Нервный импульс особенности проведения возбуждения в нервном центре

1) Одностороннее проведение возбуждения. Внутри рефлекторной дуги и нейронных цепей возбуждение идет в одном направлении, например, от афферентного нейрона к эфферентному.

2) Дивергенция (иррадиация) возбуждения. Огромное число межнейронных соединений у центральных нейронов модифицирует направление процесса возбуждения в зависимости от силы раздражителя и функционального состояния центральных нейронов. Значительное увеличение силы раздражителя приводит к расширению области вовлекаемых в процесс возбуждения центральных нейронов.

3) Суммация возбуждения. На нейроне в области аксонного холмика происходит интеграция событий, разыгрывающихся на отдельных участках мембраны нейрона. Временная суммация. Если с определенным интервалом к нейрону в точку А приходят импульсы, они вызывают ВПСП. Если эти ВПСП не достигают КУД, то ПД не возникает. Если же частота следования импульсов большая, то в этом месте происходит суммация ВПСП и при достижении КУД нейрон возбуждается. Пространственная суммация. Возбуждения приходящие одновременно в разные точки нейрона (А, В, С), даже если они сами по себе подпороговые, могут привести к возбуждению, при условии, что суммированные ВПСП вызовут деполяризацию до КУД.

4) Синаптическая задержка (1 – 1,5 мс).

5) Высокая утомляемость. Длительное повторное раздражение рецептивного поля приводит к ослаблению и исчезновению рефлекторной реакции. (истощение запасов медиатора в синапсах, адаптация постсинаптического рецептора к медиатору).

6) Трансформация ритма возбуждения. В отличие от скелетной мышцы или аксона, нейрон способен трансформировать ритм возбуждений, приходящих к нему. Напр., поступают импульсы с частотой 25 Гц, а нейрон, возбуждаясь, генерирует 50 Гц; или наоборот, поступает 100 имп/с, а выходит 40 имп/с.

7) Тонус, или наличие фоновой активности. Даже в отсутствие раздражений определенное количество нервных клеток находится в состоянии постоянного возбуждения, генерирует фоновые импульсные потоки.

Интегративные феномены в ЦНС.

Посттетаническая потенциация. Раздражая афферентный нерв стимулами редкой частоты, можно получить некоторый рефлекс определенной интенсивности. Если затем этот нерв в течение некоторого времени подвергать высокочастотному раздражению (300 – 400 стимулов в с), то повторное редкое ритмическое раздражение приведет к резкому усилению реакции.

Окклюзия (закупорка). Если 2 нервных центра рефлекторных реакций имеют частично перекрываемые рецептивные поля, то при совместном раздражении обоих рецептивных полей реакция будет меньше, чем арифметическая сумма реакций при изолированном раздражении каждого из рецептивных полей. Прим., 1-й нейрон активирует 10 мышечных волокон, развивается мышечное напряжение 100 мгс. 2-й нейрон возбуждает также 10 других волокон (100 мгс). Но если оба нейрона возбуждать одновременно, то суммарная активность мышцы 180 мгс. Часть волокон были общими (т.е. нейрон 1 и 2 передавали информацию на одни и те же волокна).

Облегчение. В ряде случаев при совместном раздражении рецептивных полей двух рефлексов вместо ослабления (окклюзии) наблюдается облегчение (т.е. суммарная реакция выше суммы реакции при изолированном раздражении этих рецептивных полей). Часть общих для обоих рефлексов нейронов при изолированном раздражении оказывают подпороговый эффекты. При совместном раздражении они суммируются и достигают пороговой силы.

Торможение.

Торможение в ЦНС – активный процесс, проявляющийся в подавлении или в ослаблении процесса возбуждения. Т.е. в норме торможение является производным от возбуждения, ограничивая и препятствуя его чрезмерному распространению. Процесс торможения вместе с процессом возбуждения формируют сложную мозаику активированных и заторможенных зон в центральных нервных структурах.

История развития учения о тормозных процессах начинается с открытия И.М. Сеченовым центрального торможения. Химическое раздражение кристаллами соли зрительных бугров вызывало удлинение времени сгибательного рефлекса по методике Тюрка (сгибание конечности в тазобедренном и коленном суставах в ответ на погружение лапы в кислоту).

