. Под гемопоэтинами подразумевают вещества, которые вырабатываются в организме и обладают способностью стимулировать кроветворение. В зависимости от точки приложения их действия различают эритропоэтины, лейкопоэтины и тромбопоэтины.

Эритропоэтин. Наиболее изученным среди факторов, стимулирующих кроветворение, является эритропоэтин. Учение об эритропоэтинах возникло на основе опытов Карно и Дефландера, которые обнаружили в 1906 г., что сыворотка кроликов с анемией обладает способностью стимулировать эритропоэз при введении ее интактным животным.

Эритропоэтины образуются не только после острой кровопотери, но и при массивном разрушении эритроцитов при фенилгидразиновом отравлении, при снижении содержания кислорода в воздухе, при любой гипоксии. Использование чувствительных методов обнаружения эритропоэтина показало наличие его в плазме здоровых людей. Это позволяет считать его физиологическим стимулятором эритропоэза. При патологических условиях наблюдается лишь усиление интенсивности его образования. Исключение составляют лишь анемии у больных с заболеваниями почек. Это обусловлено той особой ролью, которая приписывается почкам в формировании эритропоэтина. При двусторонней удалении почек (нефрэктомии) выработка эритропоэтина прекращается. Эксплантация собственной почки больному животному восстанавливает синтез эритропоэтина. Это связано с тем, что эритропоэтин синтезируется особыми клетками в т.н. юкста -гломерулярном аппарате почки. Действуя на костный мозг. эритропоэтин стимулирует в нем дифференциацию основных стволовых клеток с сторону эритробластического ряда. Возможно его стимулирующее действие и на скорость созревания эритробластов и нормобластов. По своей химической природе эритропоэтин относится к гликопротеидам. Он имеет специфическую антигенную структуру, термостабилен и не связан с крупнодисперсными белками.

Лейкопоэтины. Вопрос о лейкопоэтинах изучен несравненно меньше. Безлейкоцитарная плазма обладает способностью вызывать лейкоцитоз при парэнтеральном введении интактным животным. Лейкоцитоз появляется вскоре после инъекции и достигает максимума через 4-6 часов. Механизм действия лейкопоэтинов аналогичен влиянию эритропоэтинов, т.е. они стимулируют дифференциацию основных клеток костного мозга в сторону гранулоцитопоэза. Химический состав лейкопоэтинов не изучен.

Тромбопоэтины - их наличие доказано, но механизм действия и место выработки неизвестно. Помимо стимуляторов кроветворения, в настоящее время придается определенное значение факторам, обладающим противоположной активностью. Получены данные о повышенном образовании ингибиторов эритропоэза при заболеваниях почек, при экспериментальной полицитемии, при анемиях после перерезки некоторых нервов. Однако этот раздел физиологии регуляции крови только начинает развиваться.

Роль желез внутренней секреции в регуляции системы крови.

Наряду со специфической регуляцией системы крови, которая осуществляется посредством гемопоэтинов, и, возможно, веществ с ингибиторными свойствами, имеется немало данных об участии в этом процессе различных желез внутренней секреции.

Гипофиз. Установлено, что гипофизэктомия приводит к анемии и гипоплазии костного мозга. Несомненное влияние на систему крови оказывают и отдельные гормоны гипофиза (АКТГ и СТГ). Применение СТГ приводит к усилению пролиферации всех костномозговых элементов с нарастанием в крови числа эритроцитов и лейкоцитов на единицу веса. При этом СТГ действует непосредственно на костный мозг, а АКТГ - через глюкокортикоиды.

Надпочечники. О возможности влияния глюкокортикоидов на систему крови свидетельствуют многочисленные клинические наблюдения, указывающие на тенденцию к эритроцитозу и нейтрофильному лейкоцитозу у больных с синдромом Иценко-Кушинга. Применение глюкокортикоидов у больных с не гематологическими заболеваниями сопровождается увеличением числа ретикулоцитов, эритроцитов и лейкоцитов. Аналогичные изменения обнаруживаются у животных при введении кортизона. В то же время адреналэктомия приводит к развитию анемии и увеличению в крови абсолютного количества лимфоцитов. Все эти эффекты связаны со способностью глюкокортикоидов стимулировать эритро- и гранулопоэз и тормозить продукцию лимфоцитов из-за развивающейся гипоплазии лимфоидного аппарата. Эозинопения, нередко отмечающаяся при введении глюкокортикоидов, обычно связывается с перераспределением эозинофилов. Длительное применение АКТГ может приводить к гипоплазии костного мозга из-за торможения митотической активности костномозговых элементов.

