Запредельное торможение центральной нервной системы













  • Физиология
  • История физиологии
  • Методы физиологии

Торможение ЦНС

Торможение существует наряду с возбуждением и представляет собой одну из форм деятельности нейрона.

Начало изучения торможения в центральной неравной системе связывают с выходом в свет работы И.М. Сеченова "Рефлексы головного мозга", в которой он показал возможность торможения двигательных рефлексов лягушки при химическом раздражении зрительных бугров головного мозга.

Торможение в центральной нервной системе - активный нервный процесс, проявляющийся в подавлении или ослаблении процесса возбуждения.

Центральное торможение (опыт И.М. Сеченова) - процесс, характеризующийся увеличением времени рефлекса или его полным отсутствием, возникающий при раздражении кристалликом поваренной соли поперечного разреза ствола мозга в области зрительных чертогов.

Классический опыт Сеченова заключается в следующем: у лягушки с перерезанным головным мозгом на уровне зрительных бугров определяли время сгибательного рефлекса при раздражении лапки серной кислотой. После этого на зрительные бугры накладывали кристаллик поваренной соли и снова определяли время рефлекса. Оно постепенно увеличивалось, вплоть до полного исчезновения реакции. После снятия кристаллика соли и промывания мозга физиологическим раствором время рефлекса постепенно восстанавливалось. Это позволило говорить о том, что торможение — активный процесс, возникающий при раздражении определенных отделов ЦНС.

Позже И.М. Сеченовым и его учениками было показано, что торможение в ЦНС может возникнуть при нанесении сильного раздражения на любые афферентные пути.

Периферическое торможение открыто братьями Вебер в 1845 г. Они установили, что раздражение блуждающего нерва тормозит работу сердца до полной его остановки.

Благодаря микроэлектродной технике исследования стало возможным изучение процесса торможения на клеточном уровне.

Различают два вида торможения в зависимости от механизмов его возникновения: деполяризационное и гиперполяризационное. Деполяризационное торможение возникает вследствие длительной деполяризации мембраны, а гиперполяризационное - вследствие гиперполяризации мембраны.

Наступлению деполяризационного торможения предшествует состояние возбуждения. Вследствие длительного раздражения это возбуждение переходит в торможение. В основе возникновения деполяризационного торможения лежит инактивация мембраны для натрия, вследствие чего уменьшаются потенциал действия и его раздражающее влияние на соседние участки, в итоге прекращается проведение возбуждения.

Один из видов этого торможения — пессимальное, описанное Н.Е. Введенским (1886), который показал, что возбуждение может сменяться торможением в любом участке, обладающем низкой лабильностью.

Гиперполяризациоиное торможение осуществляется с участием особых тормозных структур и связано с изменением проницаемости мембраны по отношению к калию и хлору, что вызывает увеличение мембранного и порогового потенциалов, в результате чего становится невозможной ответная реакция.


Центральное торможение (опыт И.М. Сеченова): а — двигательный рефлекс на болевой раздражитель; 6 — раснространснне нервных импульсов от тормозных нейронов ствола мозга к спинному мозгу при наложении кристалла NaCI на область зрительных чертогов и отсутствие двигательного рефлекса на болевой раздражитель


Первичное торможение — процесс активации тормозных нейронов, образующих синаптические связи с клеткой, на которую направлено торможение, при этом данный процесс для клетки является первичным, не связанным с ее предварительным возбуждением.

Вторичное торможение — процесс, который развивается в клетке без участия специфических тормозных структур и является следствием ее собственного возбуждения.

Запредельное торможение - истощение нервных клеток при действии раздражителей высокой интенсивности.

Пессималыюе торможение — блокирование высокочастотных импульсов в немиелинизированных нервных терминалях вследствие их более низкой лабильности.

Пресинаптическое торможение - процесс, реализующийся при активации аксо-аксонального тормозного синапса и блокирующий возбуждающие импульсы, направленные на данную клетку.

Постсинантическое торможение - процесс, развивающийся при активации аксо-соматических и аксо-дендритических тормозных синапсов и локализующийся на собственной мембране клетки, на которую направлено торможение.