1) Реципрокноеторможение. Пример: сигнал от мышечного веретена поступает с афферентного нейрона в спинной мозг, где переключается на альфа-мотонейрон сгибателя и одновременно на тормозной нейрон, который тормозит активность альфа-мотонейрона разгибателя (Ч. Шеррингтон);

2) Возвратное(антидромное)торможение. Угнетение активности нейрона вызывается возвратной коллатералью аксона, заканчивающейся на тормозном нейроне, аксон которого оказывает тормозное действие. Пример: альфа-мотонейрон посылает аксон к соответствующим мышечным волокнам. По пути от аксона отходит коллатераль, которая возвращается в ЦНС – она заканчивается на тормозном нейроне (клетка Реншоу) и активирует ее. Тормозной нейрон вызывает торможение альфа-мотонейрона, который запустил всю эту цепочку. Таким образом, альфа-мотонейрон, активируясь, через систему тормозного нейрона тормозит сам себя;

Механизмы торможения.

Различают несколько видов торможения: постсинаптическое, пресинаптическое, пессимальное (рис. 16).

Постсинаптическоеторможение – развивается на ПСМ аксосоматических и аксодендритических синапсов под влиянием тормозных нейронов, у которых из концевых разветвлений аксонных отростков в синаптическую щель высвобождается тормозной медиатор (например, ГАМК или глицин). Медиатор вызывает на ПСМ эффект гиперполяризации в виде ТПСП, а пространственно-временная суммация ТПСП приводит к урежению или прекращению генерации ПД в результате снижения возбудимости нейрона. Это основной вид торможения.

Пресинаптическоеторможение – развертывается в аксоаксональных синапсах, блокируя распространение возбуждения по аксону. Процесс торможения здесь протекает по типу катодической депрессии: в области контакта выделяется медиатор (ГАМК), который вызывает стойкую деполяризацию, что нарушает проведение волны возбуждения через этот участок. Является наиболее избирательным видом торможения, т.к. выключает отдельные входы к нервной клетке.

Блокатором ГАМК-ергических рецепторов мембраны является бикукулин, а глициновых рецепторов – стрихнин и столбнячный токсин.

Эти два вида торможения, возникающие в результате деятельности тормозных нейронов, относят к первичному торможению (Дж. Экклс).

Пессимальное(вторичное) торможение – вид торможения центральных нейронов, наступает при высокой частоте раздражения. В первый момент возникает высокая частота ответного возбуждения, однако через некоторое время стимулируемый в таком режиме нейрон переходит в состояние торможения.

Рис. 16. Виды внутрицентрального торможения.

2.2.4. Принципы координации в деятельности ЦНС.

Дивергенция. Способность нервной клетки устанавливать многочисленные синаптические связи с различными нервными клетками. Обеспечивает иррадиацию возбуждения в центральных нервных образованиях. Тормозные процессы ограничивают дивергенцию и делают процессы управления более точными. Когда торможение снимается (например, при столбняке), происходит полная дискоординация в деятельности ЦНС.

Принцип реципрокной иннервации (см. – реципрокное торможение).

Принцип обратной связи и копий эфферентаций. Невозможно точно координировать, управлять, если отсутствуют данные о результатах управления. Осуществляется за счет потока импульсов с рецепторов. Копия эфферентации: Для управления важно иметь информацию о командах, посылаемых на периферию. Например, в системах управляющих скелетными мышцами, каждый отдел, посылая сигнал управления к работающей мышце, одновременно сообщает об этом вышележащему отделу (вариант обратной связи).

Принцип системности. Развитием представления о доминанте являются работы П.К. Анохина о функциональной системе.

Рефлекторные реакции протекают не изолированно, а всегда объединяются в систему. Любая функциональная система всегда формируется и функционирует для достижения организмом конкретных приспособительных результатов (главный системообразующий фактор – конечный результат действия). Любая рефлекторная реакция многокомпонентная и протекает в 4 стадии.

1 стадия – афферентный синтез. На организм действует огромное количество раздражителей – это обстановочная афферентация. Есть аппарат памяти – прошлый опыт, аппарат мотиваций – побуждение к деятельности. Происходит их суммация и выделяется главный раздражитель – пусковая афферентация.