Действие минералокортикоидов на систему крови осуществляется через изменения объема циркулирующей жидкой части крови. Определенные изменения состава крови возникают и при введении гормонов мозгового слоя надпочечников (адреналина и норадреналина). Они выражаются в кратковременной полиглобулии при отсутствии существенных нарушений в лейкоцитарной формуле. Развитие полиглобулии обусловлено перераспределением форменных элементов, уменьшением количества депонированных клеток крови в печени, селезенке, легких и других паренхиматозных органах при одновременном усилении выхода зрелых сегментоядерных нейтрофилов из синусов костного мозга в кровь.

Половые железы. Половые различия в составе крови известны. Показано, что применение женских половых гормонов, эстрогенов, у людей и животных приводит к развитию панцитопении, особенно анемии. Применение малых доз эстрогенов оказывает стимулирующее действие на гранулоцитопоэз, при больших дозах отмечается аплазия гранулопоэза и лимфопоэза.

Введение мужских половых гормонов, андрогенов, оказывает противоположное действие, выражающееся в появлении полиглобулии и гиперплазии костного мозга.

Щитовидная железа. Менее определенное действие на систему крови оказывают гормоны щитовидной железы. При гиперфункции ее нередко развивается лейкопения, связанная с уменьшением абсолютного количества нейтрофилов. Абсолютное же количество лимфоцитов увеличивается, одновременно с увеличением размеров тимуса и лимфатических органов.

Более закономерным является развитие анемии при гипофункции щитовидной железы. Количество лейкоцитов и тромбоцитов не меняется. Изменения кроветворения при нарушениях функции щитовидной железы не являются специфическими. Их появление связано с изменением темпа обменных процессов в организме, нарушением витаминного баланса и, возможно, нарушением всасывания необходимых для кроветворения веществ в ЖКТ.

Зобная железа. Установлено, что зобная железа имеет непосредственное отношение к регуляции развития лимфоидного аппарата. Удаление тимуса у новорожденных мышей приводит к задержке развития лимфоидного аппарата вплоть до его атрофии. Одновременно у животных отмечается повышенная чувствительность к инфекции в связи со снижением способности вырабатывать антитела. Менее изученным является влияние зобной железы на эритропоэз. В физиологических условиях у взрослых людей тимус не может принимать существенного участия в регуляции кроветворения из-за возрастной инволюции этой железы.

Функциональная система, обеспечивающая свертывание крови.

Состоит из воспринимающего звена, представленного специальными хеморецепторами, заложенными в сосудистых рефлексогенных зонах (дуга аорты и синокаротидная зона), которые улавливают факторы, обеспечивающие свертывание крови. Второе звено функциональной системы - это механизмы регуляции. К ним относятся нервный центр, получающий информацию с рефлексогенных зон. Большинство ученых предполагает, что этот нервный центр, обеспечивающий регуляцию свертывающей системы, находится в области гипоталамуса. Эксперименты над животными показывают, что при раздражении задней части гипоталамуса имеет место чаще гиперкоагуляция, а при раздражении передней части - гипокоагуляция. Эти наблюдения доказывают влияние гипоталамуса на процесс свертывания крови, и наличие в нем соответствующих центров. Через этот нервный центр осуществляется контроль за синтезом факторов, обеспечивающих свертывание крови .

К гуморальным механизмам относятся вещества, меняющие скорость свертывания крови. Это прежде всего гормоны: АКТГ, СТГ, глюкокортикоиды, ускоряющие свертывание крови; инсулин действует двуфазно - в течение первых 30 минут ускоряет свертывание крови, а затем в течение нескольких часов - замедляет.

Минералокортикоиды (альдостерон) снижают скорость свертывания крови. Половые гормоны действуют по-разному: мужские ускоряют свертывание крови, женские действуют двояко: одни из них увеличивают скорость свертывание крови - гормоны желтого тела. другие же, замедляют (эстрогены)

Третье звено - органы - исполнители, к которым, прежде всего, относится печень, вырабатывающая факторы свертывания, а также клетки ретикулярной системы.