Рецинрокное торможение — взаимное подавление активности антагонистических нервных структур.

Афферентное коллатеральное торможение - частный случай реципрокного торможения, локализуемый в афферентной части рефлекторной дуги.

Эфферентное коллатеральное (возвратное) торможение — процесс, при котором тормозные вставочные нейроны действуют на те же нервные клетки, которые их активировали, при этом торможение тем сильнее, чем интенсивнее предшествующее возбуждение.

Латеральное торможение — процесс, при котором вставочные тормозные нейроны подавляют активность не только клетки, которая их инициировала, но и других, рядом расположенных.


Латеральное торможение (Т — тормозной нейрон)


Возвратное торможение (Т-тормозной вставочный нейрон (клетка Реншоу); М — мотонейрон)


Рецинрокное торможение (Т — тормозной вставочный нейрон (клетка Реншоу); М — мотонейрон)


Поступательное торможение (Т — тормозной нейрон)

Процессы торможения в центральной нервной системе

Процессы возбуждения и торможения в нервной системе тесно взаимосвязаны.

Торможение в ЦНС способствует определенной координации выполняемой функции. При этом блокируется деятельность нейронов и центров, которые в данный момент не требуются для выполнения приспособительной реакции. Кроме того, торможение выполняет и защитную функцию, предохраняя нервные клетки от перевозбуждения и истощения при действии сильных раздражителей.

Различают несколько видов торможения в нервной системе.

Постсипаптическое торможение развивается в случаях, когда тормозной медиатор, выделяемый нервным окончанием, изменяет свойства постсинаптической мембраны таким образом, что нервная клетка не может генерировать потенциал действия. Постсипаптическое торможение может быть обусловлено длительной деполяризацией или гиперполяризацией, возникающей в постсинаптической мембране вследствие взаимодействия медиатора с рецепторами, открывающими калиевые и хлорные каналы. Наиболее распространенными тормозными медиаторами являются гамма-аминомасляная кислота и глицин. Глицин выделяется особыми тормозными клетками (клетки Реншоу) в синапсах, образуемых этими клетками на мембране другого нейрона. Действуя на рецептор постсинаптической мембраны, глицин увеличивает ее проницаемость для ионов СI-, при этом ионы хлора поступают в клетку согласно концентрационному градиенту, в результате чего развивается гиперполяризация. При действии гамма-аминомасляной кислоты на постсинаптическую мембрану постсинаптическое торможение развивается в результате входа ионов хлора в клетку или выхода ионов калия из клетки. Концентрационные градиенты ионов К + в процессе развития торможения нейронов поддерживается Na + /К + -насосом, а ионов СI - — СI - -насосом.

Возвратное постсинаптическое торможение - это такое торможение, при котором тормозные вставочные нейроны (клетки Реншоу) действуют на те же нервные клетки, которые их иннервируют. Примером возвратного постсинаптического торможения может служить торможение в мотонейронах спинного мозга. Этот вид торможения обеспечивает, например, поочередное сокращение и расслабление скелетных мышц — сгибателей и разгибателей, что необходимо для координации движений конечностей при ходьбе.

Латеральное постсинаптическое торможение обусловлено тем, что тормозные вставочные нейроны соединены таким образом, что они активируются импульсами от возбужденного центра и влияют на соседние клетки с такими же функциями. В результате в этих соседних клетках развивается очень глубокое торможение, называемое латеральным, так как образующаяся зона торможения находится сбоку по отношению к возбужденному нейрону и инициируется им.

Реципрокное торможение, примером которого является торможение нервных центров мышц-антагонистов, заключается в том, что возбуждение проприорецепторов мышц-сгибателей одновременно активирует мотонейроны данных мышц и вставочные тормозные нейроны. Возбуждение вставочных нейронов приводит к постсинаптическому торможению мотонейронов мышц-разгибателей. Если бы возбуждались одновременно центры мышц-сгибателей и мышц- разгибателей, сгибание конечности в суставе было бы невозможно.