2 стадия – принятие решения. На организм действуют те же раздражители: возбужден аппарат памяти, мотиваций, выделена пусковая афферентация. Происходит принятие решения, это переломный момент в любой рефлекторной реакции.

3 стадия – эфферентный синтез. Возбужден аппарат памяти, мотиваций, выделена пусковая афферентация, принято решение. Формируется 2 функциональных аппарата: 1) программа действия - что, как и в какой последовательности нужно делать для достижения конечного приспособительного результата; 2) акцептор результата действия (АРД) - является аппаратом предвидения, предугадывания. Формируется на основе решения и программы действия. Стадия заканчивается началом действия.

4 стадия – обратной афферентации. АРД является аппаратом сравнения задуманного с полученным. Параметры результата действия поступают в АРД, который необходим для контроля и исправления ошибок в наших действиях. Совпадение задуманного с полученным сопровождается положительными эмоциями, при несовпадении – отрицательными эмоциями. В последнем случае вносятся поправки и система запускается повторно.

Принцип пластичности. При повреждении отдельных центров мозга их функция может перейти к другим структурам мозга (если не связано с наступлением смерти, как при нарушении дыхательного центра). Процесс возмещения утраченных функций осуществляется при обязательном участии КБП.

Принцип иерархичности. Принцип субординации или соподчинения. Подчинение низших отделов нервной системы высшим (филогенетически ранних более поздним). Цефализация нервной системы и ее управляющей функции (проявляется в перемещении, сосредоточении функции регуляции и координации деятельности организма в головных отделах ЦНС). Высшее проявление – кортикализация функций. В КБП имеются нейронные комплексы (ансамбли), отвечающие за все функции организма. Высшие нервные центры выступают уже регуляторами регуляторов. При всей сложности взаимоотношений между старыми, древними и эволюционно новыми образованиями мозга общая схема следующая: восходящие влияния (от нижележащих старых структур к вышележащим новым) преимущественно возбуждающего, стимулирующего характера, а нисходящие - преимущественно угнетающего, тормозного характера. Т.е. в процессе эволюции повышается роль и значенияетормозных процессов в осуществлении сложных интегративных рефлекторных реакций.

Принцип иерархичности проявляется и в общей закономерности расположения нейронов в ЦНС:

- продолговатый – крупные ядра;

- гипоталамус – много мелких ядер;

- КБП – слои нервных клеток.

Чем сложнее функция, тем упорядоченнее расположение нервных клеток. Благодаря принципу иерархичности:

1) Расширяются возможности целостного организма, возможна более тонкая, дифференцированная регуляция функций;

2) Повышается коррекция результатов деятельности многих органов, в том числе и анализаторов.

Принцип целостности. Органически сочетается с принципами иерархичности и системности. Подразумевает функционирование всех звеньев или этажей ЦНС.

СПИННОЙ МОЗГ

Характерной чертой организации спинного мозга (СМ) является периодичность его структуры в форме сегментов, имеющих входы в виде задних корешков, клеточную массу нейронов (серое вещество) и выходы в виде передних корешков.

Нервным центром называют совокупность нервных клеток, необходимых для осуществления какой-либо функции. Эти центры от­вечают соответствующими рефлекторными реакциями на внешнее

раздражение, поступившее от связанных с ними рецепторов. Клетки нервных центров реагируют и на непосредственное их раздражение веществами, находящимися в протекающей через них крови (гумо­ральные влияния). В целостном организме имеется строгое согласо­вание — координация их деятельности.

Проведение волны возбуждения от одного нейрона к другому через синапс происходит в большинстве нервных клеток химическим пу­тем — с помощью медиатора, а медиатор содержится лишь в пресинаптической части синапса и отсутствует в постсинаптической мем­бране. Поэтому важной особенностью проведения возбуждения через синоптические контакты является одностороннее прове­дение нервных влияний, которое возможно лишь от пресинаптической мембраны к постсинаптической и невозможно в обратном направлении. В связи с этим поток нервных импульсов в рефлек­торной дуге имеет определенное направление от афферентных ней­ронов к вставочным и затем к эфферентным — мотонейронам или вегетативным нейронам.

