Нервная система и ее значение в п воробьев

Нервная система регулирует деятельность всех органов и систем, обусловливая их функциональное единство, и обеспечивает связь организма как целого с внешней средой.

Структурной единицей нервной системы является нервная клетка с отростками - нейрон. Вся нервная система представляет собой совокупность нейронов, которые контактируют друг с другом при помощи специальных аппаратов - синапсов. По структуре и функции различают три типа нейронов: 1) рецепторные, или чувствительные; 2) вставочные, замыкательные (кондукторные); 3) эффекторные, или двигательные, нейроны, от которых импульс направляется к рабочим органам: мышцам, железам.

Нервная система условно подразделяется на два больших отдела - соматическую, или анимальную, и вегетативную, или автономную, нервную систему. Соматическая нервная система преимущественно осуществляет связь организма с внешней средой, обеспечивая чувствительность (посредством рецепторов) и движения, вызывая сокращения исчерченной мышечной ткани. Так как функции движения и чувствования свойственны животным и отличают их от растений, эта часть нервной системы получила название анимальной (животной). Вегетативная нервная система оказывает влияние на процессы так называемой растительной жизни, общие для животных и растений (обмен веществ, дыхание, выделение и др.), отсюда и ее название (вегетативная - растительная). Обе системы тесно связаны между собой, однако вегетативная нервная система обладает некоторой долей самостоятельности и не зависит от нашей воли, вследствие чего ее также называют автономной нервной системой. Ее делят на две части: симпатическую и парасимпатическую.

В нервной системе выделяют центральную часть - головной и спинной мозг - центральная нервная система (ЦНС) и периферическую, представленную отходящими от головного и спинного мозга нервами,- периферическая нервная система.

На разрезе мозга видно, что он состоит из серого и белого вещества. Серое вещество образуется скоплениями нервных клеток. Отдельные ограниченные скопления серого вещества носят название ядер. Белое вещество составляют нервные волокна - отростки нейронов, покрытые миелиновой оболочкой. Нервные волокна в головном и спинном мозге образуют проводящие пути, или тракты.

Периферические нервы в зависимости от того, из каких волокон (чувствительных или двигательных) они состоят, подразделяются на чувствительные, двигательные и смешанные. Тела нейронов, отростки которых служат чувствительными нервами, лежат в нервных узлах вне мозга. Тела двигательных соматических нейронов расположены в передних рогах спинного мозга или двигательных ядрах головного мозга, тела эффекторных вегетативных нейронов - вне ЦНС.

И. П. Павлов показал, что ЦНС может оказывать три рода воздействий на органы: 1) пусковое, вызывающее либо прекращающее функцию органа (сокращение мышцы, секреция железы); 2) сосудодвигательное, изменяющее ширину просвета сосудов и тем самым регулирующее приток к органу крови; 3) трофическое, повышающее или понижающее обмен веществ и, следовательно, потребление питательных веществ и кислорода. Благодаря этому постоянно согласуются функциональное состояние органа и его потребность в питательных веществах и кислороде. Когда к работающей скелетной мышце по двигательным волокнам направляются импульсы, вызывающие ее сокращение, то одновременно по вегетативным нервным волокнам поступают импульсы, расширяющие сосуды и усиливающие обмен веществ. Тем самым обеспечивается энергетическая возможность выполнения мышечной работы.

Нервы проникают во все органы и ткани, образуют много­численные разветвления, имеющие рецепторные (чувствитель­ные) и эффекторные (двигательные, секреторные) окончания, и вместе с центральными отделами (головной и спинной мозг) обе­спечивают объединение всех частей организма в единое целое. Нервная система регулирует функции движения, пищеварения, дыхания, выделения, кровообращения, лимфоотток, иммунные (защитные) и метаболические процессы (обмен веществ) и др.

Деятельность нервной системы, по словам И. М. Сеченова, носит рефлекторный характер. Рефлекс (лат. reflexus — отра­женный) — это ответная реакция организма на то или иное раз­дражение (внешнее или внутреннее воздействие), которая про­исходит при участии центральной нервной системы (ЦНС). Че­ловеческий организм, обитающий в окружающей его внешней среде, взаимодействует с ней. Среда влияет на организм, и ор­ганизм в свою очередь соответствующим образом реагирует на эти влияния. Протекающие в самом организме процессы также вызывают ответную реакцию. Таким образом, нервная система обеспечивает взаимосвязь и единство организма и среды.

Структурно-функциональной единицей нервной системы явля­ется нейрон (нервная клетка, нейроцит). Нейрон состоит из тела и отростков. Отростки, проводящие к телу нервной клетки нерв­ный импульс, получили название дендритов. От тела нейрона нервный импульс направляется к другой нервной клетке или к рабочей ткани по отростку, который называют аксоном, или нейритом. Нервная клетка динамически поляризована, т. е. спо­собна пропускать нервный импульс только в одном направле­нии—от дендрита через тело клетки к аксону (нейриту).