Пресинаптическое торможение связано с тем, что в пресинаптическом окончании может развиваться продолжительная деполяризация мембраны, которая приводит к развитию торможения. В очаге деполяризации нарушается процесс распространения возбуждения и импульсы не могут пройти через зону деполяризации. Следовательно, не происходит выделения медиатора в синаптическую щель в достаточном количестве и не возбуждается постсинаптический нейрон. В ЦНС имеется огромное число тормозных нейронов, в частности клетки Реншоу. Эти тормозные нейроны синтезируют специфические тормозные медиаторы и осуществляют реакцию торможения. Активация тормозного нейрона вызывает деполяризацию мембраны терминалей в афферентных нейронах, что затрудняет процесс проведения потенциала действия. Медиатором втакихаксо аксональных синапсах служит гамма-аминомасляная кислота или другой тормозной медиатор. Деполяризация является следствием повышения проницаемости мембраны для ионов хлора, в результате эти ионы выходят из клетки.


Эскадрон моих мыслей шальных —
Ни решеток ему, ни преград.
Удержать не могу я лихих скакунов
Пусть летят, пусть летят…

Вот так вот, Олежа. А надо было всего-то к доктору вовремя обратиться.

Тема этой статьи – торможение в ЦНС (Центральной Нервной Системе).

Так как сайт у меня для самых обычных людей, я вас всех обрадую… Ваш мозг постоянно тормозит! И это не значит, что вы все тормоза конкретные 🙂 Это значит, что вся сложнейшая деятельность мозга основана на взаимодействии процессов возбуждения и торможения. Таковы уж законы вселенной, что не бывает ничего с одним полюсом. Торможение необходимо для блокирования, ограничения и прекращения процессов возбуждения в ЦНС.

Взаимодействуя между собой, торможение и возбуждение образуют сложный, постоянно изменяющийся рисунок активированных зон в мозге. Также процесс торможения имеет охранительное значение для нейронов.

Безусловное торможение

Запредельное торможение возникает в нейронах при длительном либо чрезмерно сильном возбуждении. Т. е. после продолжительного или чрезмерного возбуждения нейрон просто перестает отвечать на входящие (звонки 🙂 ) импульсы, при этом восстанавливается нормальный баланс метаболитов в клетке. Таким образом, запредельное торможение защищает клетку от истощения и дальнейшего разрушения. И пусть еще кто-нибудь мне скажет, что усталость мозга – это исключительно психологический фактор!

В таких ситуациях я всегда задаюсь вопросом: — отличается ли человек от животного наличием сознания или сознательности? Ведь выше описанная реакция на телевизор или нечто подобное сродни реакции собачки на прыгающий мячик. В большинстве случаев отвечаю положительно и ухожу читать в другую комнату. А вы?

Условное торможение

Ничего не остается, как игнорировать телевизор и продолжать чтение. Через какое-то время вы перестанете слышать телевизор. Т. е. безусловная реакция на него будет заторможена. То же самое произойдет с шумными соседями, если их продолжительное время игнорировать.

Есть и другие виды условного торможения, но они не так интересны, и о них рассказывать не буду. Расскажу о механизмах процессов торможения.

Механизмы процессов торможения

Особенностью этих нейронов является то, что они вырабатывают определенные нейромедиаторы глицин и гамма-аминомасляную кислоту (ГАМК), оказывающие тормозное действие на нейроны, соединяющиеся с ними. Такой вид торможения называется постсинаптическим, т. к. воздействие тормозных нейромедиаторов оказывается на постсинаптическую мембрану воспринимающего нейрона.

Итак, возбужденный тормозный нейрон выделил нейромедиаторы глицин либо ГАМК, которые оказывают особое воздействие на воспринимающий нейрон, заключающееся в том, что в мембране нейрона открываются каналы для прохождения ионов калия+ либо хлора-.