Большое значение в деятельности нервной системы имеет дру­гая особенность проведения возбуждения через синапсы — замед­ленное проведение. Затрата времени на процессы, происходящие от момента подхода нервного импульса к пресинаптической мембране до появления в постсинаптической мемб­ране потенциалов, называется синаптической задерж­кой. В большинстве центральных нейронов она составляет около 0.3 мс. После этого требуется еще время на развитие возбуждаю­щего постсинаптического потенциала (ВПСП) и потенциала дей­ствия. Весь процесс передачи нервного импульса (от потенциала действия одной клетки до потенциала действия следующей клет­ки) через один синапс занимает примерно 1.5 мс. При утомлении, охлаждении и ряде других воздействий длительность синаптической задержки возрастает. Если же для осуществления какой-либо реакции требуется участие большого числа нейронов (многих со­тен и даже тысяч), то суммарная величина задержки проведения по нервным центрам может составить десятые доли секунды и даже целые секунды.

При рефлекторной деятельности общее время от момента нане­сения внешнего раздражения до появления ответной реакции организ­ма—так называемое скрытое или латентное время ре­флекса определяется в основном длительностью проведения через синапсы. Величина латентного времени рефлекса служит важным показателем функционального состояния нервных центров. Измере­ние латентного времени простой двигательной реакции человека на внешний сигнал широко используется в практике для оценки функ­ционального состояния ЦНС (рис. 3).


Рис. 3. Схема измерения

времени двигательной

А — афферентные,

Э — эфферентные и

Ц — центральные пути;

С— отметка светового

сигнала, О — отметка нажима

t ISOmc — время реакции.

СУММАЦИЯ ВОЗБУЖДЕНИЯ

В ответ на одиночную афферентную волну, идущую от рецепторов к нейронам, в пресинаптической части синапса освобождается неболь­шое количество медиатора. При этом в постсинаптической мембране нейрона обычно возникает ВПСП — небольшая местная деполяриза­ция. Для того, чтобы общая по всей мембране нейрона величина ВПСП достигала порога возникновения потенциала действия, требу­ется суммация на мембране клетки многих подпороговых ВПСП. Лишь в результате такой суммации возбуждения возникает ответ ней­рона. Различают пространственную и временную суммацию.

Пространственная суммация наблюдается в случае одновременного поступления нескольких импульсов в один и тот же нейрон по разным пресинаптическим волокнам. Одномомент­ное возбуждение синапсов в различных участках мембраны нейро­на повышает амплитуду суммарного ВПСП до пороговой величи­ны. В результате возникает ответный импульс нейрона и осуществ­ляется рефлекторная реакция. Например, для получения ответа двигательной клетки спинного мозга обычно требуется одновре­менная активация 50-100 афферентных волокон от соответствую­щих периферических рецепторов..

Временная суммация происходит при активации одного и того же афферентного пути серией последовательных раздраже­ний. Если интервалы между поступающими импульсами достаточно коротки и ВПСП нейрона от предыдущих раздражений не успевают затухать, то последующие ВПСП накладываются друг на друга, пока деполяризация мембраны нейрона не достигнет критического уров­ня для возникновения потенциала действия. Таким способом даже слабые раздражения через некоторое время могут вызывать ответные реакции организма (например, чихание и кашель в ответ на слабые раздражения слизистой оболочки дыхательных путей).

Редактор С. Я. Вешникина

Корректор Н. Е. Павлова

Оформление переплета Л. Л. Бопдаренко

Художественный редактор Е. Ю. Молчанов

Компьютерная верстка И. В. Кттенко

Изд. лиц. ЛР № 066160 от 02.11.98

Подписано в печать 27.10.98. Гарнитура Петербург.

Формат 60 х 90 \ /\6. Печать офсетная. Усл. печ. л. 28.

Доп. тираж 5 000 экз. Заказ № 387

107120, Москва, Мельницкий пер., д. 8/1

Тел.: 917-2991, 917-7144

Отпечатано в полном соответствии с качеством предоставленных диапозитивов на

143200, г. Можайск, ул. Мира, 93

[1] Гимнастика и методика преподавания / Под ред. В.М. Смоленского М., 1987. С.208.

НЕРВНАЯ СИСТЕМА

Основные функции и методы исследования ЦНС

Функциями ЦНС:

• объединение всех частей организма в единое целое и их регуляция;

• управление состоянием и поведением организма в соответствии с условиями внешней среды и его потребностями.