В нервной цепочке различным нейронам присущи разные функции. В связи с этим выделяют три основных типа нейронов по их морфофункциональной характеристике.

1Чувствительные, рецепторные,или афферентные, нейроны.Тела этих нервных клеток лежат всегда вне головного или спин­ного мозга, в узлах (ганглиях) периферической нервной систе­мы. Один из отростков, отходящих от тела нервной клетки, следует на периферию к тому или иному органу и заканчивается там тем или иным чувствительным окончанием — рецептором, который способен трансформировать энергию внешнего воздей­ствия (раздражения) в нервный импульс. Второй отросток на­правляется в ЦНС, спинной мозг или в стволовую часть голов­ного мозга в соста'ве задних корешков спинномозговых нервов или соответствующих черепных нервов.

Различают следующие виды рецепторов в зависимости от локализации:

1экстероцепторы воспринимают раздражение из внешней среды. Они расположены в наружных покровах тела, в коже и слизистых оболочках, в органах чувств;

2интероцепторы получают раздражение главным образом при изменениях химического состава внутренней среды организма и давления в тканях и органах;

3проприоцепторы воспринимают раздражения в мыш­цах, сухожилиях, связках, фасциях, суставных капсулах.

Рецепцию, т. е. восприятие раздражения и начавшееся рас­пространение нервного импульса по нервным проводникам к центрам, И. П. Павлов относил к началу процесса анализа.

3. Эффекторный, эфферентный (двигательный, или секретор­ный) нейрон.Тела этих нейронов находятся в ЦНС (или на пе­риферии—в симпатических, парасимпатических узлах). Аксоны (нейриты) этих клеток продолжаются в виде нервных волокон к рабочим органам (произвольным — скелетным и непроизволь­ным— гладким мышцам, железам).

После этих общих замечаний рассмотрим более детально рефлекторную дугу и рефлекторный акт как основной принцип деятельности нервной системы. Рефлекторная дугапредставляет собой цепь нервных клеток, включающую афферентный (чувст­вительный) и эффекторный (двигательный, или секреторный) нейроны, по которым нервный импульс движется от места своего возникновения (от рецептора) к рабочему органу (эффектору). Большинство рефлексов осуществляется при участии рефлектор­ных дуг, которые образованы нейронами низших отделов ЦНС — нейронами спинного мозга.

Простейшая рефлекторная дуга (рис. 108) состоит только из двух нейронов — афферентного и эффекторного (эф­ферентного). Тело первого нейрона (рецепторного, афферент­ного), как отмечено, находится вне ЦНС. Обычно это псевдо­униполярный (униполярный) нейрон, тело которого расположено в спинномозговом узле (ganglion spindle) или чувствительном узле черепных нервов (ganglion sensoriale nn. cranialii). Пери­ферический отросток этой клетки следует в составе спинномоз говых нервов или имеющих чувствительные волокна черепных нервов и их ветвей и заканчивается рецептором, восприни­мающим внешнее (из внешней среды) или внутреннее (в орга­нах, тканях) раздражение. Это раздражение трансформируется рецептором в нервный импульс, который достигает тела нервной клетки, а затем по центральному отростку (совокупность таких отростков образует задние, или чувствительные, корешки спинно­мозговых нервов) направляется в спинной мозг или по соответст­вующим черепным нервам — в головной мозг. В сером веществе спинного мозга или в двигательном ядре головного мозга этот отросток чувствительной клетки образует синапс с телом второго нейрона (эфферентного, эффекторного). В межнейронном синап­се с помощью медиаторов происходит передача нервного воз­буждения с чувствительного (афферентного) нейрона на двига­тельный (эфферентный) нейрон, отросток которого выходит из спинного мозга в составе передних корешков спинномозговых нервов или двигательных (секреторных) нервных волокон череп­ных нервов и направляется к рабочему органу, вызывая сокра­щение мышцы, либо торможение, либо усиление секреции же­лезы.