Если открываются калиевые каналы, то K+ выходит из клетки и выносит с собой положительный заряд. Если открываются хлорные каналы, то Cl- входит в клетку и вносит с собой отрицательный заряд, таким образом увеличивая разницу электрических потенциалов внутри и снаружи нейрона. Такой процесс называется гиперполяризацией, а приобретенный потенциал называется тормозным постсинаптическим потенциалом (ТПСП).

Также тормозный эффект присутствует в аксо-аксональных синапсах, т. е. когда синапс образуется терминалиями двух аксонов. Причиной торможения является выделение тормозного медиатора на пресинаптическую мембрану аксона. Таким образом блокируется возможность воспринимающей мембраны выделять медиаторы, вызывающие потенциал действия.

Иррадиация торможения

Определенные стимулы вызывают иррадиацию (распространение) торможения по коре мозга. Такими стимулами могут являться: позднее время суток, горизонтальное положение, мягкая подушка, выключенный свет и кто-то теплый рядом. Таким образом иррадиация торможения по коре мозга вызывает сон.

Легкое нарушение баланса процессов возбуждения и торможения могут вызывать нарушение сна, расстройство внимания, патологическую лень. Самая хорошая новость в том, что в ходе вашего развития эти процессы совершенствуются, а многие из них подчиняются вашей воле. Но об этом в следующих статьях.

Нервная система функционирует благодаря взаимодействию двух процессов – возбуждения и торможения. Оба являются формой деятельности всех нейронов.

Возбуждение — это период активной деятельности организма. Внешне оно может проявляться как угодно: например, сокращение мышц, выделение слюны, ответы учеников на уроке и пр. Возбуждение всегда дает только электроотрицательный потенциал в зоне возбуждения ткани. Это его показатель.

Торможение — прямо противоположный процесс. Интересно звучит то, что торможение и вызывается возбуждением. При нем нервное возбуждение временно прекращается или ослабевает. При торможении потенциал электроположительный. Поведенческая деятельность человека основана на выработке условных рефлексов (УР), сохранением их связей и преобразований. Это становится возможным только при существовании возбуждения и торможения.

Преобладание возбуждения или торможения создает свою доминанту, которая может охватывать обширные участки мозга. Что происходит сначала? В начале возбуждения возбудимость коры больших полушарий повышается, что связано с ослаблением процесса внутреннего активного торможения. В дальнейшем эти силовые нормальные взаимоотношения меняются (возникают фазовые состояния) и развивается торможение.

Для чего нужно торможение

Если в силу каких-то причин теряется жизненное значение какого-либо условного раздражителя, торможение отменяет его действие. Оно защищает таким образом клетки коры от действия раздражителей, которые перешли в категорию разрушающих и стали вредоносными. Причина возникновения торможения заключена в том, что любой нейрон имеет свой лимит трудоспособности, за пределами которого наступит торможение. Оно носит охранительный характер, потому что защищает нервные субстраты от разрушения.

Виды торможения

Торможение условных рефлексов (ТУР) делят на 2 вида: внешнее и внутреннее. Внешнее называют также врожденным, пассивным, безусловным. Внутреннее – активным, приобретенным, условным, его основная особенность – врожденный характер. Врожденность безусловного торможения означает, что для его появления не надо его специально вырабатывать и стимулировать. Процесс может возникать в любом отделе ЦНС, в том числе и в коре.

Рефлекс запредельного торможения безусловный, т. е. врожденный. Его возникновение не связано с рефлекторной дугой тормозимого рефлекса и находится вне ее. Условное торможение вырабатывается постепенно, в процессе образования УР. Оно может возникать только в коре головного мозга.

Внешнее торможение делится, в свою очередь, на индукционное и запредельное торможение. К внутреннему виду относятся угасательное, запаздывательное, дифференцировочное торможение и условный тормоз.

Когда возникает внешнее торможение

Внешнее торможение возникает под действием посторонних к работающему условному рефлексу раздражителей. Они находятся вне опыта работы данного рефлекса, сначала они могут быть новыми и сильными. В ответ на них образуется сначала рефлекс ориентировочный (или его называют еще рефлексом на новизну). В ответ на него возникает возбуждение. А уже потом оно тормозит существующий УР до тех пор, пока этот посторонний раздражитель не перестанет быть новым и не исчезнет.