Как работает эта функциональная система? Если концентрация каких - либо факторов, обеспечивающих процесс свертывания крови, возрастает или падает, то это воспринимается хеморецепторами. Информация от них идет в центр регуляции свертывания крови, а затем на органы - исполнители, и по принципу обратной связи их выработка или тормозится или увеличивается.

Регулируется также и антисвертывающая система, обеспечивающая крови жидкое состояние. Воспринимающее звено этой функциональной системы находится в сосудистых рефлексогенных зонах и представлено специфическими хеморецепторами, улавливающими концентрацию антикоагулянтов. Второе звено представлено нервным центром противосвертывающей системы. По данным Кудряшова, он находится в продолговатом мозге, что доказывается рядом экспериментов. Если, например, выключить его такими вещества ми, как аминазин, метилтиурацил и другими, то кровь начинает свертываться в сосудах. К исполнительным звеньям относятся органы, синтезирующие антикоагулянты. Это сосудистая стенка, печень, клетки крови. Срабатывает функциональная система, препятствующая свертыванию крови следующим образом: много антикоагулянтов - их синтез тормозится, мало - возрастает (принцип обратной связи).

На состав и свойства крови и лимфы, на кровообразование оказыва­ют влияние условия жизни животных.

Изменение условий существования животного отражается через нервную систему на деятельности организма, на работе его частей, а, следовательно, и на свойствах и составе его внутренней среды -- крови и лимфы.

На состав и свойства крови оказывают существенное влияние такие условия внешней среды, как кормление, климат, времена года, условия воспитания, характер работы и др. Сильно влияет на образование эрит­роцитов кормление животных. Чтобы иметь возможность синтезировать гемоглобин, животное должно получать с кормом достаточно белков. особенно содержащих такие аминокислоты, как тирозин, фенилаланин, пролин, а также железо. Отрицательно сказывается на образовании эритроцитов и недостаток витаминов, особенно В12 и С.

Солдатенков установил, что у коров в период максимальных удоев при хорошем питании увеличивается количество эритроцитов и гемогло­бина. У истощенных, малопродуктивных коров нейтрофилов в крови вдвое меньше, а процент эозинофилов вдвое больше, чем у коров, находящихся в нормальных условиях питания' и имеющих среднюю продуктивность. Содержание нейтрофилов в крови возрастает с увеличением удоев. На­пример, при удое до 300 л в месяц среднее содержание нейтрофилов в крови составляет 25%, от 300 до 400 л--27%, от 400 до 500 Л-- 32%, свыше 500 л--33%.

У разных пород одного вида животных имеются отличия в составе крови. Однако исследования Никитина показали, что воспитание лоша­дей разных пород в ряде поколений в одинаковых условиях, например, на выпасах в целинной степи приводит к значительному сближению у них показателей крови.

Регуляция состава крови находится под контролем нервной системы и ее высшего отдела -- коры больших полушарий.

Еще Боткин развивал взгляды о ведущей роли нервной систе­мы в регуляции кровообразования. В его лаборатории в 1883 г. бы­ло показано, что под влиянием раздражения нервов, идущих к кост­ному мозгу, количество эритроцитов в крови собак увеличивается на 13--15%.

Есть данные, что раздражение симпатического нерва увеличивает количество нейтрофилов в крови, а блуждающего -- эозинофилов.

В последнее время в лаборатории Черниговского установлено, что в кровообразующих органах -- селезенке, костном мозгу, лимфатиче­ских узлах -- имеются рецепторы, воспринимающие изменения химиче­ского состава крови. Раздражение этих рецепторов рефлекторно изменя­ет деятельность кровообразующих органов и тем самым ведет к измене­нию морфологического состава крови.

Состав крови меняется под влиянием раздражения химиорецепторов сосудов находящимися в крови веществами. Опыты показали, что вве­дение пептонов в каротидный синус вызывает, наряду с падением кро­вяного давления (стр. 159), увличение количества эритроцитов и кро­вяных пластинок и уменьшение числа лейкоцитов.