Как правило, рефлекторная дуга состоит не из двух нейронов, а устроена гораздо сложнее. Между двумя нейронами — рецеп-торным (афферентным) и эффекторным (афферентным) — имеет­ся один или несколько замыкательных (вставочных) нейронов. В этом случае возбуждение от рецепторного нейрона по его центральному отростку передается не прямо эффекторной нерв­ной клетке, а одному или нескольким вставочным нейронам. Роль вставочных нейронов в спинном мозге выполняют клетки, лежащие в сером веществе задних столбов. Часть этих клеток имеет аксон (нейрит), который направляется к двигательным клеткам передних рогов спинного мозга того же уровня и замы­кает рефлекторную дугу на уровне данного сегмента спинного мозга. Аксон других клеток может в спинном мозге предвари­тельно Т-образно делиться на нисходящую и восходящую ветви, которые направляются к двигательным нервным клеткам перед­них рогов соседних, выше- или нижележащих сегментов. На пути следования каждая из отмеченных восходящих или нисхо­дящих ветвей может отдавать коллатерали к двигательным клеткам этих и других соседних сегментов. В связи с этим ста­новится понятным, что раздражение даже самого минимального числа рецепторов может передаваться не только нервным клет­кам какого-то определенного сегмента спинного мозга, но и рас­пространяться на клетки нескольких соседних сегментов. В ре­зультате ответная реакция представляет собой сокращение не одной мышцы и даже не одной группы мышц, а сразу нескольких групп. Так, в ответ на раздражение возникает сложное рефлек­торное движение. Это и есть одна из ответных реакций орга­низма (рефлекс) в ответ на внешнее или внутреннее раздра­жение.

К центральной нервной системе (ЦНС)относят спинной мозг и головной мозг, которые состоят из серого и белого вещества. Серое вещество спинного и головного мозга — это скопления нервных клеток вместе с ближайшими разветвлениями их отрост­ков. Белое вещество — это нервные волокна, отростки нервных клеток, имеющие миелиновую оболочку (отсюда белый цвет воло­кон). Нервные волокна образуют проводящие пути спинного и головного мозга и связывают различные отделы ЦНС и раз­личные ядра (нервные центры) между собой.

Периферическую нервную системусоставляют корешки, спин­номозговые и черепные нервы, их ветви, сплетения и узлы, лежащие в различных отделах тела человека.

По другой, анатомо-функциональной, классификации единую нервную систему также условно подразделяют на две части: соматическую и автономную, или вегетативную. Соматическая нервная системаобеспечивает иннервацию главным образом те­ла— сомы, а именно кожи, скелетных (произвольных) мышц. Этот отдел нервной системы выполняет функции связи орга­низма с внешней средой при помощи кожной чувствительности и органов чувств.

Автономная (вегетативная) нервная системаиннервирует все внутренности, железы, в том числе и эндокринные, непроизволь­ную мускулатуру органов, кожи, сосудов, сердца, а также регу­лирует обменные процессы во всех органах и тканях.

Автономная нервная система в свою очередь подразделяется на парасимпатическую часть, pars parasympathica, и симпатическую часть, pars sympathica. В каждой из этих частей, как и в соматической нервной системе, выделяют центральный и периферический отделы.

Такое деление нервной .системы, несмотря на его условность, сложилось традиционно и представляется достаточно удобным для изучения нервной системы в целом и ее отдельных частей. В связи с этим в дальнейшем мы также будем в изложении ма­териала придерживаться этой классификации.

Последнее изменение этой страницы: 2016-08-26; Нарушение авторского права страницы

Главная роль в регуляции функций организма и обеспечении его целостности принадлежит нервной системе. Этот механизм регуляции является более совершенным, нежели гуморальный. Во-первых, нервные влияния передаются значительно быстрее, чем химические воздействия, и потому организм через нервную систему осуществляет быстрые ответные реакции на действие раздражителей. В связи со значительной скоростью проведения нервных импульсов взаимодействие между частями организма устанавливается быстро в соответствии с потребностями организма. Во-вторых, нервные импульсы приходят к определенным органам, и потому ответные реакции, осуществляемые через нервную систему, не только более быстрые, но и более точные, чем при гуморальной регуляции функций.

Вся деятельность нервной системы осуществляется рефлекторным путем. С помощью рефлексов устанавливается взаимодействие различных систем целого организма и его приспособление к меняющимся условиям среды.

При повышении кровяного давления в аорте рефлектор но меняется деятельность сердца. В ответ на температурные воздействия внешней среды у человека суживаются или расширяются кровеносные сосуды кожи, под влиянием различных раздражителей рефлекторно меняются сердечная деятельность, интенсивность дыхания и т. д.

Благодаря рефлекторной деятельности организм быстро реагирует на различные воздействия внутренней и внешней среды.

Организм появляется на свет с целым рядом готовых, врожденных рефлекторных реакций. Протекание этих реакций связано с наследственно закрепленными нервными путями. Это безусловные рефлексы. К ним относятся акты глотания, сосания, чихания, жевания, слюноотделение, отделение желудочного сока, поддержание температуры тела и др. Количество врожденных безусловных рефлексов ограничено и не позволяет организму в полной мере приспосабливаться к меняющимся условиям среды.