Такие посторонние раздражители быстрее всего гасят и тормозят недавно утвердившиеся молодые УР со слабыми упроченными связями. Прочно выработанные рефлексы гасятся медленно. Угасательное торможение может возникать и в случае не подкрепления условного сигнального раздражителя безусловным.

Выражение состояния


Запредельное торможение в коре головного мозга выражается наступлением сна. Почему так происходит? Внимание ослабляется при однообразии, и психическая активность мозга снижается. М. И. Виноградов также указывал, что монотонность ведет к быстрому нервному истощению.

Когда появляется запредельное торможение


Итак, подобное запредельное торможение возникает при следующих условиях:

  1. Действие обычного раздражителя в течение продолжительного времени.
  2. Сильный раздражитель действует в течение короткого времени. Запредельное торможение может развиться и при несильных раздражителях. Если они действуют одновременно, или увеличивается их частота.

Биологическое значение безусловного запредельного торможения сводится к тому, что истощенным клеткам головного мозга предоставляется передышка, отдых, в котором они остро нуждаются, для их последующей активной деятельности. Нервные клетки природой задуманы как высокоинтенсивные для деятельности, но они также и самые быстро утомляющиеся.

Примеры


Примеры запредельного торможения: у собаки выработали, например, слюнный рефлекс на слабый звуковой раздражитель, а потом стали его постепенно увеличивать по силе. Нервные клетки анализаторов возбуждены. Возбуждение сначала увеличивается, об этом будет говорить количество выделяемой слюны. Но такое нарастание наблюдается только до определенного предела. В какой-то момент даже очень сильный звук слюны не вызывает, она не будет выделяться совсем.

Предельное возбуждение сменилось торможением – вот что это такое. Это запредельное торможение условных рефлексов. Та же картина будет и при действии небольших раздражителей, но в течение длительного времени. Длительное раздражение быстрее приводит к утомлению. Тогда клетки нейронов тормозят. Выражением такого процесса является сон после переживаний. Это защитная реакция нервной системы.

Еще пример: ребенок 6 лет вовлечен в семейную ситуацию, где его сестра нечаянно опрокинула на себя кастрюлю с кипятком. В доме поднялась суматоха, крики. Мальчик очень сильно испугался и после короткого по времени сильного плача вдруг глубоко заснул на месте и спал целый день, хотя потрясение было еще утром. Нервные клетки коры малыша не вынесли чрезмерного напряжения – это тоже пример запредельного торможения.


Если долго делать одно упражнение, потом оно уже не получается. Когда занятия длятся долго и нудно, в конце его ученики не будут отвечать правильно даже на легкие вопросы, которые без проблем преодолевали сначала. И это не лень. Студенты на лекции начинают засыпать при монотонном голосе лектора или при громкой его речи. Такая инертность корковых процессов говорит о развитии запредельного торможения. Для этого и придуманы в школе переменки и перерывы между парами у студентов.

Иногда сильные эмоциональные всплески у некоторых людей могут закончиться эмоциональным шоком, ступором, когда они становятся вдруг скованными и тихими.

В семье с маленькими детьми жена криком требует вывести детей погулять, дети галдят, кричат и прыгают вокруг главы семейства. Что будет: он ляжет на диван и уснет. Примером запредельного торможения может послужить и стартовая апатия спортсмена перед выступлением на соревнованиях, что отрицательно скажется на результате. По своей природе это торможение пессимальное. Запредельное торможение выполняет защитную функцию.

Отчего зависит трудоспособность нейронов


Предел возбудимости нейронов – не есть константа. Величина эта переменчивая. Она снижается при переутомлении, истощении, болезни, старости, действии отравления, гипнотизации и т. д. Запредельное торможение зависит также от функционального состояния ЦНС, от темперамента и типа нервной системы человека, его равновесия гормонов и пр. То есть сила раздражителя для каждого человека индивидуальна.