Значительное увеличение числа эритроцитов после усиленной мышеч­ной работы или при длительном пребывании на больших высотах (где парциальное давление кислорода недостаточно), нужно думать, также имеет место рефлекторный механизм. При усиленной работе или при недостаточном поступлении кислорода образуются недоокисленные про­дукты обмена. Они то и являются раздражителями химиорецепторов, что и вызывает рефлекторное изменение деятельности кровообразова-тельных органов.

Не только раздражение химиорецепторов, но и раздражение других рецепторов внутренних органов влияет на состав крови. Так, например, раздражение барорецепторов желудка (при помощи раздувания его бал­лоном) ведет к значительному увеличению числа лейкоцитов в крови иногда на 90--100%. Если же смазать слизистую желудка кокаином и тем самым лишить ее чувствительности, то раздувание желудка не вы­зывает лейкоцитоза.

Раздражение барорецепторов желудка изменяет и количество эрит­роцитов у кошки, до раздувания желудка составляло 8 млн. в 1 мм3 кро­ви, а через 3 часа от начала опыта -- 9.5 млн. Изменяется и состав крови при раздражении механорецепторов толстых кишок.

Пищеварительный лейкоцитоз, т. е. увеличение числа лейкоцитов после приема пищи (в первый час), тоже имеет рефлекторный характер. Б. 3. Сиротин приводит убедительные данные об участии химиорепеп-торов воротной системы в пищеварительном лейкоцитозе при раздра­жении их веществами, всосавшимися в капиллярах ворсинок. Установ­лено рефлекторное изменение активности каталазы крови под влиянием раздражения интерорецепторов.

Нервная система влияет и на свертывание крови. При болевом раз­дражении происходит рефлекторное ускорение свертывания крови. Существует много факторов, показывающих что состав крови может меняться и условнорефлекторно. В часы обычного приема пищи у животных происходит увеличение количества лейкоцитов, даже если они не получают еды. Если изменить время кормления, то скоро изменится и время условнорефлекторного пищеварительного лейкоцитоза. В лабо­ратории Н. Ф. Попова Орловой установлено, что после дразнения пищей у собак происходит увеличение числа лейкоцитов в крови.

Как уже указывалось, при снижении атмосферного давления у жи­вотных увеличивается количество эритроцитов в крови. В опытах Васи­ленко такое увеличение количества эритроцитов у собак наблюдалось при одном помещении в барокамеру (без последующего снижения атмо­сферного давления), если до того в этих же условиях они подвергались воздействию пониженного атмосферного давления.

Увеличение числа эритроцитов происходит, как уже отмечалось, при интенсивной мышечной работе. У кавалерийских лошадей удавалось наблюдать повышение количества эритроцитов уже на старте при одном звуке трубы (Крестовников и Израэль).

В опытах Каплан и Соколовой (из лаборатории Беленького) соче­тание звучания колокольчика (условный раздражитель) с внутривенным введением адреналина (безусловный раздражитель) привело к образо­ванию условного рефлекса. Достаточно было одного звучания колоколь­чика, чтобы вызвать в крови такие же изменения, какие дает введение адреналина (увеличение количества эритроцитов и лимфоцитов, умень­шение количества ретикулоцитов). У крупного рогатого скота такой рефлекс образовывался после трех-четырех сочетаний.

Метальникову и Шорину удалось получить условнорефлекторное изменение количества лейкоцитов в крови у кроликов. Сочетая введение культуры, холерного вибриона, что вызывало сильный лейкоцитоз с по­чесыванием уха (условный раздражитель), им удалось через 25 сочета­ний получить условнорефлекторный лейкоцитоз. Один только условный раздражитель (почесывание уха) вызывал у кроликов через 3 часа лейкоцитоз.

Разнообразные раздражители могут рефлекторно вызывать изме­нение фагоцитарных свойств лейкоцитов в организме.

Болевое раздражение умеренной силы способно значительно уси­лить фагоцитоз, как и другие слабые раздражения, например, несиль­ное охлаждение кожи.

Таким образом, обнаружено, что слабые кожные раздражения рефлекторно ведут к усилению деятельности такого мощного защитного фактора против инфекционных заболеваний, каким является фагоцитоз (В. Н. Пучков).