В процессе индивидуальной жизни на базе врожденных безусловных реакций формируются условные рефлексы. Эти рефлексы у высших животных и человека весьма многочисленны и играют огромную роль в приспособлении к условиям существования. Они имеют сигнальное значение. Организм заранее как бы предупреждается о приближении чего-то значимого. По запаху гари человек и животное узнают о приближающейся беде, пожаре; животные по запаху, звукам отыскивают добычу или, напротив, спасаются от нападения хищников. На основе много численных условных связей, образовавшиеся в течение индивидуальной жизни, человек приобретает жизненный опыт, помо гающий ему ориентироваться в окружающей среде.

Отделы нервной системы

Для удобства изучения нервную систему подразделяют на две части — периферическую и центральную нервную систему (цвет. табл. XIV). Центральная нервная система состоит из головного и спинного мозга. Головной мозг помещается внутри мозгового черепа, а спинной мозг — в позвоночном канале. На разрезе головного и спинного мозга можно видеть нервную ткань более темного цвета — серое вещество; другие участки центральной нервной системы состоят из белого вещества. Серое вещество образовано телами нервных клеток; белое вещество представляет собой скопление нервных волокон, покрытых млели новом оболочкой.

Периферическая часть нервной системы представлена нервами, т. е. пучками нервных волокон, которые выходят за пределы мозга и направляются к различным органам тела. В состав периферической части нервной системы входят и нервные узлы, или ганглии, — скопления нервных клеток вне спинного и головного мозга.

Деление нервной системы на центральную и периферическую в известной степени условно, так как нервная система едина.

Статья на тему Значение нервной системы

Из всех систем организма нервная является наиболее важной. Именно от нее зависит согласованная работа всех прочих органов, тканей и клеток. Главное значение нервной системы для организма в том, что за ее счет он функционирует как единое целое. Кроме того, она же контролирует контакты организма с внешней средой.


Что имеется в составе нервной системы?

Образована она нервной тканью, в состав которой входят нейроны и клетки-спутники (астроциты). Давайте вкратце опишем их назначение:

  • Нейрон – главная функциональная единица нервной ткани. Именно эти клетки отвечают как за мышление, так и за все прочие функции всей системы.
  • Клетки-спутники выполняют трофическую и опорную функцию. В настоящее время считается, что они все же играют также немаловажную роль в механизме долговременной памяти, хотя эта гипотеза и нуждается в уточнении.

Продолжим обсуждать строение и значение нервной системы.

Строение нейрона

Эта клетка, которая ответственна практически за все происходящее в теле, состоит из тела и отростков. Они делятся на два типа: аксоны и дендриты. Первые из них отходят от клетки в единственном экземпляре, длинные. Напротив, дендриты отличаются не слишком выдающимися размерами, сильно разветвлены. Как правило, у каждой нервной клетки их может быть несколько. По дендритам нервные импульсы идут в клетку.

Аксон отличается большой длиной, практически не ветвится. По нему импульсы выходят из тела нервной клетки. Длина этого отростка может превышать несколько десятков сантиметров. По нему сигналы передаются при помощи электрических разрядов, практически мгновенно.

Небольшое отступление. Следует заметить, что значение, строение и функционирование нервной системы настолько сложны и многообразны, что о многих функциональных особенностях, о каких-то особенно сложных биохимических процессах, которые протекают в глубине ЦНС, ученые еще только начинают догадываться.

Аксоны покрыты оболочкой из жироподобного вещества, которое служит изолятором. Именно скопления этих отростков и образуют белое вещество нервной системы. Само тело нейрона и дендриты никакой оболочки не имеют. Скопления этих объектов называются серым веществом.


Какими бывают нейроны?

Не следует предполагать, что все нейроны одинаковы. Напротив, они сильно отличаются друг от друга своей формой и функциями. Чувствительные передают импульсы от органов чувств в мозг. Их тела расположены в крупных нервных узлах организма. К слову говоря, так называются крупные скопления нейронов за пределами головного и спинного мозга. Двигательная разновидность, напротив, передает импульсы от мозга к мышцам и внутренним органам.

Итак, подведем промежуточный итог. Каково основное значение нервной системы для организма? Перечислим:

  • Она принимает сигналы от органов чувств, рецепторов обоняния и осязания.
  • В нейронах производится анализ поступившей информации.
  • На исполнительный орган (мышца, к примеру) передается соответствующий импульс.
  • Организм адекватно отвечает на раздражающий фактор внешней среды.

Импульсы от головного мозга и к нему передаются не только по отдельным отросткам нейронов, но и по специализированным нервам.

Что такое нервы?

В повседневной жизни мы постоянно слышим это слово, но о его истинном значении как-то не задумываемся. А ведь нервная система и ее роль в организме так велики, что об этом следует знать!


Отделы нервной системы

Имеет два основных отдела: внутренний и периферический. В состав центрального отдела входит головной и спинной мозг, защищенные костями черепа и позвоночного столба. Соответственно, в периферию входят нервные узлы нервы и отдельные отростки нейронов.