Виды внешнего торможения

Главные признаки запредельного торможения: апатия, сонливость и вялость, далее сознание нарушается по типу сумеречного, итогом становится потеря сознания или сон. Крайним выражением торможения становится состояние ступора, ареактивности.

Индукционное торможение

Индукционное торможение (постоянный тормоз), или отрицательная индукция - в момент проявления какой-либо деятельности вдруг возникает доминирующий раздражитель, он силен и подавляет проявление текущей деятельности, т. е. индукционное торможение характеризуется прекращением рефлекса.


Примером может стать случай, когда поднимающего штангу спортсмена фотографирует репортер и его вспышка ослепляет штангиста – он прекращает в тот же момент подъем штанги. Окрик учителя на некоторое время останавливает мысль ученика – внешний тормоз. То есть по сути возник новый, уже более сильный рефлекс. В примере с окриком учителя у ученика возникает оборонительный рефлекс, когда школьник сосредоточивается для преодоления опасности, и поэтому он является более сильным.


Другой пример: у человека болела рука и вдруг прибавилась зубная боль. Она пересилит ранку на руке, потому что зубная боль – более сильная доминанта.

Такое торможение называется индукционным (основа в отрицательной индукции), оно постоянно. Это означает, что оно будет возникать и не ослабевать никогда, даже при повторении.

Гаснущий тормоз

Еще одна разновидность внешнего торможения, возникающего в виде угнетения УР на условиях, которые приводят к возникновению ориентировочной реакции. Эта реакция временная, и причинное внешнее торможение в начале опыта перестает действовать позже. Поэтому и название такое – гаснущий.

Пример: человек чем-то занят, и стук в дверь вызывает у него сначала ориентировочную реакцию "кто там". Но если он повторяется, человек перестает на него реагировать. При попадании в какие-то новые условия человеку сначала трудно сориентироваться, но, привыкая, он уже не тормозит при выполнении работы.

Механизм развития

Механизм запредельного торможения заключается в следующем - с посторонним сигналом в коре мозга появляется новый очаг возбуждения. И он при монотонности текущую работу условного рефлекса угнетает по механизму доминанты. Что это дает? Организм экстренно приспосабливается к условиям окружающей и внутренней среды и становится способным к другой деятельности.

Фазы запредельного торможения

Фаза Q – начальное торможение. Человек пока только замер в ожидании дальнейших событий. Возможно, поступивший сигнал исчезнет сам по себе.

Фаза Q2 - это фаза активного реагирования, когда человек активен и целеустремлен, реагирует на сигнал адекватно и принимает меры. Сосредоточен.

Фаза Q3 – запредельное торможение, сигнал продолжился, равновесие нарушено, и на смену возбуждению пришло торможение. Человек парализован и вял. Работы уже нет. Он становится неактивным и пассивным. При этом он может начать делать грубые ошибки или просто "выключается". Это важно учитывать, например, разработчикам систем аварийной сигнализации. Излишне сильные сигналы вызовут только тормоз у оператора вместо активной работы и принятия экстренных мер.

Запредельное торможение защищает нервные клетки от истощения. У школьников такое торможение наступает на уроке, когда учитель объясняет учебный материал с самого начала слишком громким голосом.

Физиология процесса

Физиология запредельного торможения составляется иррадиацией, разлитием в коре головного мозга торможения. При этом задействовано большинство нервных центров. Возбуждение сменяется торможением на самых обширных его участках. Само запредельное торможение – это физиологическая основа первоначального отвлечения, а затем тормозной фазы утомления, например у учащихся на уроке.

Значение торможения внешнего

Значение запредельного и индукционного (внешнего) торможения разное: индукция всегда приспособительная, адаптивная. Она связана с реагированием человека на самый сильный внешний или внутренний раздражитель на данный момент времени, будь то голод или боль.

Такая адаптация наиболее важна для жизни. Чтобы почувствовать разницу между пассивным и активным торможением, вот такой пример: котенок легко поймал птенца и съел. Выработался рефлекс, он начинает кидаться на любую взрослую птицу в той же надежде поймать. Это не удается - и он переключается на поиск добычи другого рода. Рефлекс приобретенный активно гасится.