У человека ведущим отделом ЦНС - кора больших полушарий. Она управляет сложными функ­циями жизнедеятельности человека — психическими процессами (сознание, мышление, речь, память и др.).

Методами изучения ЦНС являются методы удаления и раздражения (в клинике и на животных), регистрации электрических явлений, метод условных рефлексов, компьютерной томографии, фотосъемки в инфракрасных лучах (тепловидение), магнитных колебаний.

Основные функции и типы нейронов.

Основными структурными элементами нс нервные клетки или нейроны.

функции: передача информации от одного участка нс к другому, обмен информацией между нс и различными участками тела. В нейронах происхо­дят процессы обработки информации. формируются рефлексы на внешние и внутренние раздражения.

вос­приятие внешних раздражений — рецепторная функция, их переработка — интегративная функция и передача нервных влияний на другие нейроны или различные рабочие органы — эффекторная функция. В теле нервной клетки, происходят основные процессы переработки информации. дендриты входами нейрона, через которые сигналы поступают в нервную клетку. Выходом— аксон, который передает нервные импульсы дру­гой нервной клетке или рабочему органу. Осо­бенно высокой возбудимостью обладает начальная часть аксона и расширение в месте его выхода из тела клетки - аксонный холмик нейрона. Именно в этом сегменте клетки возникает нервный импульс.

ТИПЫ НЕЙРОНОВ

три основных типа: афферентные, эфферентные и промежуточные. Афферентные (чувствительные, или центростремительные) передают информа­цию от рецепторов в ЦНС. Тела этих нейронов расположены вне ЦНС - в спинномозговых узлах в узлах черепных нервов. Аффе­рентные имеют длинный отросток - дендрит, который контактирует на периферии с воспринимающим образованием - ре­цептором или сам образует рецептор, а также второй отросток - ак­сон, входящий через задние рога в спинной мозг.

Эфферентные (центробежные) связаны с передачей нисходящих влияний от вышележащих этажей нервной системы к нижележащим или из ЦНС к рабочим органам. Для эффе­рентных нейронов характерны разветвленная сеть коротких отрост­ков -дендритов и один длинный отросток-аксон.

Промежуточные (интернейроны, или вставочные) как правило, более мелкие клетки, осуществляю­щие связь между афферентными и эффе­рентными.

Особенности проведения возбуждения через нервные центры.

Нервным центром - совокупность нервных клеток, необходимых для осуществления какой-либо функции. Н. ц. от­вечают на внешнее раздражение, от связанных с ними рецепторов. Реагируют и на раздражение веществами, находящимися в протекающей через них крови. В организме имеется строгое согласо­вание - координация их деятельности.

Проведение возбужд. от нейрона к другому через синапс происходит в нервных клеток химическим пу­тем - с помощью медиатора, он содержится в пресинаптической части и отсутствует в постсинаптической мем­бр. Важной особенностью проведения возбужд. одностороннее прове­дение нервн. влияний, от пресинаптической к постсинаптической и невозможно в обратном. Поток нервных импульсов в рефлек­т. дуге имеет направление: афферентные - вставочные - эфферентные - мотонейронам или вегетативным нейронам.

Большое значение в деятельности н.с. особенность проведения возбужд. через синапсы — замед­ленное проведение. Затрата времени на процессы, происходящие от момента подхода импульса к пресинаптической мембране до появления в постсинаптической потенциалов, называется синаптической задерж­кой. В большинстве составляет около 0.3 мс. Процесс передачи через один синапс занимает 1.5 мс. При утомлении, охлаждении длительность возрастает.

При рефлекторной деятельности время от момента нане­сения раздражения до появления реакции - скрытое или латентное время ре­флекса, важный показатель состояния нервн. центров.

Дата добавления: 2015-10-01 ; просмотров: 1270 . Нарушение авторских прав

3.3.1. Особенности проведения возбуждения через нервные центры

Нервным центром называют совокупность нервных клеток, необходимых для осуществления какой-либо функции. Эти центры отвечают соответствующими рефлекторными реакциями на внешнее раздражение, поступившее от связанных с ними рецепторов. Клетки нервных центров реагируют и на непосредственное их раздражение веществами, находящимися в протекающей через них крови (гуморальные влияния). В целостном организме имеется строгое согласование – координация их деятельности.