К примеру, симпатика усиливает сокращения сердечной поперечно-полосатой мускулатуры, а парасимпатика – замедляет этот процесс, она ответственна за пищеварение. Таким образом, роль парасимпатической нервной системы в организме даже важнее. Она отвечает за дыхание и прочие жизненно важные процессы.

Рефлекс


Вот как велико значение нервной системы в жизнедеятельности человека. Когда в ней что-то нарушено, для больного человека настоящим подвигом может являться самостоятельное завязывание шнурков. Удивительно, как мало многие задумываются о важности нервной ткани!

Об отрезках рефлекторной дуги

Каждая дуга начинается с чувствительного рецептора. Каждый из них воспринимает только какой-то определенный вид раздражителя. Рецепторы ответственны за преобразование воздействий внешней среды в нервные импульсы. Импульсы, приводящие в движение скелетную мускулатуру, запускающие какие-то важные процессы и выполняющие столь же важную функцию, имеют сугубо электрическую природу. При помощи чувствительного нейрона импульсы передаются в центральную нервную систему.

Заметим, что практически все рефлекторные дуги имеют в своем составе вставочные нейроны.

Многие считают, что рефлекторная реакция – полностью бессознательный процесс, который, единожды закрепившись, остается полностью неизменным. Но это далеко не так. Дело в том, что сигнал, полученный от рецептора, нервная система не просто принимает, но проводит его анализ, оценивая эффективность реакции. Проще говоря, именно так люди при тренировках доводят свои действия не только до рефлекторного автоматизма, но и делают это идеально.

А сейчас поговорим, каково значение нервной системы в контексте обсуждения спинного мозга. Некоторые считают, что он служит исключительно для передачи импульсов от головного мозга к расположенным ниже отделам. Грубейшая ошибка, так как роль этого органа куда важнее.

Строение спинного мозга


У человека он имеет вид белого шнура, диметр которого составляет приблизительно 1 сантиметр. Сам канал заполнен ликвором, спинномозговой жидкостью. На поверхности самого органа находятся две глубокие продольные борозды, которые делят его на правую и левую части. Если разрезать мозг пополам, то можно увидеть довольно красивый узор, напоминающий бабочку.

Тело ее образовано нейронами (вставочными и двигательными). Как мы уже и говорили, белое вещество, которое закрывает их со всех сторон, представляет собой длинные отростки нейронов. Они, проходя вдоль спинного мозга вверх и вниз, образуют восходящий и нисходящий каналы.

Какие функции выполняет спинной мозг?

На него возложены две основные задачи: рефлексы и роль проводникового пути. За счет рефлекторной функции мы имеем возможность совершать многие движения. Все сокращения скелетных мышц тела (кроме мышц головы) так или иначе связаны с рефлекторными дугами, которые напрямую зависят именно от деятельности спинного мозга.

Иначе говоря, роль нервной системы в жизнедеятельности организма крайне многогранна: в регуляции работы органов и систем порой участвуют те ее отделы, о которых многие вспоминают крайне редко.


Важно! Не стоит забывать, что спинной мозг все же во всем подчиняется головному. Нередки случаи, когда в результате травмы, несчастного случая или болезни у человека полностью прерывалась связь между головным и спинным мозгом. Первый в таких случаях работает абсолютно нормально. Вот только практически все рефлексы, зоны которых располагаются ниже, полностью пропадают.

Такие люди могут в лучшем случае шевелить руками, слегка поворачивать голову, но вся нижняя часть тела у них полностью неподвижна и лишена какой бы то ни было чувствительности.

Головной мозг

Расположен в черепной коробке. Подразделяется на следующие отделы: продолговатый мозг, мозжечок, мост, промежуточный и средний отдел, а также полушария. Как и в предыдущем случае, имеется белое и серое вещество. Белое связывает между собой как части самого головного мозга, так и его со спинным отделом. Благодаря этому вся ЦНС функционирует как единое целое.

В отличие от спинного мозга, здесь серое вещество выходит на поверхность органа, образуя его кору, кортекс.

Продолговатый мозг представляет собой фактически продолжение спинного отдела, необходим для связи этих отделов нервной системы между собой. Он ответственен за дыхание, пищеварение и прочие бессознательные функции, а потому его повреждение смертельно опасно для жизни.

Значение отдельных компонентов


Вот какое значение имеет нервная система в жизнедеятельности организма.

Общие принципы строения нервной системы и её функции. Нейрон как структурная и функциональная единица нервной системы. Синапсы, их строение и значение

Нервная система играет исключительную интегрирующую роль в жизнедеятельности организма, так как объединяет (интегрирует) его в единое целое и "вписывает" (интегрирует) его в окружающую среду. Она обеспечивает согласовнную работу отдельных частей организма (координацию), поддержание равновесного состояния в организме (гомеостаз) и приспособление организма к изменениям внешней и/или внутренней среды (адаптивное состояние и/или адаптивное поведение).