Величина предела работоспособности нейронов даже для животных одного вида не совпадает. Как и у людей. У животных со слабой ЦНС, старых и кастрированных животных он низкий. Снижение его отмечено и у молодых животных после длительных дрессировок.

Итак, запредельное торможение приводит к оцепенению животного, защитная реакция торможения делает его незаметным в случае опасности – в этом биологический смысл этого процесса. Бывает также у животных, что мозг при таком торможении выключается почти полностью, приводя даже к мнимой смерти. Такие животные не притворяются, сильнейший страх становится сильнейшим стрессом, и они и вправду мнимо умирают.

1. По характеристике процесса, возникающего на постсинаптической мембране:

1.1. Первичное торможение — процесс активации тормозных нейронов, образующих синаптические связи с клеткой, на которую направлено торможение, при этом данный процесс для клетки является первичным, не связанным с ее предварительным возбуждением.

1.2. Вторичное торможение — процесс, который развивается в клетке без участия специфических тормозных структур и является следствием ее собственного возбуждения.

2. По локализации активного тормозного процесса на клетке:

2.2. Пресинаптическое торможение - процесс, реализующийся при активации аксо-аксонального тормозного синапса и блокирующий возбуждающие импульсы, направленные на данную клетку.

2.3. Постсинантическое торможение - процесс, развивающийся при активации аксо-соматических и аксо-дендритических тормозных синапсов и локализующийся на собственной мембране клетки, на которую направлено торможение.

3. По структурно-функциональной организации нейронов:

Рецинрокное торможение — взаимное подавление активности антагонистических нервных структур.

Афферентное коллатеральное торможение - частный случай реципрокного торможения, локализуемый в афферентной части рефлекторной дуги.

Эфферентное коллатеральное (возвратное) торможение — процесс, при котором тормозные вставочные нейроны действуют на те же нервные клетки, которые их активировали, при этом торможение тем сильнее, чем интенсивнее предшествующее возбуждение.

Латеральное торможение — процесс, при котором вставочные тормозные нейроны подавляют активность не только клетки, которая их инициировала, но и других, рядом расположенных.

(Последовательное торможение и опережающее торможение)

Есть еще и: Запредельное торможение - истощение нервных клеток при действии раздражителей высокой интенсивности. Пессималыюе торможение — блокирование высокочастотных импульсов в немиелинизированных нервных терминалях вследствие их более низкой лабильности.

В27. Спинной мозг, его строение.

Спинной мозг расположен в позвоночном канале. Представляет собой цилиндрический тяж. Сверху непосредственно переходит в продолговатый мозг у затылочного отверстия, а внизу заканчивается на уровне 2-го поясничного позвонка. От спинного мозга по обеим сторонам отходят передние (двигательные) и задние (чувствительные) корешки спинно-мозговых нервов. На некотором расстоянии эти корешки сливаются и вместе образуют ствол спинно-мозгового нерва. Серое вещ-во находится внутри спинного мозга (тела нервных клеток). Оно окружено со всех сторон белым вещ-ом – это отростки нервных клеток. Отростки образуют 3 системы нервных волокон:

1-ая система – короткие пучки волокон, соединяет участки спинного мозга на различных уровнях.

2-ая система – длинные чувствительные восходящие волокна

3-я система – длинные двигательные нисходящие волокна.

2 и 3 составляют проводниковый аппарат двухсторонних связей с головным мозгом. Спинной мозг выполняет две функции: -проводниковую; -рефлекторную.

Рефлекторная функции. Спинной мозг регулирует сократительную деятельность всей мускулатуры тела человека за исключением мышц шеи и головы. В грудном и поясничном отделе расположены центры симпатического отдела НС.

Проводниковая функция заключена в проведении импульсов по восходящим и нисходящим путям белого вещества от спинного мозга к головному и наоборот.

В28. Проводниковая и рефлекторная функция спинного мозга. Рефлекс как основной акт нервной деятельности. Общая схема рефлекторной дуги, ее звенья. Классификация рефлексов.