Проведение волны возбуждения от одного нейрона к другому через синапс происходит в большинстве нервных клеток химическим путем – с помощью медиатора, а медиатор содержится лишь в пресинаптической части синапса и отсутствует в постсинаптической мембране. Поэтому важной особенностью проведения возбуждения через синаптические контакты является одностороннее проведение нервных влияний, которое возможно лишь от пресинаптической мембраны к постсинаптической и невозможно в обратном направлении. В связи с этим поток нервных импульсов в рефлекторной дуге имеет определенное направление от афферентных нейронов к вставочным и затем к эфферентным – мотонейронам или вегетативным нейронам.

Большое значение в деятельности нервной системы имеет другая особенность проведения возбуждения через синапсы замедленное проведение. Затрата времени на процессы, происходящие от момента подхода нервного импульса к цресинаптической мембране до появления в постсинаптической мембране потенциалов, называется синаптической задержкой. В большинстве центральных нейронов она составляет около 0,3 мс. После этого требуется еще время на развитие возбуждающего постсинаптического потенциала (ВПСП) и потенциала действия. Весь процесс передачи нервного импульса (от потенциала действия одной клетки до потенциала действия следующей клетки) через один синапс занимает примерно 1,5 мс. При утомлении, охлаждении и ряде других воздействий длительность синаптической задержки возрастает. Если же для осуществления какой-либо реакции требуется участие большого числа нейронов (многих сотен и даже тысяч), то суммарная величина задержки проведения по нервным центрам может составить десятые доли секунды и даже целые секунды.


Рис. 3. Схема измерения времени двигательной реакции:

А – афферентные, Э – эфферентные и Ц – центральные пути:

С – отметка светового сигнала:

0 – отметка нажима кнопки: 1150 мс – время реакции

При рефлекторной деятельности общее время от момента нанесения внешнего раздражения до появления ответной реакции организма – так называемое скрытое, иди латентное, время рефлекса определяется в основном длительностью проведения через синапсы. Величина латентного времени рефлекса служит важным показателем функционального состояния нервных центров. Измерение латентного времени простой двигательной реакции человека на внешний сигнал широко используется в практике для оценки функционального состояния ЦНС (рис. 3).

  • ЖАНРЫ 360
  • АВТОРЫ 262 652
  • КНИГИ 606 640
  • СЕРИИ 22 752
  • ПОЛЬЗОВАТЕЛИ 571 324

Алексей Солодков, Елена Сологуб

Физиология человека. Общая. Спортивная. Возрастная

Учебник для высших учебных заведений физической культуры. 7-е издание

Допущен Министерством РФ по физической культуре и спорту в качестве учебника для высших учебных заведений физической культуры

Издание подготовлено на кафедре физиологии Национального государственного университета физической культуры, спорта и здоровья им. П. Ф. Лесгафта, Санкт-Петербург

В. И. Кулешов, доктор мед. наук, проф. (ВмедА им. С. М. Кирова)

И. М. Козлов, доктор биол. и доктор пед. наук, проф. (НГУ им. П. Ф. Лесгафта, Санкт-Петербург)


Солодков Алексей Сергеевич – профессор кафедры физиологии Национального государственного университета физической культуры, спорта и здоровья им. П. Ф. Лесгафта (в течение 25 лет заведующий кафедрой 1986–2012 гг.).

Доктор медицинских наук, профессор, автор более 490 печатных работ по физиологии и психофизиологии труда, военного труда и спорта, соавтор 13 учебников, 22 учебных и учебно-методических пособий по различным разделам физиологии человека.


Сологуб Елена Борисовна – доктор биологических наук, профессор. С 2002 г. проживает в Нью-Йорке (США).

На кафедре физиологии Национального государственного университета физической культуры, спорта и здоровья им. П. Ф. Лесгафта работала с 1956 г., с 1986 г. по 2002 г. – в должности профессора кафедры. Была избрана академиком Российской академии Медико-технических наук, Почетным работником высшего образования России, членом Правления СПб общества физиологов, биохимиков и фармакологов им. И. М. Сеченова.

Автор около 300 печатных работ по электроэнцефалографии, общей и спортивной физиологии отдельных видов спорта, изданных на русском и иностранных языках.