Самое главное, что делает нервная система

Нервная система обеспечивает взаимосвязь и взаимодействие между организмом и внешней средой. И для этого ей требуется не так уж много процессов.

Основные процессы в нервной системе

1. Трансдукция . Превращение раздражения, внешнего по отношению к самой нервной системе, в нервное возбуждение, которым она может оперировать.

2. Трансформация . Переделка, преобразование входящего потока возбуждения в выходящий поток с отличающимися характеристиками.

3. Распределение . Распределение возбуждения и направление его по разным путям, по разным адресам.

4. Моделирование. Построение нервной модели раздражения и/или раздражителя, которая заменяет сам раздражитель. С этой моделью нервная система может работать, она может её хранить, видоизменять и использовать вместо реального раздражителя. Сенсорный образ - один из вариантов нервных моделей раздражения.

5. Модуляция . Нервная система под влиянием раздражения изменяет себя и/или свою деятельность.

Виды модуляции
1. Активация (возбуждение). Повышение активности нервной структуры, повышение её возбуждения и/или возбудимости. Доминантное состояние.
2. Угнетение (торможение, ингибиция). Понижение активности нервной структуры, торможение.
3. Пластическая перестройка нервной структуры.
Варианты пластических перестроек:
1) Сенситизация - улучшение передачи возбуждения.
2) Габитуация - ухудшение передачи возбуждения.
3) Временная нервная связь - создание нового пути передачи возбуждения.

6. Активация исполнительного органа для совершения действия. Таким способом нервная система обеспечивает рефлекторную ответную реакцию на раздражение .

Задачи и деятельность нервной системы

1. Произвести рецепцию - уловить изменение во внешней среде или внутренней среде организма в виде раздражения (это осуществляют сенсорные системы с помощью своих сенсорных рецепторов).

2. Произвести трансдукцию - преобразование (кодирование) этого раздражения в нервное возбуждение, т.е. поток нервных импульсов с особыми характеристиками, соответствующими раздражению.

3. Осуществить проведение - доставить по нервным путям возбуждение в необходимые участки нервной системы и к исполнительным органам (эффекторам).

4. Произвести перцепцию - создать нервную модель раздражения, т.е. построить его сенсорный образ.

5. Произвести трансформацию - преобразовать сенсорное возбуждение в эффекторное для осуществления ответной реакции на изменение среды.

6. Оценить результаты своей деятельности с помощью обратных связей и обратной афферентации.

Значение нервной системы :
1. Обеспечивает взаимосвязь между органами, системами органов и между отдельными частями организма. Это её координационная функция. Она координирует (согласовывает) работу отдельных органов в единую систему.
2. Обеспечивает взаимодействие организма с окружающей средой.
3. Обеспечивает мыслительные процессы. К этому относится восприятие информации, усвоение информации, анализ, синтез, сравнение с прошлым опытом, формирование мотивации, планирование, постановка цели, коррекция действия при достижении цели (исправление ошибок), оценка результатов деятельности, переработка информации, формирование суждений, заключений выводов и абстрактных (общих) понятий.
4. Осуществляет контроль за состоянием организма и отдельных его частей.
5. Управляет работой организма и его систем.
6. Обеспечивает активацию и поддержание тонуса, т.е. рабочего состояния органов и систем.
7. Поддерживает жизнедеятельности органов и систем. Кроме сигнальной функции нервная система имеет ещё и трофическую функцию, т.е. выделяемые ей биологически активные вещества способствуют жизнедеятельности иннервируемых органов. Органы, лишённые подобной "подпитки" со стороны нервных клеток, атрофируются, т.е. хиреют и могут отмереть.

Строение нервной системы



Рис. Схема строения ЦНС (центральной нервной системы). Источник: Атлас по физиологии. В двух томах. Том 1: учеб. пособие / А. Г. Камкин, И. С. Киселева - 2010. - 408 с. (http://vmede.org/sait/?page=7&id=Fiziologiya_atlas_kamakin_2010&menu=Fiz. )

Видео: Центральная нервная система

Нервная система в функциональном и структурном отношении делится на периферическую и центральную нервную систему (ЦНС).

Центральная нервная система состоит из головного и спинного мозга.

Головной мозг находится внутри мозгового отдела черепа, а спинной мозг - в позвоночном канале.
Периферическая часть нервная система состоит из нервов, т.е. пучков нервных волокон, которые выходят за пределы головного и спинного мозга и направляются к различным органам тела. К ней относят также нервные узлы, или ганглии - скопления нервных клеток вне спинного и головного мозга.
Нервная система функционирует как единое целое.