Изменение морфологического состава периферической крови может происходить не только путем рефлекторного влияния на кровообразо­вание и кроворазрушение, но и на перераспределение массы крови а пределах кровеносной системы.

Об этом говорят опыты образования условного рефлекса параллель - | но на изменение морфологического состава крови и сокращений селе - 3 зенки (Г. С. Беленький).

Имеются данные, что кора больших полушарий головного мозга | влияет на процесс свертывания крови. Маркосян в опытах на кроликах показал, что, если сочетать индифферентный раздражитель с болевым, то через несколько сочетаний один индифферентный раздражитель уско­ряет свертывание крови.

На состав крови нервно-гуморальное влияние оказывают и некоторые гормоны. Кровообразование стимулируется, например, гор­моном щитовидной железы, а также особым антианемическим фактором печени.

Изучение показало, что фактор этот образуется при взаимодействии фермента аминополипептидазы, образующегося в пилорической части желудка (внутренний фактор), с витамином 812 (внешний фактор). При взаимодействии этих двух факторов образуется активное вещество, которое всасывается в кровь и откладывается в печени. При злокачественном малокровии нарушено образование этого фактора, что я ведет к расстройству функции кровообращения и к резкому уменьше­нию количества красных кровяных клеток в крови.

Как сейчас выясняется, роль внутреннего фактора заключается не в изменении свойств или строения витамина 812, а в облегчении его всасы­вания. При злокачественном малокровии, очевидно, нарушается как раз процесс всасывания витамина В12 вследствие выпадения ферментативной реакции, обусловленной аминополипептидазой. Прием внутрь сырой печени или экстрактов из нее усиливает образование эритроцитов и со­держание их в крови у больных злокачественным малокровием.

В последнее время в лаборатории Черниговского показано, что об­разование внутреннего антианемического фактора находится под кон­тролем нервной системы, осуществляемым через блуждающий нерв. У собак с изолированным желудочком, по Клеменцевич-Гейденгайну, т, е. таким, который не имеет нервных связей с центральной нервной системой, развивается анемия. Это связано с тем, что при выключении блуждающего нерва нарушается образование в желудке антианемиче­ского фактора.

Поддержание относительного постоянства состава периферической крови, так же, как и его колебания при воздействии различных физиологических факторов, осуществляется благодаря взаимодействию нескольких процессов - кроветворения, кроверазрушения и перераспределения. Координация этих процессов связана с наличием специальной системы регуляции. Эта система обеспечивает приспособительные реакции крови как на изменения внутренней среды организма, так и на различного рода влияния извне. Нервный и гуморальный пути регуляции могут оказывать свое воздействие на любое из звеньев, формирующих картину крови.

Рис. 1. Функциональная
система поддержания клеточного состава крови.

Роль нервной системы в регуляции системы крови.

Участие НС в перераспределительных реакциях подтверждается опытами, в которых анестезия предотвращает такие реакции, как возникновение местного лейкоцитоза при болевом раздражении, раздражении брюшины, механическом раздражении слизистой желудка, поверхности печени и т.п.. Четкие изменения состава периферической крови отмечаются и при введении медиаторов НС (адреналина и ацетилхолина). Так, инъекция адреналина приводит к возникновению кратковременного лейкоцитоза.

Значительно сложнее вопрос о влиянии нервной системы непосредственно на кроветворение. Многочисленные клинические наблюдения над изменениями состава крови при различных поражениях ЦНС явились основой для представления о существовании центральной регуляции кроветворения. При раздражении гипоталамуса стимуляция ядер симпатической НС приводит к ретикулоцитозу и эритропении, а разрушение этих ядер тормозит регенерацию крови после кровопотери. Гипоталамус участвует в регуляции образования гемопоэтинов.

Кора больших полушарий также оказывает свое влияние на состав крови и кроветворения. При удалении одного или обеих полушарий у животных развивается анемия и умеренно выраженный нейтрофильный лейкоцитоз. Одновременно тормозится регенерация крови в ответ на постгеморрагическую или гемолитическую анемию. При неврозах в клинике и в эксперименте могут развиваться анемии. Возможна выработка условных рефлексов в системе крови (условно-рефлекторный пищевой лейкоцитоз). Все эти исследования, хотя и свидетельствуют о возможном влиянии ЦНС на систему крови, но не раскрывают путей реализации этих воздействий. Можно полагать, что они осуществляются посредством изменения функционального состояния межуточного мозга, что приводит к изменениям деятельности эндокринных желез, обмена веществ, сосудистого тонуса и т.п..