Спинной мозг выполняет рефлекторную и проводниковую функции.

Рефлекторная функция позволяет реализовать все двигательные рефлексы тела, рефлексы внутренних органов, терморегуляции и т. д. Рефлекторные реакции зависят от места, силы раздражителя, площади рефлексогенной зоны, скорости проведения импульса по волокнам, от влияния головного мозга.

1) на экстероцептивные (возникают при раздражении агентами внешней среды сенсорных раздражителей);

2) на интероцептивные (возникают при раздражении прессо-, механо-, хемо-, терморецепторов): висцеро-висцеральные – рефлексы с одного внутреннего органа на другой, висцеро-мышечные – рефлексы с внутренних органов на скелетную мускулатуру;

3) на проприоцептивные (собственные) рефлексы с самой мышцы и связанных с ней образований. Они имеют моносинаптическую рефлекторную дугу.

Проприоцептивные рефлексы регулируют двигательную активность за счет сухожильных и позотонических рефлексов. Сухожильные рефлексы (коленный, ахиллов, с трехглавой мышцы плеча и т. д.) возникают при растяжении мышц и вызывают расслабление или сокращение мышцы, возникают при каждом мышечном движении;

4) позотонические рефлексы – возникают при возбуждении вестибулярных рецепторов при изменении скорости движения и положения головы по отношению к туловищу, что приводит к перераспределению тонуса мышц (повышению тонуса разгибателей и уменьшению сгибателей) и обеспечивает равновесие тела.

Исследование проприоцептивных рефлексов производится для определения возбудимости и степени поражения ЦНС.

Проводниковая функция обеспечивает связь нейронов спинного мозга друг с другом или с вышележащими отделами ЦНС.

Основным принципом деятельности нервной системы является рефлекс.

Рефлекс (reflexes – отражение) – это закономерная ответная реакция организма на воздействие из внешней или внутренней среды организма при обязательном участии центральной нервной системы.Все раздражения, действующие на организм из окружающей или внутренней среды, воспринимаются чувствительными периферическими окончаниями нервной системы рецепторами. Возбуждение от рецепторов по афферентным нервным волокнам направляется в ЦНС, где происходит переработка полученной информации и формируются импульсы, которые направляются по эфферентным нервным волокнам к органам, вызывая или изменяя их деятельность. Путь, по которому возбуждение распространяется от рецептора до рабочего органа (эффектора) называется рефлекторной дугой.

В состав рефлекторной дуги входят:

1) рецептор – воспринимает раздражение и превращает энергию раздражения в возбуждение (нервные импульсы) – это первичная обработка получаемой информации. Рецепторами являются разветвления дендритов афферентных нейронов или специализированные клетки (колбочки, палочки у зрительной сенсорной системы, волосковые слуховые и вестибулярные клетки).

2) афферентный путь – путь от рецептора в ЦНС, представлен афферентным (чувствительным или центростремительным) нейроном, отростки которого образуют афферентное нервное волокно;

3) нервный центр – совокупность нейронов в ЦНС, в которых происходит переработка информации и формируется ответная реакция;

4) эфферентный (двигательный или центробежный) путь – путь из ЦНС на периферию, представлен эфферентным нейроном, аксон которого образует эфферентное нервное волокно, проводящее возбуждение к органу;

5) исполнительный орган или эффектор (мышца, железа, внутренний орган)

Рефлексы классифицируются по ряду признаков:

1) по биологическому значению – пищевые, половые, защитные, ориентировочные и т. д.;

2) по характеру ответной реакции – двигательные, секреторные, вегетативные;

3) по уровню замыкания рефлекторных дуг в отделах мозга – спинальные, бульбарные (замыкаются в продолговатом мозге), мезэнцефальные (в среднем мозге) и др.

Дата добавления: 2018-11-24 ; просмотров: 524 ;

Читайте также:

Пожалуйста, не занимайтесь самолечением!
При симпотмах заболевания - обратитесь к врачу.