Функции нервной системы :
1) формирование возбуждения;
2) передача возбуждения;
3) торможение (прекращение возбуждения, уменьшение его интенсивности, угнетение, ограничение распространения возбуждения);
4) интеграция (объединения различных потоков возбуждения и изменения этих потоков);
5) восприятие раздражения из внешней и внутренней среды организма с помощью специальных нервных клеток - рецепторов;

6) кодирование, т.е. преобразование химического, физического раздражения в нервные импульсы;
7) трофическая, или питательная, функция - образование биологически активных веществ (БАВ).

Нейрон - основная структурная и функциональная единица нервной системы.

Нейрон


Определение понятия

Нейрон - основная структурная и функциональная единица нервной системы.

Нейрон - это сложно устроенная возбудимая секретирующая высокодифференцированная нервная клетка с отростками, которая воспринимает нервное возбуждение, перерабатывает его и передаёт другим клеткам. Кроме возбуждающего воздействия нейрон может оказывать на свои клетки-мишени также тормозное или модулирующее воздействие.


Функционально нейрон можно рас­сматривать как один из уровней организации нервной системы, который связывает друг с другом сразу несколько других уровней: с одной стороны, молекулярный, синаптический и субклеточный уровни и, с другой стороны, надклеточные уровни: локальных нейронных сетей, нервных центров и крупных фун­кциональных систем мозга, организующих поведение.


Сложность функции нейрона обусловливает особенности его строения. В нём различают тело клетки (сома), один длинный, маловетвящийся отросток - аксон и несколько коротких ветвящихся отростков - дендритов.
Аксон отличается большой длиной: от нескольких сантиметров до 1-1,5 м. Конец аксона сильно ветвится, так что один аксон может образовывать контакты с многими сотнями клеток.
Дендриты - обычно короткие, сильно ветвящиеся отростки. От одной клетки может отходить от 1 до 1000 дендритов. По дендритам возбуждение распространяется от рецепторов или контактирующих с этими дендритами нейронов к телу клетки, а по аксону нервные импульсы передаются к другим нейронам или к эффекторным (рабочим)клеткам . На дендритах имеются микроскопических размеров выросты (шипики), которые значительно увеличивают поверхность соприкосновения с другими нейронами. Особого развития шипики достигают на клетках больших полушарий головного мозга. На каждом шипике может быть до 8 синапсов (межклеточных контактов).

Тело нейрона в различных отделах нервной системы имеет различную величину и форму. Тело покрыто мембраной и содержит, как и любая клетка, цитоплазму, ядро с одним или несколькими ядрышками, митохондрии, рибосомы, аппарат Гольджи, эндоплазматическую сеть. По отношению к отросткам тело клетки выполняют трофическую функцию, т.е. регулирует в них уровень обмена веществ. Вот почему отделение аксона от тела нервной клетки или гибель сомы приводят к гибели аксона. Но тело нейрона, лишённое аксона, может вырастить вместо него новый аксон. На рисунке слева вокруг крупного нейрона виды мелкие глиальные клетки (G). Это вспомогательные клетки нервной ткани.

Как работает нейрон и что он делает?

Возбуждение, возникшее в виде нервного импульса на каком-либо участке мембраны нейрона, пробегает по всей его мембране и по всем его отросткам: как по аксону, так и по дендритам. Но вот передаётся возбуждение от одной нервной клетки к другой обычно только в одном направлении - с аксона передающего нейрона на воспринимающий нейрон через синапсы, находящиеся на его дендритах, теле или аксоне.

Обратите внимание на то, что одностороннюю передачу возбуждения обеспечивают синапсы (контакты нейронов). Нервное волокно (отросток нейрона) может передавать нервные импульсы в обоих направлениях, а односторонняя передача возбуждения появляется только в нервных цепях, состоящих из нескольких нейронов, соединённых синапсами. Именно синапсы обеспечивают одностороннюю передачу возбуждения.

Нервные клетки воспринимают и перерабатывают поступающую к ним информацию. Эта информация приходит к ним, как правило, вовсе не в виде прямых электрический воздействий, а в виде управляющих химических веществ: нейротрансмиттеров. Она может быть в виде возбуждающих или тормозных химических сигналов, а также в виде модулирующих сигналов, т.е. таких, которые изменяют состояние или работу нейрона, но не передают на него возбуждение.