Несомненное влияние на систему крови оказывают и нижележащие отделы НС. Это доказано многочисленными экспериментами с перерезкой спинного мозга на различных уровнях. При перерезке шейного и грудного отделов наблюдается развитие анемии, ретикулоцитопении и нейтрофильного лейкоцитоза. В костном мозге в этих случаях снижается количество эритробластов.

Нервные волокна, регулирующие кроветворение, выходят из спинного мозга на уровне D3-L3 сегментов. Симпатическая иннервация стимулирует кроветворение, парасимпатическая тормозит. Однако, при определенных условиях эти эффекты модифицируются и оба отдела ВНС могут оказывать на кроветворение одинаковое действие. Можно считать доказанным, что парасимпатикус влияет более на лейкопоэз, чем на эритропоэз.

Следует отметить, что в особой зависимости от нормального функционального состояния НС находится эритрон. Выключение определенных рефлексогенных зон (синокаротидная, аортальная), денервация внутренних органов (печень, селезенка, почки), перерезка некоторых периферических нервов (седалищный, бедренный) закономерно вызывают анемию у экспериментальных животных.

Существует два пути регулирующего влияния НС на систему крови - прямой и косвенный с участием гуморальных посредников. Подтверждением наличия прямого пути является наличие иннервации костного мозга, причем костный мозг является и источником афферентной импульсации, т.е. связь двусторонняя. Вместе с тем велика и роль гуморальных посредников между НС и системой крови (опыты на парабионтах). Эти гуморальные стимуляторы кроветворения получили наименование гемопоэтины. Под гемопоэтинами подразумевают вещества, которые вырабатываются в организме и обладают способностью стимулировать кроветворение. В зависимости от точки приложения их действия различают эритропоэтины, лейкопоэтины и тромбопоэтины.

Эритропоэтин. Наиболее изученным среди факторов, стимулирующих кроветворение, является эритропоэтин. Учение об эритропоэтинах возникло на основе опытов Карно и Дефландера, которые обнаружили в 1906 г., что сыворотка кроликов с анемией обладает способностью стимулировать эритропоэз при введении ее интактным животным. Эритропоэтины образуются не только после острой кровопотери, но и при массивном разрушении эритроцитов при фенилгидразиновом отравлении, при снижении содержания кислорода в воздухе, при любой гипоксии. Использование чувствительных методов обнаружения эритропоэтина показало наличие его в плазме здоровых людей. Это позволяет считать его физиологическим стимулятором эритропоэза. При патологических условиях наблюдается лишь усиление интенсивности его образования. Исключение составляют лишь анемии у больных с заболеваниями почек. Это обусловлено той особой ролью, которая приписывается почкам в формировании эритропоэтина. При двусторонней нефрэктомии выработка эритропоэтина прекращается. Эксплантация собственной почки больному животному восстанавливает синтез эритропоэтина. Это связано с тем, что эритропоэтин синтезируется особыми клетками в т.н. юкста -гломерулярном аппарате почки. Действуя на костный мозг. эритропоэтин стимулирует в нем дифференциацию основных стволовых клеток с сторону эритробластического ряда. Возможно его стимулирующее действие и на скорость созревания эритробластов и нормобластов. По своей химической природе эритропоэтин относится к гликопротеидам. Он имеет специфическую антигенную структуру, термостабилен и не связан с крупнодисперсными белками.

Лейкопоэтины. Вопрос о лейкопоэтинах изучен несравненно меньше. Безлейкоцитарная плазма обладает способностью вызывать лейкоцитоз при парэнтеральном введении интактным животным. Лейкоцитоз появляется вскоре после инъекции и достигает максимума через 4-6 часов. Механизм действия лейкопоэтинов аналогичен влиянию эритропоэтинов, т.е. они стимулируют дифференциацию основных клеток костного мозга в сторону гранулоцитопоэза. Химический состав лейкопоэтинов не изучен.