Физиология человека является теоретической основой целого ряда практических дисциплин (медицины, психологии, педагогики, биомеханики, биохимии и др.). Без понимания нормального течения физиологических процессов и характеризующих их констант различные специалисты не могут правильно оценивать функциональное состояние организма человека и его работоспособность в различных условиях деятельности. Знание физиологических механизмов регуляции различных функций организма имеет важное значение в понимании хода восстановительных процессов во время и после напряженного мышечного труда.

Раскрывая основные механизмы, обеспечивающие существование целостного организма и его взаимодействие с окружающей средой, физиология позволяет выяснить и исследовать условия и характер изменений деятельности различных органов и систем в процессе онтогенеза человека. Физиология является наукой, осуществляющей системный подход в изучении и анализе многообразных внутри- и межсистемных взаимосвязей сложного человеческого организма и сведение их в конкретные функциональные образования и единую теоретическую картину.

Важно подчеркнуть, что в развитии современных научных физиологических представлений существенная роль принадлежит отечественным исследователям. Знание истории любой науки – необходимая предпосылка для правильного понимания места, роли и значения дисциплины в содержании социально-политического статуса общества, его влияния на эту науку, а также влияние науки и ее представителей на развитие общества. Поэтому рассмотрение исторического пути развития отдельных разделов физиологии, упоминание наиболее ярких ее представителей и анализ естественнонаучной базы, на которой формировались основные понятия и представления этой дисциплины, дают возможность оценить современное состояние предмета и определить его дальнейшие перспективные направления.

Физиологическая наука в России в XVIII–XIX столетиях представлена плеядой блестящих ученых – И. М. Сеченов, Ф. В. Овсянников, А. Я. Данилевский, А. Ф. Самойлов, И. Р. Тарханов, Н. Е. Введенский и др. Но лишь И. М. Сеченову и И. П. Павлову принадлежит заслуга создания новых направлений не только в Российской, но и в мировой физиологии.

Физиологию как самостоятельную дисциплину начали преподавать с 1738 г. в Академическом (позже Санкт-Петербургском) университете. Существенное значение в развитии физиологии принадлежит и основанному в 1755 г. Московскому университету, где в его составе в 1776 г. была открыта кафедра физиологии.

В 1798 г. в Санкт-Петербурге была основана Медико-хирургическая (Военно-медицинская) академия, которая сыграла исключительную роль в развитии физиологии человека. Созданную при ней кафедру физиологии последовательно возглавляли П. А. Загорский, Д. М. Велланский, Н. М. Якубович, И. М. Сеченов, И. Ф. Цион, Ф. В. Овсянников, И. Р. Тарханов, И. П. Павлов, Л. А. Орбели, A.В. Лебединский, М. П. Бресткин и другие выдающиеся представители физиологической науки. За каждым названным именем стоят открытия в физиологии, имеющие мировое значение.

В программу обучения в физкультурных вузах физиология включалась с первых дней их организации. На созданных П. Ф. Лесгафтом в 1896 г. Высших курсах физического образования сразу же был открыт кабинет физиологии, первым руководителем которого являлся академик И. Р. Тарханов. В последующие годы физиологию здесь преподавали Н. П. Кравков, А. А. Вальтер, П. П. Ростовцев, B.Я. Чаговец, А. Г. Гинецинский, А. А. Ухтомский, Л. А. Орбели, И. С. Беритов, А. Н. Крестовников, Г. В. Фольборт и др.

Теоретические предпосылки для возникновения и развития физиологии спорта были созданы фундаментальными работами И. М. Сеченова, И. П. Павлова, Н. Е. Введенского, А. А. Ухтомского, И. С. Бериташвили, К. М. Быкова и других. Однако систематическое изучение физиологических основ физической культуры и спорта началось значительно позже. Особенно большая заслуга в создании этого раздела физиологии принадлежит Л. А. Орбели и его ученику А. Н. Крестовникову, и она неразрывно связана со становлением и развитием Университета физической культуры им. П. Ф. Лесгафта и его кафедры физиологии – первой подобной кафедры среди физкультурных вузов в стране и в мире.

Читайте также:

Пожалуйста, не занимайтесь самолечением!
При симпотмах заболевания - обратитесь к врачу.