Свойства нейрона

Процесс в основе

Афферентный нейрон

Вставочный нейрон

Э фферентный нейрон

Восприятие возбуждения

Локальный потенциал

Проведение возбуждения

Нервный импульс

Передача возбуждения

Химический выброс

Пластичность синапсов

Изменение силы синапсов

Более подробно смотрите здесь: 3_1 Работа нервных клеток

Синапсы - там даётся определение синапса.
Аксоны (выносящие возбуждение отростки) у большинства нейронов подходя к другим нервным клеткам ветвятся и образуют многочисленные окончания на этих клетках и их отростках (дендритах и аксонах). Такие места контактов называют синапсами. Аксоны также образуют синаптические окончания и на мышечных волокнах, и на клетках желёз. А аксоны нейронов гипоталамуса могут образовывать контакты также на кровеносных капиллярах, для того чтобы выделять свои химические управляющие вещества (нейротрансмиттеры) в кровь.

Строение синапса



Синапс имеет сложное строение. Так как его образуют две разные клетки, то в его состав входят две мембраны - пресинаптическая (от передающего возбуждение нейрона) и постсинаптическая (от воспринимающего возбуждение нейрона). Между ними есть синаптическая щель с межклеточной жидкостью. Пресинаптическая часть синапса принадлежит аксону. Её можно отличить от постсинаптической части синапса по наличию пузырьков-везикул, заполненных нейротрансмиттером - химическим управляющим веществом, влияющим на постсинаптическое окончание. Постсинаптическая часть синапса отличается уплотнённой постсинаптической мембраной, которую иногда называют также "субсинаптической мембраной". На ней расположены молекулярные рецепторы, с которыми соединяется нейротрансмиттер, выделяющийся из пресинаптического окончания. Нервные окончания в ЦНС имеют вид пуговок или бляшек. Постсинаптическая мембрана находится на теле или дендритах нейрона, на который передаётся нервный импульс. Но существуют также и "аксо-аксональные синапсы", образованные двумя аксонами.

Работа возбуждающего синапса

Работу возбуждающего синапса можно объяснить очень кратко.

Когда нервный импульс доходит до места соединения одного нейрона с другим, то передающий нейрон выбрасывает в пространство между их примыкающими отростками молекулы нейромедиатора. Этот нейромедиатор улавливается окончанием воспринимающего нейрона, после чего воспринимающий нейрон порождает (генерирует) уже свой нервный импульс и отправляет его дальше по цепи нейронов.

Если вы кликните на замечательную картинку синапса слева, то увидите в динамике, как химическим путём передаётся возбуждение (или наводится торможение) с одного нейрона на другой. Слева - аксон передающего нейрона образует пресинаптическое окончание. Справа - дендрит воспринимающего нейрона образует постсинаптическое окончание.

Бегущая в виде колечка волна возбуждения (она же - нервный импульс, она же - деполяризация) открывает на своём пути натриевые ионные каналы. Ионы Na+ входят в клетку и обеспечивают деполяризацию следующего участка на пути движения волны возбуждения. Так волна мембранных изменений продвигается вдоль аксона к его окончанию (пресинаптическому окончанию).

Но на пресинаптическом окончании открываются уже другие ионные каналы - кальциевые.

Это очень важно понять и запомнить: на пресинаптическом окончании открываются не только натриевые каналы, но и кальциевые!

В наш рисунок необходимо внести уточнение: последние исследования показали, что кальциевые каналы расположены на самой верхушке пресинаптического окончания - именно там, где будут сливаться с мембраной синаптические пузырьки, а не сбоку, как это показано на рисунке. Через раскрывшиеся кальциевые каналы более крупные ионы Ca2+ входят в это окончание и побуждают пузырьки с нейротрансмиттером переместиться к синаптической щели и выбросить в неё своё содержимое. Выброшенный из окончания наружу нейротрансмиттер (медиатор или модулятор) движется через щель к постсинаптическому окончанию и садится там на его молекулярные рецепторы.

Работа тормозного синапса

Тормозный синапс на своей постсинаптической мембране имеет рецепторы к тормозному медиатору - гамма-аминомасляной кислоте (ГАМК или GABA). В отличие от возбуждающего синапса в тормозном синапсе на постсинаптической мембране ГАМК открывает ионные каналы не для натрия, а для хлора. Ионы хлора приносят в клетку не положительный заряд, а отрицательный, поэтому противодействуют взбуждению, т.к. нейтрализуют положительные заряды ионов натрия, возбуждающих клетку.

Видео: Работа ГАМК-рецептора и тормозного синапса

Итак, возбуждение через синапсы передаётся химическим путём с помощью особых управляющих веществ, находящихся в синаптических пузырьках, расположенных в пресинаптической бляшке . Общее название этих веществ - нейротрансмиттеры, т.е. "нейропередатчики". Их разделяют на медиаторы ( посредники), которые передают возбуждение или торможение, и модуляторы, которые изменяют состояние постсинаптического нейрона, но возбуждение или торможение сами не передают.

Читайте также:

Пожалуйста, не занимайтесь самолечением!
При симпотмах заболевания - обратитесь к врачу.