Тромбопоэтины- их наличие доказано, но механизм действия и место выработки неизвестно. Помимо стимуляторов кроветворения, в настоящее время придается определенное значение факторам, обладающим противоположной активностью. Получены данные о повышенном образовании ингибиторов эритропоэза при заболеваниях почек, при экспериментальной полицитемии, при анемиях после перерезки некоторых нервов. Однако этот раздел физиологии регуляции крови только начинает развиваться.

Роль желез внутренней секреции в регуляции системы крови.

Наряду со специфической регуляцией системы крови, которая осуществляется посредством гемопоэтинов, и, возможно, веществ с ингибиторными свойствами, имеется немало данных об участии в этом процессе различных желез внутренней секреции.

Гипофиз. Установлено, что гипофизэктомия приводит к анемии и гипоплазии костного мозга. Несомненное влияние на систему крови оказывают и отдельные гормоны гипофиза (АКТГ и СТГ). Применение СТГ приводит к усилению пролиферации всех костномозговых элементов с нарастанием в крови числа эритроцитов и лейкоцитов на единицу веса. При этом СТГ действует непосредственно на костный мозг, а АКТГ - через глюкокортикоиды.

Надпочечники. О возможности влияния глюкокортикоидов на систему крови свидетельствуют многочисленные клинические наблюдения, указывающие на тенденцию к эритроцитозу и нейтрофильному лейкоцитозу у больных с синдромом Иценко-Кушинга. Применение глюкортикоидов у больных с не гематологическими заболеваниями сопровождается увеличением числа ретикулоцитов, эритроцитов и лейкоцитов. Аналогичные изменения обнаруживаются у животных при введении кортизона. В то же время адреналэктомия приводит к развитию анемии и увеличению в крови абсолютного количества лимфоцитов. Все эти эффекты связаны со способностью глюкокортикоидов стимулировать эритро- и гранулопоэз и тормозить продукцию лимфоцитов из-за развивающейся гипоплазии лимфоидного аппарата. Эозинопения, нередко отмечающаяся при введении глюкокортикоидов, обычно связывается с перераспределением эозинофилов. Длительное применение АКТГ может приводить к гипоплазии костного мозга из-за торможения митотической активности костномозговых элементов.

Действие минералокортикоидов на систему крови осуществляется через изменения объема циркулирующей жидкой части крови. Определенные изменения состава крови возникают и при введении гормонов мозгового слоя надпочечников (адреналина и норадреналина). Они выражаются в кратковременной полиглобулии при отсутствии существенных нарушений в лейкоцитарной формуле. Развитие полиглобулии обусловлено перераспределением форменных элементов, уменьшением количества депонированных клеток крови в печени, селезенке, легких и других паренхиматозных органах при одновременном усилении выхода зрелых сегментоядерных нейтрофилов из синусов костного мозга в кровь.

Половые железы. Половые различия в составе крови известны. Показано, что применение женских половых гормонов, эстрогенов, у людей и животных приводит к развитию панцитопении, особенно анемии. Применение малых доз эстрогенов оказывает стимулирующее действие на гранулоцитопоэз, при больших дозах отмечается аплазия гранулопоэза и лимфопоэза.

Введение мужских половых гормонов, андрогенов, оказывает противоположное действие, выражающееся в появлении полиглобулии и гиперплазии костного мозга.

Щитовидная железа. Менее определенное действие на систему крови оказывают гормоны щитовидной железы. При гиперфункции ее нередко развивается лейкопения, связанная с уменьшением абсолютного количества нейтрофилов. Абсолютное же количество лимфоцитов увеличивается, одновременно с увеличением размеров тимуса и лимфатических органов.

Более закономерным является развитие анемии при гипофункции щитовидной железы. Количество лейкоцитов и тромбоцитов не меняется. Изменения кроветворения при нарушениях функции щитовидной железы не являются специфическими. Их появление связано с изменением темпа обменных процессов в организме, нарушением витаминного баланса и, возможно, нарушением всасывания необходимых для кроветворения веществ в ЖКТ.

Зобная железа. Установлено, что зобная железа имеет непосредственное отношение к регуляции развития лимфоидного аппарата. Удаление тимуса у новорожденных мышей приводит к задержке развития лимфоидного аппарата вплоть до его атрофии. Одновременно у животных отмечается повышенная чувствительность к инфекции в связи со снижением способности вырабатывать антитела. Менее изученным является влияние зобной железы на эритропоэз. В физиологических условиях у взрослых людей тимус не может принимать существенного участия в регуляции кроветворения из-за возрастной инволюции этой железы.

Прочие регулирующие влияния на систему крови.

Внутренние органы. Помимо эндокринных желез, к регуляции системы крови имеют отношение такие органы, как селезенка и легкие. Они являются депо крови, в селезенке происходит разрушение элементов крови. При этом в селезенке разрушаются только старые, качественно измененные клетки. Большую роль играет селезенка и в стимуляции эритропоэза (продукты распада эритроцитов стимулируют созревание новых клеток) и лейкопоэза (удаление селезенки приводит к лимфоцитозу, эозинофилии и моноцитозу), а также тромбоцитопоэза.

Продукты распада форменных элементов крови играют определенную роль в регуляции системы крови, так как симулируют свой росток. Терапевтический эффект переливания эритроцитарной и лейкоцитарной массы во многом связан с этим свойством, поскольку время циркуляции перелитых клеток, особенно лейкоцитов, невелико.

Влияние питания. Функциональная активность гемопоэза во многом определяется характером питания. Длительное белковое голодание приводит к развитию лейкопении и анемии. Из других алиментарных факторов в регуляции кроветворения, особенно эритропоэза, придается значение некоторым микроэлементам (железо, кобальт, медь).

Роль витаминов в эритропоэзе здорового человека определяется, с одной стороны, их участием в качестве коферментов на различных этапах синтеза гема, а с другой стороны, тем существенным значением, которое они имеют в процессе образования глобина.

В12 и фолиевая кислота оказывают в конечном итоге сходное и взаимодополняющее влияние на эритропоэз. Минимальная потребность здорового человека в витамине В12 составляет 0,6-1,2 мкг в день. Он поступает в связанном с животным белком состоянии с пищей в желудок, где происходит расщепление этого комплекса, а затем соединение витамина в "внутренним фактором" Кастла. Последний идентичен гастромукопротеину, который секретируется добавочными клетками главных желез желудка. Витамин В12 всасывается на всем протяжении тонкой кишки, но преимущественно в дистальной части повздошной. Существует два механизма всасывания этого витамина: один связан с действием внутреннего фактора, другой основан на простой диффузии без участия гастромукопротеина. Диффузионный механизм возможен только при больших дозах витамина (500-1000 гамм).

Фолиевая кислота относится к водорастворимым витаминам, широко представлена в растительных продуктах, легко всасывается в дистальных отделах кишечника. В печени в присутствии В12 и аскорбиновой кислоты превращается в активно действующее соединение - фолиновую кислоту.

Витамин С. Значение аскорбиновой кислоты для эритропоэза определяется прежде всего активным участием этого витамина во всех этапах обмена железа. Этот витамин усиливает всасывание железа в 8-20 раз

Витамин В6 - участвует в синтезе гема. Недостаток этих витаминов в организме приводит к нарушению образования флавиновых коферментов, которые принимают участие в синтезе жирных кислот, необходимых для образования липидной стромы эритроцитов. Эти же коферменты влияют на образование эритропоэтина.


Витамин В15 (пангамовая кислота). Недостаточное поступление пангамовой кислоты приводит к возникновению лейкопении и гипоплазии костного мозга. Такие же изменения отмечаются и при недостатке фолиевой кислоты. Считается, что пангамовая и пантотеновая кислоты необходимы для микробов кишечника, синтезирующих в физиологических условиях фолиевую кислоту.

Таким образом, регуляция гемопоэза сложна и многообразна. Далеко не все из описанные факторов имеют решающее значение. Ведущими среди них являются нейроэндокринные влияния и специфические гемопоэтины. Но все эти факторы взаимосвязаны и оказывают свое регулирующее влияние в тесном взаимодействии друг с другом, создавая в конечном итоге условия для нормального функционирования системы крови.

Последнее изменение этой страницы: 2016-04-18; Нарушение авторского права страницы

Читайте также:

Пожалуйста, не занимайтесь самолечением!
При симпотмах заболевания - обратитесь к врачу.